Nothing Special   »   [go: up one dir, main page]

JP2008310758A - 車両走行支援装置 - Google Patents

車両走行支援装置 Download PDF

Info

Publication number
JP2008310758A
JP2008310758A JP2007160445A JP2007160445A JP2008310758A JP 2008310758 A JP2008310758 A JP 2008310758A JP 2007160445 A JP2007160445 A JP 2007160445A JP 2007160445 A JP2007160445 A JP 2007160445A JP 2008310758 A JP2008310758 A JP 2008310758A
Authority
JP
Japan
Prior art keywords
vehicle
risk
course
host vehicle
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007160445A
Other languages
English (en)
Other versions
JP4900076B2 (ja
Inventor
Masahiro Harada
将弘 原田
Toshiki Kanemichi
敏樹 金道
Kazuaki Aso
和昭 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007160445A priority Critical patent/JP4900076B2/ja
Publication of JP2008310758A publication Critical patent/JP2008310758A/ja
Application granted granted Critical
Publication of JP4900076B2 publication Critical patent/JP4900076B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

【課題】 運転者の技量に応じた自車両の危険度を求め、この危険度を用いることにより、運転者の技量に応じた走行支援を行うことができる車両走行支援装置を提供する。
【解決手段】 危険度地図作成部1における統計処理部12では、データベース読込部11から出力される自車両の位置およびその位置における記憶危険度Rdb、並びに衝突確率算出部1から出力される自車両危険度Rcurに基づいて、自車両の位置における積算危険度Rnewを算出する。この積算危険度Rnewを地図データベース7に書き込む。
【選択図】 図1

Description

本発明は、自車両における衝突の危険度に基づいて自車両の走行を支援する車両走行支援装置に関する。
自車両の走行支援を行うにあたり、自車の経路を算出しこの経路に基づいて自車両の走行支援を行う走行支援装置がある。このような走行支援装置などにおける経路を求める装置として、従来、たとえば特許文献1に開示された経路探索装置がある。この経路探索装置は、道路網データにおける道路区間に対して、この道路区間を通過する際にかかる疲労度または危険度が割り当てられており、この疲労度または危険度を使って経路探索の開始地点から終了地点へと至る最適経路を探索するというものである。
特開2004−12247号公報
しかし、上記特許文献1に開示された経路探索装置では、地図や統計データに基づいて道路区間における疲労度または危険度を算出しているので、たとえば運転者の個々の危険度などについては考慮されていない。このため、運転者の運転技術や運転行動といった技量に差があり、たとえば運転者個々の運転での危険度に差がある場合でも、一律に経路探索を行ってしまい、運転者の運転技術や運転行動といった技量の差に応じた経路を求めることができなかった。したがって、この経路探索装置を用いた場合には、運転者の技量に応じた走行支援を行うことが困難となるという問題があった。
そこで、本発明の課題は、運転者の技量に応じた自車両の危険度を求め、この危険度を用いることにより、運転者の技量に応じた走行支援を行うことができる車両走行支援装置を提供することにある。
上記課題を解決した本発明に係る車両走行支援装置は、自車両が走行する走行路を記憶する地図データベースと、自車両における衝突の危険度を取得する危険度取得手段と、自車両の現在位置を取得する位置取得手段と、を備え、危険度取得手段で取得された危険度と、この危険度が取得された位置と、を含む位置・危険度データを地図データベースに書き込み、地図データベースに記憶された位置・危険度データに基づいて、自車両の走行を支援するものである。
本発明に係る車両走行支援装置においては、自車両における衝突の危険度およびこの危険度が取得された自車両の現在位置を取得し、位置・危険度データを地図データベースに書き込んでいる。自車両における衝突の危険度は、運転者の運転技術や運転行動によって左右されるものであることから、運転者の技量に応じた自車両の危険度を求めることができる。したがって、この危険度を用いることにより、運転者の技量に応じた走行支援を行うことができる。
ここで、危険度取得手段は、自車両の進路を取得する自車両進路取得手段と、自車両の周辺の障害物の進路を複数取得する障害物進路取得手段と、自車両の進路および障害物の複数の進路に基づいて、自車両と障害物との衝突可能性を取得する衝突可能性取得手段と、を備え、衝突可能性取得手段によって取得された衝突可能性に基づいて、危険度を取得する態様とすることができる。
このように、衝突可能性取得手段によって取得された衝突可能性に基づいて、危険度を取得することにより、自車両を運転する運転者の技量をより精度よく把握することができ、運転者の技量に応じた走行支援をさらに精度よく行うことができる。
本発明に係る車両走行支援装置によれば、運転者の技量に応じた自車両の危険度を求めることができ、この危険度を用いることにより、運転者の技量に応じた走行支援を行うことができる。
以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図示の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。
図1は、本発明の実施形態に係る車両走行支援装置の構成を示すブロック構成図、図2は衝突確率算出部のブロック構成図である。図1に示すように、車両走行支援装置は、危険度地図作成部1、障害物センサ2、障害物抽出部3、自車両センサ4、位置センサ5、タイマ6、および地図データベース7を備えている。危険度地図作成部1は、電子制御する自動車デバイスのコンピュータであり、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、および入出力インターフェイスなどを備えて構成されている。危険度地図作成部1は、衝突確率算出部10、データベース読込部11、統計処理部12、およびデータベース書込部13を備えている。また、危険度地図作成部1には、障害物センサ2が障害物抽出部3を介して接続されているとともに、自車両センサ4が接続されている。さらに、危険度地図作成部1には、位置センサ5、タイマ6、地図データベース7、および走行支援部8が接続されている。
障害物センサ2は、ミリ波レーダセンサ、レーザレーダセンサ、画像センサなどを備えて構成されており、自車両の周囲にある他車両や通行人等の障害物を検出する。障害物センサ2は、検出した障害物に関する情報を含む障害物関連情報を障害物抽出部3に送信する。
障害物抽出部3は、障害物センサ2から送信された障害物関連情報から障害物を抽出し、障害物の位置や移動速度などの障害物情報として危険度地図作成部1における衝突確率算出部10に出力する。障害物抽出部3は、たとえば障害物センサ2がミリ波レーダセンサやレーザレーダセンサである場合には、障害物から反射される反射波の波長等に基づいて障害物を検出する。また、障害物センサ2が画像センサである場合には、撮像された画像中から障害物として、たとえば他車両をパターンマッチングなどの手法によって抽出する。
自車両センサ4は、速度センサ、ヨーレートセンサなどを備えて構成されており、自車両の走行状態に関する情報を検出している。自車両センサ4は、検出した自車両の位置に関する自車両位置情報を危険度地図作成部1における衝突確率算出部10に送信する。ここでの自車両の走行状態情報としては、たとえば自車両の速度やヨーレートなどがある。
位置センサ5は、自車両の位置を検出し、検出した自車両の現在位置(x,y)を危険度地図作成部1におけるデータベース読込部11に送信する。位置センサ5としては、GPS(Global Positioning System)装置やオドメトリ装置などを用いることができる。位置センサ5としてオドメトリ装置を用いる場合には、原点をたとえば運転者の自宅駐車場などに固定する。
タイマ6は、時刻を計測しており、計測した時刻tを危険度地図作成部1におけるデータベース読込部11に送信する。ここで、位置センサ5としてGPS装置を用いた場合には、このGPS装置をタイマ6として用いることができる。
危険度地図作成部1における衝突確率算出部10は、図2に示すように、障害物情報一時記憶部21、障害物可能進路算出部22、自車両進路記録部23、自車両進路読出部24、自車両位置読出部25、自車両可能進路算出部26、実現進路衝突確率算出部27、最善自車両進路衝突確率算出部28、および自車両危険度算出部29を備えている。
障害物情報一時記憶部21は、予め定められた所定時間、たとえば5秒間に障害物抽出部3から送信された障害物情報を記憶している。障害物可能進路算出部22は、障害物情報一時記憶部21に記憶された過去5秒間の障害物情報を読み出し、この5秒間の障害物情報に基づいて、以後の一定時間の間における障害物が移動すると予測される進路を複数本算出して取得する。なお、過去5秒間に代えて、適宜の時間(たとえば3秒〜10秒の間の時間)とすることができる。障害物可能進路算出部22は、算出した障害物の進路に関する障害物進路情報を実現進路衝突確率算出部27および最善自車両進路衝突確率算出部28に出力する。
自車両進路記録部23は、自車両センサ4から送信された自車両の走行状態信号に基づいて、自車両の進路の履歴を記録する。自車両進路読出部24は、自車両進路記録部23に記録される自車両の履歴を予め定められた所定時間、たとえば5秒間分の自車両の進路の履歴を読み出す。ここでの予め定められた所定時間は、障害物情報一時記憶部21に記憶される障害物情報の時間と共通する。自車両進路読出部24は、読み出した自車両の進路の履歴に基づいて、自車両が実際にとった進路である実現進路に関する実現進路情報を実現進路衝突確率算出部27に出力する。
自車両位置読出部25は、自車両進路記録部23に記録される自車両の履歴を予め定められた所定時間、たとえば5秒間分の自車両の位置を読み出し、自車両の位置に関する自車両位置情報を自車両可能進路算出部26に出力する。自車両可能進路算出部26は、自車両位置読出部25から出力された自車両位置情報に基づいて、自車両が位置していると記録されている位置から、自車両が移動可能となる可能進路を複数本算出して取得する。自車両可能進路算出部26は、算出した自車両の可能進路に関する自車両可能進路情報を最善自車両進路衝突確率算出部28に出力する。
実現進路衝突確率算出部27は、障害物可能進路算出部22から出力された障害物進路情報および自車両進路読出部24から出力された実現進路情報に基づいて、過去5秒間の間に自車両が実現進路において障害物に衝突する可能性があった実現進路衝突確率を算出して取得する。実現進路衝突確率算出部27は、算出した実現進路衝突確率に関する実現進路衝突確率情報を自車両危険度算出部29に出力する。
最善自車両進路衝突確率算出部28は、障害物可能進路算出部22から出力された障害物進路情報および自車両可能進路算出部26から出力された自車両可能進路情報に基づいて、自車両と他車両との衝突確率が最小となる最善自車両進路を算出する。また、最善自車両進路衝突確率算出部28は、算出した最善自車両進路に基づいて、過去5秒間の間に自車両が最善自車両進路において障害物に衝突する可能性があった最善自車両進路衝突確率を算出して取得する。最善自車両進路衝突確率算出部28は、算出した最善自車両進路衝突確率に基づく最善自車両進路衝突確率情報を自車両危険度算出部29に出力する。
自車両危険度算出部29は、実現進路衝突確率算出部27から出力された実現進路衝突確率情報と最善自車両進路衝突確率算出部28から出力された最善自車両進路衝突確率情報との乖離度に基づいて、自車両の危険度を算出する。ここでの危険度としては、たとえば実現進路衝突確率情報に基づく実現進路衝突確率と、最善自車両進路衝突確率情報に基づく最善自車両進路衝突確率との乖離度とすることができる。また、この乖離度は、両者の比とすることができる。自車両危険度算出部29は、算出した危険度に基づく自車両危険度Rcurを統計処理部12に出力する。
また、図1に示す地図データベース7には、自動車の走行路となる道路に関する道路情報が記憶されている。また、地図データベース7は、道路情報の任意の各地点(x,y)において時刻tに取得された危険度を記憶危険度Rdb(x,y,t)として書込み可能とされている。地図データベース7は、記憶危険度Rdb(x,y,t)を複数の地点および時刻に対応して記憶している。地図データベース7に記憶された記憶危険度Rdb(x,y,t)は予め設定されていてもよいし、自車両の危険度から自動的に構築またはアップデートする構成としてもよい。
前記記憶危険度Rdb(x,y,t)の自動構築、アップデートの一態様は以下の通りである。データベース読込部11は、位置センサ5から送信される位置(x,y)および時刻tを地図データベース7に記憶された地図情報に参照し、自車両の現在・時刻の記憶危険度Rdb(x,y,t)を取得する。データベース読込部11は、これらの自車両の現在位置(x,y)および現在時刻tにおける危険度に基づく記憶危険度Rdb(x,y,t)を統計処理部12に出力する。
統計処理部12は、データベース読込部11から出力される記憶危険度Rdb(x,y,t)に基づく記憶危険度および衝突確率算出部10における自車両危険度算出部29から出力される自車両危険度情報に基づく自車両危険度Rcurを用いて統計処理を施す。ここでの統計処理として、統計処理部12では、データベース読込部11から出力される自車両の記憶危険度Rdb(x,y,t)に対して衝突確率算出部10から出力された自車両危険度を積算し、積算危険度Rnew(x,y,t)を算出する。また、統計処理としては、衝突確率算出部10から出力された車両危険度を積算するほか、自車両の記憶危険度Rdb(x,y,t)と衝突確率算出部10から出力された自車両危険度の平均値や分散などを用いて危険度Rnew(x,y,t)を算出することもできる。統計処理部12は、算出した記憶危険度Rdb(x,y,t)および自車両の現在位置(x,y)と現在時刻tに基づく積算危険度Rnew(x,y,t)をデータベース書込部13に出力する。
データベース書込部13は、統計処理部12から出力される積算危険度Rnew(x,y,t)を地図データベース7に書き込む。ここで、地図データベース7において、積算危険度Rnewに対応する位置に、既に記憶危険度Rdbが書き込まれている場合には、そこに積算危険度Rnewを上書きする。地図データベース7は、データベース書込部13によって書き込まれた積算危険度Rnew(x,y,t)をその位置および時刻における記憶危険度として記憶する。
走行支援部8は、地図データベース7に記憶されている記憶危険度Rdb(x,y,t)を参照し、運転者に対する走行支援を行う。走行支援としては、たとえば危険度が所定のしきい値を超える場合に危険度が高いことを報知する表示を行ったり、危険位置を避けるためのナビゲートをしたりすることができる。
次に、本実施形態に係る車両走行支援装置の処理手順について説明する。ここで、図3は、車両走行支援装置の処理手順を示すフローチャートである。
図3に示すように、本実施形態に係る車両走行支援装置では、まず位置センサ5から送信された自車両の現在位置(x,y)を取得する(S1)。次に、およびタイマ6から送信された現在時刻tを取得する(S1)。自車両の現在位置(x,y)および現在時刻tを取得したら、取得した現在位置・時刻(x,y,t)を地図データベース7に参照して、自車両の現在位置および現在時刻に対応する記憶危険度Rdb(x,y,t)を読み込む(S2)。ここで、現在位置・時刻(x,y,t)を地図情報に参照するにあたり、自車両の現在位置・時刻に対応する記憶危険度Rdb(x,y,t)が存在することは稀である。このため、現在の自車両の位置における記憶危険度Rdb(x,y,t)が存在しない場合には、自車両の現在位置(x,y)にもっとも近い地点に記憶されている記憶危険度Rdbを取得する。また、自車両の現在位置(x,y)からもっとも近い地点と、自車両の現在位置(x,y)との離間距離が所定のしきい値を超える場合には、現在の自車両の位置に近い所定数の地点にそれぞれ記憶されている記憶危険度を所定数、たとえば2個〜5個の記憶危険度を読み込む。
自車両の現在位置および現在時刻に対応する記憶危険度Rdb(x,y,t)を読み込んだら、自車両危険度Rcurを算出する(S3)。自車両危険度Rcurの算出は、図4に示す手順に沿って行われる。図4は、自車両危険度を算出する手順を示すフローチャートである。図4に示すように、自車両危険度Rcurを算出する際には、障害物抽出部3において、障害物センサ2から送信される障害物関連情報に基づいて、自車両の周囲における障害物を抽出する(S11)。ここでは、障害物として他車両を抽出する。また、複数の他車両が含まれていた場合には、これらの複数の他車両のすべてを抽出する。
障害物としての他車両を抽出したら、抽出した他車両に関する他車両情報を障害物情報一時記憶部21に記憶し、障害物情報一時記憶部21に記憶された過去5秒間の他車両情報に基づいて、障害物可能進路算出部22において他車両が移動可能となる可能進路を他車両ごとに時間および空間から構成される時空間上の軌跡として算出する(S12)。ここで、他車両が移動可能となる可能進路としては、ある到達点を規定して、この到達点までの可能進路を算出するのではなく、他車両が移動する所定の移動時間が経過するまでの進路を求める。一般的に、自車両が走行する道路では、事前に安全が保障される場所はないため、自車両と他車両との衝突可能性を判断するためには、自車両と他車両との到達点を求めても、衝突を確実に回避することができるとはいえない。
たとえば、図5に示すように、3車線の道路Rにおいて、第1車線r1を自車両Mが走行し、第2車線r2を第1他車両H1が走行し、第3車線を第2他車両H2が走行しているとする。このとき、自車両Mが第2,第3車線r2、r3をそれぞれ走行する他車両H1,H2との衝突を避けるためには、自車両Mが位置Q1,Q2,Q3にそれぞれ到達するように走行することが好適と考えられる。ところが、第2他車両H2が進路を第2車線r2に変更するように進路B3をとった場合には、第1他車両H1が第2他車両H2との衝突を避けるために進路B2をとり、第1車線r1に進入してくることが考えられる。この場合には、自車両Mが位置Q1,Q2,Q3にそれぞれ到達するように走行すると、第1他車両H1と衝突する危険性が生じるものである。
そこで、自車両および他車両について到達する位置を予め定めるのではなく、その都度自車両および他車両の進路を予測するようにしている。その都度自車両および他車両の進路を予測することにより、たとえば図6に示すような進路B1を自車両の進路とすることができるので、自車両Mが走行する際の危険を的確に回避して安全性を確保することができる。
なお、他車両が移動する所定の移動時間が経過するまでを規定することに代えて、他車両が走行する走行距離が所定の距離に到達するまで他車両の可能進路を求める態様とすることもできる。この場合、他車両の速度(または自車両の速度)に応じて所定距離を適宜変更させることができる。
他車両の可能進路は、他車両ごとに、次のようにして算出される。他車両を識別するカウンタkの値を1とするとともに、同じ他車両に対する可能進路生成回数を示すカウンタnの値を1とする初期化処理を行う。続いて、障害物センサ2から送信され他車両関連情報から抽出された他車両情報に基づく他車両の位置および移動状態(速度および移動方向)を初期状態とする。
続いて、その後の一定時間Δtの間において想定される他車両の挙動として、選択可能な複数の挙動の中から、各挙動に予め付与された挙動選択確率にしたがって一つの挙動を選択する。1つの挙動を選択する際の挙動選択確率は、たとえば選択可能な挙動の集合の要素と所定の乱数とを対応付けることによって定義される。この意味で、挙動ごとに異なる挙動選択確率を付与してもよいし、挙動の集合の全要素に対して等しい確率を付与してもよい。また、挙動選択確率を他車両の位置や走行状態、周囲の道路環境に依存させる態様とすることもできる。
このような挙動選択確率に基づく一定時間Δtの間において想定される他車両の挙動の選択を繰り返して行い、他車両が移動する所定の移動時間となる時間までの他車両の挙動を選択する。こうして選択された他車両の挙動によって、他車両の可能進路を1本算出することができる。
他車両の可能進路を1本算出したら、同様の手順によって他車両の可能進路を複数(N本)算出する。同様の手順を用いた場合でも、各挙動に予め付与された挙動選択確率にしたがって一つの挙動を選択することから、ほとんどの場合に、異なる可能進路が算出される。ここで算出する可能進路の数は、予め決定しておき、たとえば1000本(N=1000)とすることができる。もちろん、他の複数の可能進路を算出する態様とすることもでき、たとえば数百〜数万本の間の数とすることができる。こうして算出された可能進路を他車両の予測進路とする。
さらに、抽出された他車両が複数ある場合には、それらの複数の他車両について、それぞれ可能進路を算出する。
他車両の可能進路の算出が済んだら、自車両進路読出部24において、自車両進路記録部23に記録されている自車両の過去5秒間の進路を読み出す(S13)。自車両進路読出部24は、読み出した過去5秒間の自車両の実現進路に関する実現進路情報を実現進路衝突確率算出部27に出力する。
続いて、自車両位置読出部25において、自車両進路記録部23に記録されている自車両の過去5秒間における自車両の位置を読み出す。それから、自車両可能進路算出部26において、過去5秒間における自車両の位置に基づいて、その位置から自車両が移動することが可能となる可能進路を複数本算出する(S14)。自車両の可能進路は、他車両の可能進路と同様の算出手順によって、時間および空間から構成される時空間上の軌跡として算出する。自車両可能進路算出部26は、自車両の可能進路を取得したら、自車両可能進路情報として最善自車両進路衝突確率算出部28に出力する。
こうして、自車両の可能進路の算出が済んだら、実現進路衝突確率算出部27において、自車両進路読出部24から出力された実現進路情報に基づいて、自車両が移動した実現進路を算出する(S15)。それから、実現進路衝突確率算出部27において、自車両が他車両との衝突を許容していた実現進路衝突確率を算出する(S16)。ここでは、障害物可能進路算出部22から出力された障害物進路情報に基づく過去5秒間における複数の他車両の予測進路と、ステップS15で求めた実現進路とを比較し、過去5秒間において、自車両が許容していた衝突確率を算出する。
いま、ステップS12およびステップS13で求めた他車両の予測進路および自車両の実現進路の例を図7に示す三次元空間によって現す。図7における三次元空間では、x軸およびy軸によって示されるxy平面に車両の位置を示し、t軸を時間軸として設定している。したがって、他車両および自車両の予測進路は(x,y,t)座標で示すことができ、自車両および他車両の各進路をxy平面に投影して得られる軌跡が、自車両が実際に走行した進路、および他車両が走行すると予測された予測進路の道路上の走行軌跡となる。
このようにして、予測した自車両および他車両の予測進路を図7に示す空間にあらわすことにより、三次元時空間の所定の範囲内に存在する複数の車両(自車両および他車両)がとりうる予測進路の集合からなる時空間環境が形成される。図7に示す時空間環境Env(M,H)は、自車両Mの実現進路および他車両Hの予測進路の集合であり、自車両Mの実現進路{M(n1)}および他車両Hの予測進路集合{H(n2)}からなる。より具体的には、時空間環境(M,H)は、自車両Mおよび他車両Hが高速道路のような平坦かつ直線状の道路Rを+y軸方向に向かって移動している場合の時空間環境を示すものである。ここでは、他車両の予測進路を求めるにあたり、自車両Mと他車両Hとの相関は考慮せずに自車両Mと他車両Hごとに独立して予測進路を求めているため、両者の予測進路が時空間上で交差することもある。
こうして、自車両Mの実現進路および他車両Hの予測進路を求めたら、自車両Mと他車両Hとが衝突していたことを自車両Mが許容していた確率を求める。いま、自車両Mの実現進路と他車両Hの予測進路が交差する場合には、自車両Mと他車両Hとが衝突することとなるが、自車両Mおよび他車両Hの予測進路は所定の挙動選択確率基づいて求められるものである。したがって、複数の他車両Hの予測進路のうち、自車両Mの予測進路と交差するものの数によって自車両Mと他車両Hとの衝突確率とすることができる。たとえば、他車両Hの予測進路を1000本算出した場合、そのうちの5本が自車両Mの予測進路と交差する場合には、0.5%の衝突確率(衝突可能性)Pがあるとして算出することができる。逆にいうと、残りの99.5%が自車両Mと他車両Hとが衝突しない確率(非衝突可能性)とすることができる。
また、他車両Hとして、複数の他車両が抽出されている場合には、複数の他車両のうち少なくとも1台と衝突することを許容する衝突確率Pは下記(1)式によって求めることができる。
Figure 2008310758
ここで、k:抽出された他車両の数
k:k番目の車両と衝突する確率
このように、他車両Hの予測進路を複数算出して、この複数の予測進路を用いて自車両Mと他車両Hとの衝突可能性を予測することにより、他車両が取りえる進路を広く計算していることになる。したがって、交差点などの分岐がある場所で事故などが発生した場合のように、他車両の進路に大きな進路の変更がある場合も考慮に入れて衝突確率を算出することができる。
こうして自車両と他車両との衝突確率を求めたら、最善自車両進路衝突確率算出部28において、自車両が移動することが可能となる可能進路のうち、他車両との衝突確率が最も低い進路である最善自車両進路を選択する(S17)。最善自車両進路衝突確率算出部28では、障害物可能進路算出部22から出力された障害物進路情報に基づく複数の他車両の予測進路と、自車両可能進路算出部26から出力される自車両可能進路情報に基づく複数の自車両の可能進路とを比較することにより最善自車両進路を選択する。
いま、ステップS12で求めた他車両の予測進路およびステップS14で求めた自車両の実現進路の例を図8に示す三次元空間によって現す。図8に示す時空間環境Env(M,H)は、自車両Mの可能進路および他車両Hの予測進路の集合であり、自車両Mの可能進路集合{M(n1)}および他車両Hの予測進路集合{H(n2)}からなる。
これらの自車両Mの可能進路集合および他車両Hの予測進路集合から、各自車両の可能進路を自車両Mが移動した際のそれぞれについて、自車両Mが他車両Hと衝突していたことを自車両Mが許容していた確率を求める。自車両Mが他車両Hと衝突していたことを自車両Mが許容していた衝突確率Pは、上記(1)式によって求めることができる。
こうして、自車両Mの複数の可能進路についてそれぞれ衝突確率Pを求めたら、最も衝突確率が低い可能進路を最善自車両進路として選択する。また、最善自車両進路衝突確率算出部28は、選択した最善自車両進路における衝突確率を最善自車両進路衝突確率として算出し、最善自車両進路衝突確率情報として自車両危険度算出部29に出力する。
実現進路衝突確率を算出したら、自車両危険度算出部29において、自車両危険度を算出する(S18)。自車両危険度算出部29では、実現進路衝突確率算出部27から出力された実現進路衝突確率情報に基づく実現進路衝突確率と、最善自車両進路衝突確率算出部28から出力された最善自車両進路衝突確率との乖離度に基づいて、自車両危険度Rcurを算出する。ここでの自車両危険度Rcurは、実現進路衝突確率と最善自車両進路衝突確率との比によって求められ、実現進路衝突確率と最善自車両進路衝突確率との比が1に近いほど自車両危険度Rcurが低いことになる。こうして、自車両危険度Rcurを算出する。
図3に示すフローに戻り、衝突確率算出部10において自車両危険度Rcurを算出したら、統計処理部12において積算危険度Rnew(x,y,t)を算出する(S4)。積算危険度Rnew(x,y,t)は、データベース読込部11から出力された記憶危険度Rdb(x,y,t)に対して、衝突確率算出部10から出力された自車両危険度Rcurを積算する下記(2)式を用いて算出される。
Rnew=αRcur+(1−α)Rdb ・・・(2)
ここで、α:α<1となる任意の定数
また、ステップS2において、複数の記憶危険度Rdbを取得した場合には、自車両の現在位置・時刻(x,y,t)からもっとも近い地点と、自車両の現在位置(x,y)との離間距離が所定のしきい値を超えていることになる。この場合には、自車両危険度Rcurをそのまま積算危険度Rnew(x,y,t)とする。こうして、積算危険度Rnew(x,y,t)を算出する。
また、自車両の現在位置・時刻(x,y,t)からもっとも近い地点と、自車両の現在位置・時刻(x,y,t)との離間距離が所定のしきい値を超えており、たとえば4個の記憶危険度Rdb1〜Rdb4を読み込んだ場合には、自車両危険度Rcurを追加すると同時に、4個の記憶危険度Rdb1〜Rdb4についての積算を行う。この積算の際の積算量は、自車両危険度Rcurと記憶危険度Rdb1〜Rdb4のそれぞれの離間距離の絶対差に応じて求められる。
たとえば、図9に示すように、自車両危険度Rcurに近い位置に第2記憶危険度Rdb2および第3記憶危険度Rdb3があり、第2記憶危険度Rdb2より遠い位置に第1記憶危険度Rdb1があり、第3記憶危険度Rdb3より遠い位置に第4記憶危険度Rdb4があったとする。この場合、たとえば下記(3)式に基づいて、第1〜第4積算危険度Rnew1〜Rnew4を算出することができる。
Rnewn=βRcur+(1−β)Rdbn ・・・(3)
ここで、n:1〜4の整数
β:自車両の現在位置・時刻(x,y,t)から遠いほど減少する1未満の係数
したがって、図9に示すように、この例では、第2記憶危険度Rdb2から第2積算危険度Rnew2への増加割合が、第1記憶危険度Rdb1から第1積算危険度Rnew1への増加割合が大きくされている。同様に、第3記憶危険度Rdb3から第3積算危険度Rnew3への増加割合が、第4記憶危険度Rdb4から第4積算危険度Rnew4への増加割合が大きくされている。こうして、複数の記憶危険度Rdbを取得した場合には、自車両の現在位置・時刻(x,y,t)からもっとも近い地点と、自車両の現在位置・時刻(x,y,t)との離間距離が所定のしきい値を超えている場合には、その周囲の記憶危険度Rdb1〜Rdb4についての積算危険度Rnew1〜Rnew4を算出する。
こうして積算危険度Rnewまたは積算危険度Rnew1〜Rnew4を算出したら、データベース書込部13は、算出した積算危険度Rnewまたは積算危険度Rnew1〜Rnew4を地図データベース7に書き込む(S5)。その後、走行支援部8では、地図データベース7に記憶された危険度に基づく走行支援を行う。
このように、本実施形態に係る車両走行支援装置では、自車両の位置を検出するとともに、衝突確率算出部10において自車両危険度を算出し、この自車両危険度が算出された位置における自車両の危険度を地図データベース7に書き込んでいる。このため、地図データベース7に書き込まれる危険度は、自車両を運転する運転者の技量に応じた危険度となる。したがって、運転者の技量に応じた走行支援を行うことができる。
また、衝突確率算出部10では、自車両が取りえた自車両可能進路を複数取得するとともに、複数の可能進路における危険度と自車両の実現進路との乖離度に基づいて自車両の危険度を取得している。このため、自車両の実現進路に基づいて、精度よく自車両の危険度を評価することができる。また、自車両可能進路のうち、最安全進路における危険度との乖離度に基づいて自車両の自車両の危険度を取得することにより、計算にかかる負荷を軽減することができる。
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。たとえば、上記実施形態では、衝突確率算出部10において自車両危険度を求めているが、他の態様によって自車両危険度を求めることもできる。また、上記実施形態では、データベース読込部11において、自車両の現在位置・時刻(x,y,t)からもっとも近い地点と、自車両の現在位置・時刻(x,y,t)との離間距離が所定のしきい値以下である場合には、自車両の現在位置・時刻(x,y,t)からもっとも近い地点の記憶危険度Rdbを取得するが、さらにその周囲の複数の記憶危険度Rdbを取得することもできる。この場合、自車両の現在位置・時刻(x,y,t)からもっとも近い地点と、自車両の現在位置・時刻(x,y,t)との離間距離が所定のしきい値を超える場合と同様、周囲の複数の記憶危険度についても、積算危険度を求めて、書き換える態様とすることができる。
さらに、上記実施形態では、自車両を運転する運転者が特定されている場合に好適な例について説明したが、たとえば複数の運転者が想定される車両については、運転者に応じた地図データベースを作成することもできる。さらに、上記実施形態では、地図データベースを自車両に設けているが、たとえば自車両を離れた基地局や他車両などに地図データベースを設置し、車々間通信などの通信手段によって自車両と他車両や基地局とを結んで危険度を取得する態様とすることもできる。この場合、他車両などとの情報交換を行って危険度を算出することもできる。また、上記各実施形態では、障害物として他車両を想定しているが、たとえば通行人などの生物を想定することもできる。さらに、上記実施形態では、位置・時刻(x,y,t)に対応した記憶危険度Rdbを算出・記憶・取得しているが、位置(x,y)のみに対応した記憶危険度Rdbを算出・記憶・取得する態様とすることもできる。この場合、計算にかかる負荷を軽減することができる。さらに、上記実施形態では、記憶危険度Rdbを取得する際に、位置と時間(x,y,t)に対応した記憶危険度Rdbを1つ、あるいは複数取得しているが、本発明はこれに限るものではない。たとえば、既に記憶されている記憶危険度Rdbを、位置と時間(x,y,t)に対して補間(たとえば線形補間やスプライン補間)し、任意の位置と時間(x,y,t)に対応する記憶危険度を生成してもよい。
車両走行支援装置の構成を示すブロック構成図である。 衝突確率算出部の構成を示すブロック構成図である。 走行制御装置の処理手順を示すフローチャートである。 衝突確率算出部の処理手順を示すフローチャートである。 自車両と他車両との走行状態を模式的に示す模式図である。 自車両がとりうる走行進路を模式的に示す模式図である。 自車両の予測進路が1本の時空間環境の構成を示すグラフである。 自車両の予測進路が複数本の時空間環境の構成を示すグラフである。 自車両の位置における自車両危険度とその周囲の位置における記憶危険度との関係を示すグラフである。
符号の説明
1…危険度地図作成部、2…障害物センサ、3…障害物抽出部、4…自車両センサ、5…位置センサ、6…タイマ、7…地図データベース、8…走行支援部、10…衝突確率算出部、11…データベース読込部、12…統計処理部、13…データベース書込部、21…障害物情報一時記憶部、22…障害物可能進路算出部、23…自車両進路記録部、24…自車両進路読出部、25…自車両位置読出部、26…自車両可能進路算出部、27…実現進路衝突確率算出部、28…最善自車両進路衝突確率算出部、29…自車両危険度算出部、Rcur…自車両危険度、Rdb…記憶危険度、Rnew…積算危険度、Env…時空間環境、H,H1,H2…他車両、M…自車両。

Claims (2)

  1. 自車両が走行する走行路を記憶する地図データベースと、
    前記自車両における衝突の危険度を取得する危険度取得手段と、
    前記自車両の現在位置を取得する位置取得手段と、を備え、
    前記危険度取得手段で取得された危険度と、この危険度が取得された位置と、を含む位置・危険度データを前記地図データベースに書き込み、
    前記地図データベースに記憶された前記位置・危険度データに基づいて、前記自車両の走行を支援することを特徴とする車両走行支援装置。
  2. 前記危険度取得手段は、自車両の進路を取得する自車両進路取得手段と、
    前記自車両の周辺の障害物の進路を複数取得する障害物進路取得手段と、
    前記自車両の進路および前記障害物の複数の進路に基づいて、前記自車両と前記障害物との衝突可能性を取得する衝突可能性取得手段と、を備え、
    前記衝突可能性取得手段によって取得された衝突可能性に基づいて、危険度を取得する請求項1に記載の車両走行支援装置。
JP2007160445A 2007-06-18 2007-06-18 車両走行支援装置 Active JP4900076B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160445A JP4900076B2 (ja) 2007-06-18 2007-06-18 車両走行支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160445A JP4900076B2 (ja) 2007-06-18 2007-06-18 車両走行支援装置

Publications (2)

Publication Number Publication Date
JP2008310758A true JP2008310758A (ja) 2008-12-25
JP4900076B2 JP4900076B2 (ja) 2012-03-21

Family

ID=40238275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160445A Active JP4900076B2 (ja) 2007-06-18 2007-06-18 車両走行支援装置

Country Status (1)

Country Link
JP (1) JP4900076B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267124A (ja) * 2009-05-15 2010-11-25 Toyota Motor Corp 環境予測装置
JP2020166510A (ja) * 2019-03-29 2020-10-08 日産自動車株式会社 挙動予測方法及び挙動予測装置並びに車両制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630521B2 (ja) * 2014-12-26 2020-01-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 危険判定方法、危険判定装置、危険出力装置及び危険判定システム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215300A (ja) * 1993-01-19 1994-08-05 Mitsubishi Electric Corp 危険状況警報装置
JP2000207691A (ja) * 1999-01-12 2000-07-28 Toyota Motor Corp 車両用走行制御装置
JP2000242898A (ja) * 1999-02-22 2000-09-08 Equos Research Co Ltd 周辺車両報知装置
JP2001357496A (ja) * 2000-06-14 2001-12-26 Matsushita Electric Ind Co Ltd 交通事故抑止システム及び交通事故抑止方法
JP2004012247A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 経路探索装置
JP2004118730A (ja) * 2002-09-27 2004-04-15 Denso Corp 障害物情報提供装置及び障害物衝突防止支援システム
JP2004145479A (ja) * 2002-10-22 2004-05-20 Aisin Seiki Co Ltd 周辺車両情報提供装置
JP2004203384A (ja) * 2004-01-16 2004-07-22 Nissan Motor Co Ltd 車両用運転操作補助装置
JP2006154967A (ja) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd リスク最小軌跡生成装置およびこれを用いた危険状況警報装置
JP2007047914A (ja) * 2005-08-08 2007-02-22 Denso Corp 危険反応地点記録システム及び運転支援システム
JP2007051973A (ja) * 2005-08-19 2007-03-01 Denso Corp 危険箇所情報表示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06215300A (ja) * 1993-01-19 1994-08-05 Mitsubishi Electric Corp 危険状況警報装置
JP2000207691A (ja) * 1999-01-12 2000-07-28 Toyota Motor Corp 車両用走行制御装置
JP2000242898A (ja) * 1999-02-22 2000-09-08 Equos Research Co Ltd 周辺車両報知装置
JP2001357496A (ja) * 2000-06-14 2001-12-26 Matsushita Electric Ind Co Ltd 交通事故抑止システム及び交通事故抑止方法
JP2004012247A (ja) * 2002-06-05 2004-01-15 Matsushita Electric Ind Co Ltd 経路探索装置
JP2004118730A (ja) * 2002-09-27 2004-04-15 Denso Corp 障害物情報提供装置及び障害物衝突防止支援システム
JP2004145479A (ja) * 2002-10-22 2004-05-20 Aisin Seiki Co Ltd 周辺車両情報提供装置
JP2004203384A (ja) * 2004-01-16 2004-07-22 Nissan Motor Co Ltd 車両用運転操作補助装置
JP2006154967A (ja) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd リスク最小軌跡生成装置およびこれを用いた危険状況警報装置
JP2007047914A (ja) * 2005-08-08 2007-02-22 Denso Corp 危険反応地点記録システム及び運転支援システム
JP2007051973A (ja) * 2005-08-19 2007-03-01 Denso Corp 危険箇所情報表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267124A (ja) * 2009-05-15 2010-11-25 Toyota Motor Corp 環境予測装置
JP2020166510A (ja) * 2019-03-29 2020-10-08 日産自動車株式会社 挙動予測方法及び挙動予測装置並びに車両制御装置
JP7277215B2 (ja) 2019-03-29 2023-05-18 日産自動車株式会社 挙動予測方法及び挙動予測装置並びに車両制御装置

Also Published As

Publication number Publication date
JP4900076B2 (ja) 2012-03-21

Similar Documents

Publication Publication Date Title
JP5244787B2 (ja) 衝突可能性取得装置および衝突可能性取得方法
CN107042825B (zh) 车道保持辅助系统的情景停用
JP4450023B2 (ja) 自車両危険度取得装置
KR101795250B1 (ko) 자율주행차량의 주행경로 계획장치 및 방법
US10857994B2 (en) Identifying a stopping place for an autonomous vehicle
RU2681984C1 (ru) Система и способ определения траектории для транспортного средства
RU2742213C1 (ru) Способ управления информацией о полосах движения, способ управления движением и устройство управления информацией о полосах движения
JP5510007B2 (ja) 経路探索装置および経路案内システム
CN109477728B (zh) 用于确定车辆相对于路面行车道的横向位置的方法和装置
US20170241794A1 (en) Method and apparatus for predicting vehicle route
US20170341641A1 (en) Vehicle collision avoidance
JP5076592B2 (ja) 運転者危険度取得装置
CN101641610A (zh) 用于包含绝对及相对坐标的车辆导航及领航的系统及方法
US20200062243A1 (en) Autonomous parking in an indoor parking facility
JP2005010732A (ja) 道路の交差点を表示する方法
CN102132335A (zh) 行驶环境识别装置
CN113313933B (zh) 用于自动驾驶车辆的基于车道的路线选择系统
CN112512885B (zh) 一种辅助驾驶方法、装置和汽车
US20200208990A1 (en) Method for Determining a Destination Different from an Intended Location, System, and Motor Vehicle Equipped with a System
JP4899671B2 (ja) 走行軌跡推定装置
CN103256934A (zh) 道路信息提供设备
CN111204342B (zh) 地图信息系统
JP4924208B2 (ja) 車両走行支援装置
JP4900076B2 (ja) 車両走行支援装置
JP4924207B2 (ja) 自車両危険度取得装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R151 Written notification of patent or utility model registration

Ref document number: 4900076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3