Nothing Special   »   [go: up one dir, main page]

JP2006066657A - Light emitting device and lighting device - Google Patents

Light emitting device and lighting device Download PDF

Info

Publication number
JP2006066657A
JP2006066657A JP2004247660A JP2004247660A JP2006066657A JP 2006066657 A JP2006066657 A JP 2006066657A JP 2004247660 A JP2004247660 A JP 2004247660A JP 2004247660 A JP2004247660 A JP 2004247660A JP 2006066657 A JP2006066657 A JP 2006066657A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
reflecting
reflecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004247660A
Other languages
Japanese (ja)
Other versions
JP2006066657A5 (en
Inventor
Shingo Matsuura
真吾 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004247660A priority Critical patent/JP2006066657A/en
Priority to CNB2005100791757A priority patent/CN100411207C/en
Priority to US11/168,887 priority patent/US20060034084A1/en
Priority to DE102005030128A priority patent/DE102005030128B4/en
Priority to TW094121703A priority patent/TWI267211B/en
Priority to KR1020050056282A priority patent/KR100752586B1/en
Publication of JP2006066657A publication Critical patent/JP2006066657A/en
Publication of JP2006066657A5 publication Critical patent/JP2006066657A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device having high radiation intensity and high luminance while being excellent in light emitting efficiency. <P>SOLUTION: The light emitting device is provided with a substrate 1 with the mounting unit 1a of a light emitting element 3 formed on the upper side main surface thereof, a frame type first reflective member 2 mounted on the upper side main surface of the substrate 1 so as to surround the mounting unit 1a and whose inner peripheral surface 2a is used as a light reflective surface, a frame type second reflective member 4 mounted on the upper side main surface of the substrate 1 so as to surround the first reflective member 2 and whose inner peripheral surface 4a is used as a light reflective surface, a light emitting element 3 mounted on the mounting unit 1a, a translucent member 6 provided at the inside of the second reflective member 4 so as to cover the light emitting element 3 and the first reflective member 2, a light reflective layer 5 provided in or on the surface of the translucent member 6 positioned above the light emitting element 3 with a distance between the first reflective member 2 as well as the second reflective member 4 to reflect light emitted by the light emitting element 3, and a wavelength transformation layer 8 attached to the inner peripheral surface of the second reflective member 4 to transform the wavelength of light emitted by the light emitting element 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光素子を収納して成る発光装置およびそれを用いた照明装置に関する。   The present invention relates to a light emitting device in which a light emitting element is accommodated and an illumination device using the same.

従来の発光装置を図15に示す。図15において、発光装置は、上面の中央部に発光素子13を載置するための載置部11aを有し、載置部11aおよびその周辺から発光装置の内外を電気的に導通接続するリード端子やメタライズ配線等からなる配線導体(図示せず)が形成された絶縁体からなる基体11と、基体11の上面に接着固定され、内周面12aが上側に向かうに伴って外側に広がるように傾斜しているとともに、内周面12aが発光素子13が発光する光を反射する反射面とされている枠状の反射部材12と、透光性部材に発光素子13が発光する光を波長変換する蛍光体(図示せず)を含有させて成る波長変換層15と、発光素子13を保護するため反射部材12の内側に充填された透光性部材16とから主に構成されている。   A conventional light emitting device is shown in FIG. In FIG. 15, the light emitting device has a mounting portion 11a for mounting the light emitting element 13 at the center of the upper surface, and leads that electrically connect the inside and outside of the light emitting device from the mounting portion 11a and its periphery. A base 11 made of an insulator on which a wiring conductor (not shown) made of terminals, metallized wiring, etc. is formed, and adhesively fixed to the upper surface of the base 11 so that the inner peripheral surface 12a spreads outward as it goes upward. And a frame-like reflecting member 12 whose inner peripheral surface 12a is a reflecting surface for reflecting light emitted from the light emitting element 13, and light transmitted by the light emitting element 13 on the translucent member. It mainly comprises a wavelength conversion layer 15 containing a phosphor to be converted (not shown) and a translucent member 16 filled inside the reflecting member 12 to protect the light emitting element 13.

基体11は、酸化アルミニウム質焼結体(アルミナセラミックス)や窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、またはエポキシ樹脂等の樹脂から成る。基体11がセラミックスから成る場合、その上面に配線導体がタングステン(W),モリブデン(Mo)−マンガン(Mn)等から成る金属ペーストを高温で焼成して形成される。また、基体11が樹脂から成る場合、銅(Cu)や鉄(Fe)−ニッケル(Ni)合金等から成るリード端子がモールド成型されて基体11の内部に設置固定される。   The substrate 11 is made of an aluminum oxide sintered body (alumina ceramic), an aluminum nitride sintered body, a mullite sintered body, ceramics such as glass ceramics, or a resin such as epoxy resin. When the substrate 11 is made of ceramic, the wiring conductor is formed on its upper surface by firing a metal paste made of tungsten (W), molybdenum (Mo) -manganese (Mn), etc. at a high temperature. When the base 11 is made of a resin, lead terminals made of copper (Cu), iron (Fe) -nickel (Ni) alloy, etc. are molded and fixed inside the base 11.

また、反射部材12は、アルミニウム(Al)やFe−Ni−コバルト(Co)合金等の金属、アルミナセラミックス等のセラミックスまたはエポキシ樹脂等の樹脂から成り、切削加工や金型成型、押し出し成型等の成形技術により形成される。   The reflecting member 12 is made of metal such as aluminum (Al) or Fe-Ni-cobalt (Co) alloy, ceramics such as alumina ceramics or resin such as epoxy resin, and is used for cutting, die molding, extrusion molding, etc. Formed by molding technique.

さらに、反射部材12は、内周面12aが発光素子13や波長変換層15からの光を反射する反射面とされており、この内周面12aは、Al等の金属が蒸着法やメッキ法により被着されることにより形成される。そして、反射部材12は、半田,銀(Ag)ロウ等のロウ材または樹脂接着材等の接合材により、載置部11aを内周面12aで取り囲むように基体11の上面に接合される。   Further, the reflecting member 12 has an inner peripheral surface 12a as a reflecting surface that reflects light from the light emitting element 13 and the wavelength conversion layer 15, and the inner peripheral surface 12a is made of a metal such as Al by vapor deposition or plating. It is formed by adhering. The reflecting member 12 is joined to the upper surface of the base 11 by a soldering material such as solder, silver (Ag) solder, or a joining material such as a resin adhesive so as to surround the mounting portion 11a with the inner peripheral surface 12a.

また、発光素子13は、例えば、液相成長法やMOCVD法等によりサファイア等の単結晶基板上に、ガリウム(Ga)−Al−窒素(N)、亜鉛(Zn)−硫黄(S)、Zn−セレン(Se)、珪素(Si)−炭素(C)、Ga−リン(P)、Ga−Al−砒素(As)、Al−インジウム(In)−Ga−P、In−Ga−N、Ga−N、Al−In−Ga−N等の発光層が形成される。発光素子13の構造としては、MIS接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。また、発光素子13の発光波長は、発光層の材料やその混晶度によって紫外光から赤外光まで種々選択される。なお、発光素子13は、載置部11aの周辺に配置した配線導体と発光素子13の電極とをボンディングワイヤ(図示せず)を用いた方法や、発光素子13の電極を下側に設置して半田バンプにより接続するフリップチップボンディング方式を用いた方法等によって電気的に接続される。   The light-emitting element 13 is formed on a single crystal substrate such as sapphire by liquid phase growth method or MOCVD method, for example, gallium (Ga) -Al-nitrogen (N), zinc (Zn) -sulfur (S), Zn -Selenium (Se), Silicon (Si) -Carbon (C), Ga-Phosphorus (P), Ga-Al-Arsenic (As), Al-Indium (In) -Ga-P, In-Ga-N, Ga A light emitting layer such as -N or Al-In-Ga-N is formed. Examples of the structure of the light emitting element 13 include a homo structure having a MIS junction and a PN junction, a hetero structure, and a double hetero structure. Further, the emission wavelength of the light emitting element 13 is variously selected from ultraviolet light to infrared light depending on the material of the light emitting layer and the degree of mixed crystal thereof. Note that the light emitting element 13 has a method of using a bonding wire (not shown) for the wiring conductor arranged around the mounting portion 11a and the electrode of the light emitting element 13, or the electrode of the light emitting element 13 is installed on the lower side. Then, they are electrically connected by a method using a flip chip bonding method in which solder bumps are used for connection.

また、波長変換層15は、エポキシ樹脂やシリコーン樹脂等の透光性部材に蛍光体を含有し熱硬化させ板状に形成するとともに反射部材12の開口部を覆うことにより、発光素子13から放出された発光波長である可視光や紫外光を吸収し、他の長波長の光に変換して放射させることができる。従って、波長変換層15は、発光素子13から発光される光の発光波長や発光装置から放出される所望の光に応じて種々ものが用いられ、所望の波長スペクトルを有する光を取り出せる発光装置となし得る。また、発光装置は、発光素子13が発光した光と、蛍光体からの光とが補色関係にあるとき白色系の光を発光させることができる。   In addition, the wavelength conversion layer 15 contains phosphors in a translucent member such as an epoxy resin or a silicone resin, and is thermally cured to form a plate and covers the opening of the reflecting member 12, thereby emitting from the light emitting element 13. The visible light and ultraviolet light, which are the emitted light wavelengths, can be absorbed and converted into other long-wavelength light to be emitted. Accordingly, various wavelength conversion layers 15 are used depending on the emission wavelength of the light emitted from the light emitting element 13 or the desired light emitted from the light emitting device, and the light emitting device can extract light having a desired wavelength spectrum. You can get none. The light emitting device can emit white light when the light emitted from the light emitting element 13 and the light from the phosphor are in a complementary color relationship.

なお、蛍光体は、例えば、セリウム(Ce)で付活されたイットリウム・アルミニウム・ガーネット系蛍光体、ペリレン系誘導体、CuやAlで付活された硫化亜鉛カドミウム、Mnで付活された酸化マグネシウム、酸化チタンなど種々のものが挙げられる。これらの蛍光体は、1種類で用いてもよいし、2種類以上混合して用いてもよい。   Examples of phosphors include yttrium / aluminum / garnet phosphors activated with cerium (Ce), perylene derivatives, zinc cadmium sulfide activated with Cu and Al, and magnesium oxide activated with Mn. Various types such as titanium oxide can be used. These phosphors may be used alone or in combination of two or more.

さらに、透光性部材16は、エポキシ樹脂やシリコーン樹脂等の透光性部材を用いることで、発光素子13を保護すると共に、発光素子13と透光性部材との屈折率差を少なくすることにより、発光素子13内部に光が閉じ込められるのを抑制することができる。
特開2000-349346号公報
Furthermore, the translucent member 16 uses a translucent member such as an epoxy resin or a silicone resin to protect the light emitting element 13 and reduce the difference in refractive index between the light emitting element 13 and the translucent member. Accordingly, it is possible to suppress light from being confined inside the light emitting element 13.
JP 2000-349346 A

しかしながら、上記従来の発光装置においては、発光素子13から発光された光は波長変換層15中の蛍光体に吸収された後、蛍光体から波長の異なる蛍光があらゆる方向に放出される。この蛍光のうち一部のものは波長変換層15から上側に放出されて発光装置の放射光と成るものの、他の一部は波長変換層15から下方向に放出されたり、他の蛍光体に反射されて波長変換層15から下側に放出され、反射部材12の内周面12aや波長変換層15で反射を繰り返して発光装置内に閉じ込められることとなる。あるいは、発光素子13に戻って吸収される。   However, in the above-described conventional light emitting device, the light emitted from the light emitting element 13 is absorbed by the phosphor in the wavelength conversion layer 15, and then fluorescence having different wavelengths is emitted from the phosphor in all directions. Some of this fluorescence is emitted upward from the wavelength conversion layer 15 and becomes the emitted light of the light emitting device, but the other part is emitted downward from the wavelength conversion layer 15 or other phosphors. The light is reflected and emitted downward from the wavelength conversion layer 15, and is repeatedly reflected on the inner peripheral surface 12 a of the reflection member 12 and the wavelength conversion layer 15 to be confined in the light emitting device. Alternatively, the light is returned to the light emitting element 13 and absorbed.

また、波長変換層15から下側に放出されたために外部に放出されなかった光でも、下側に放出された後に反射部材12ではね返り、再び波長変換層15を通過することで外部に放出され、発光装置の放出光となる光もある。しかし、このように反射を繰り返して複数回波長変換層15を通過した光は、エネルギーが吸収され、放射光強度は減衰する。   Also, light that has not been emitted to the outside because it has been emitted from the wavelength conversion layer 15 to the lower side is bounced back by the reflecting member 12 after being emitted to the lower side, and is emitted to the outside by passing through the wavelength conversion layer 15 again. There is also light that is emitted from the light emitting device. However, the light that has been repeatedly reflected and passed through the wavelength conversion layer 15 a plurality of times in this way is absorbed in energy, and the emitted light intensity is attenuated.

以上のように、従来の発光装置においては、発光装置の放射光強度や輝度を向上させることが困難であるという問題点を有していた。   As described above, the conventional light emitting device has a problem that it is difficult to improve the emitted light intensity and luminance of the light emitting device.

従って、本発明は上記従来の問題点に鑑みて完成されたものであり、その目的は、高い放射光強度および高輝度を有し、発光効率の良い発光装置を提供することである。   Accordingly, the present invention has been completed in view of the above-described conventional problems, and an object of the present invention is to provide a light emitting device having high radiated light intensity and high luminance and high luminous efficiency.

本発明の発光装置は、上側主面に発光素子の載置部が形成された基体と、該基体の上側主面に前記載置部を取り囲むように取着された、内周面が光反射面とされた枠状の第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光を反射する光反射層と、前記第2の反射部材の内周面に被着された、前記発光素子が発光する光の波長を変換する波長変換層とを具備していることを特徴とする。   The light emitting device of the present invention has a base on which a light emitting element mounting portion is formed on the upper main surface, and an inner peripheral surface that is attached to the upper main surface of the base so as to surround the mounting portion. A frame-shaped first reflecting member formed into a surface, and a frame-shaped first reflecting member attached to the upper main surface of the base body so as to surround the first reflecting member and having an inner peripheral surface as a light reflecting surface And the light-emitting element placed on the placement portion, and a translucent member provided inside the second reflective member so as to cover the light-emitting element and the first reflective member And light reflection for reflecting light emitted from the light emitting element, which is provided inside or on the surface of the translucent member above the light emitting element and spaced from the first and second reflecting members. And a wavelength change for converting the wavelength of light emitted by the light emitting element, which is attached to the inner peripheral surface of the layer and the second reflecting member. Characterized in that it comprises a layer.

本発明の発光装置は、平板状の基体と、該基体の上側主面に接合され、上面に発光素子の載置部が形成されるとともに内周面が光反射面とされた側壁部が前記載置部を取り囲むように形成された第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に、前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光を反射する光反射層と、前記第2の反射部材の内周面に被着された、前記発光素子が発光する光の波長を変換する波長変換層とを具備していることを特徴とする。   The light emitting device of the present invention has a flat substrate and a side wall portion bonded to the upper main surface of the substrate and having a light emitting element mounting portion formed on the upper surface and an inner peripheral surface serving as a light reflecting surface. A first reflecting member formed so as to surround the mounting portion, and a frame attached to an upper main surface of the base so as to surround the first reflecting member and having an inner peripheral surface as a light reflecting surface Second reflective member, the light emitting element placed on the mounting portion, and the inner side of the second reflective member so as to cover the light emitting element and the first reflective member Light emitted from the light emitting element, which is provided in the inside or on the surface of the translucent member and the translucent member located above the light emitting element and spaced from the first and second reflecting members. The light-emitting element that is attached to the light-reflecting layer that reflects and the inner peripheral surface of the second reflecting member emits light. Wherein the of have and a wavelength conversion layer for converting the wavelength.

本発明の発光装置において、好ましくは、前記載置部は、高さが前記第1の反射部材の前記内周面の下端よりも高くなるように突出していることを特徴とする。   In the light-emitting device of the present invention, preferably, the mounting portion protrudes so that a height is higher than a lower end of the inner peripheral surface of the first reflecting member.

本発明の発光装置において、好ましくは、前記光反射層は、その外周部が前記発光素子の端部とその端部の反対側の前記第1の反射部材の前記内周面の上端とを通る直線よりも前記第2の反射部材側に位置していることを特徴とする。   In the light emitting device of the present invention, preferably, the light reflecting layer has an outer peripheral portion passing through an end portion of the light emitting element and an upper end of the inner peripheral surface of the first reflecting member on the opposite side of the end portion. It is located on the second reflecting member side with respect to a straight line.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことを特徴とする。   The illuminating device of the present invention is characterized in that the light emitting device of the present invention is installed in a predetermined arrangement.

本発明の第一の発明である発光装置は、上側主面に発光素子の載置部が形成された基体と、基体の上側主面に載置部を取り囲むように取着された、内周面が光反射面とされた枠状の第1の反射部材と、基体の上側主面に第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、載置部に載置された発光素子と、第2の反射部材の内側に発光素子および第1の反射部材を覆うように設けられた透光性部材と、発光素子の上方に位置する透光性部材の内部または表面に第1の反射部材および第2の反射部材と間隔を開けて設けられた、発光素子が発光する光を反射する光反射層と、第2の反射部材の内周面に被着された、発光素子が発光する光の波長を変換する波長変換層とを具備していることにより、発光素子から発光された光を高い強度で外部に放出できる。   A light-emitting device according to a first aspect of the present invention includes a base having a light-emitting element mounting portion formed on an upper main surface, and an inner circumference attached to the upper main surface of the base so as to surround the mounting portion. A frame-shaped first reflecting member whose surface is a light reflecting surface and a frame shape whose inner peripheral surface is a light reflecting surface attached to the upper main surface of the base so as to surround the first reflecting member A second reflective member, a light emitting element placed on the placement portion, a translucent member provided inside the second reflective member so as to cover the light emitting element and the first reflective member, and light emission A light reflecting layer for reflecting light emitted from the light emitting element, which is provided inside or on the surface of the translucent member located above the element and spaced from the first reflecting member and the second reflecting member; A wavelength conversion layer that is attached to the inner peripheral surface of the reflective member 2 and converts the wavelength of light emitted from the light emitting element, The light emitted from the optical device can be released to the outside with high strength.

すなわち、発光素子から発せられた光は、第1の反射部材によって光反射層に集められて下方に反射された後、第2の反射部材によって上方に反射されて、発光装置の外部に放出される。そして第2の反射部材の反射面には波長変換層が被着されているため、発光素子から出た光のうち、直接外部に放出されずに波長変換層を透過した光は、所望の光の色に調節されて外部に放出される。従来では、波長変換層の下側、あるいは種々の方向に進んで外部に放出されなかった光でも、本発明では波長変換層の上面から入射したのちに第2の反射部材によって波長変換層の上面から再び出て行くため、波長変換層内に閉じ込められることがなくなり、光を良好に発光装置の上方に放出させることができる。このため波長変換された光は、波長変換層で発光装置の上方に放出されて発光装置内に閉じ込められるのを有効に防止できる。   That is, the light emitted from the light emitting element is collected on the light reflecting layer by the first reflecting member and reflected downward, and then reflected upward by the second reflecting member and emitted to the outside of the light emitting device. The Since the wavelength conversion layer is deposited on the reflection surface of the second reflecting member, the light that has passed through the wavelength conversion layer without being directly emitted to the outside out of the light emitted from the light emitting element is the desired light. The color is adjusted to be released to the outside. Conventionally, even under the wavelength conversion layer, light that has traveled in various directions and was not emitted to the outside is incident on the upper surface of the wavelength conversion layer by the second reflecting member after being incident from the upper surface of the wavelength conversion layer in the present invention. Since the light exits again, the light is not confined in the wavelength conversion layer, and light can be favorably emitted above the light emitting device. Therefore, the wavelength-converted light can be effectively prevented from being emitted above the light emitting device by the wavelength conversion layer and confined in the light emitting device.

また、光反射層で反射した後に波長変換層から放出される光のうち、発光素子へ戻って吸収される光の割合は、第1の反射部材が発光素子を取り囲むように載置されていることにより抑制され、非常に少なくなる。よって、きわめて有効に放射光強度および輝度を高め、発光効率の高い発光装置とすることができる。   Moreover, the ratio of the light which returns to the light emitting element and is absorbed among the light emitted from the wavelength conversion layer after being reflected by the light reflecting layer is placed so that the first reflecting member surrounds the light emitting element. It is suppressed by this and becomes very small. Therefore, it is possible to increase the intensity and brightness of the emitted light very effectively and to obtain a light emitting device with high luminous efficiency.

本発明の第二の発明である発光装置は、平板状の基体と、基体の上側主面に接合され、上面に発光素子の載置部が形成されるとともに内周面が光反射面とされた側壁部が載置部を取り囲むように形成された第1の反射部材と、基体の上側主面に第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、載置部に載置された発光素子と、第2の反射部材の内側に、発光素子および第1の反射部材を覆うように設けられた透光性部材と、発光素子の上方に位置する透光性部材の内部または表面に第1の反射部材および第2の反射部材と間隔を開けて設けられた、発光素子が発光する光を反射する光反射層と、第2の反射部材の内周面に被着された、発光素子が発光する光の波長を変換する波長変換層とを具備していることにより、発光素子から発光された光を高い強度で外部に放出できる。   A light emitting device according to a second aspect of the present invention is bonded to a flat substrate and an upper main surface of the substrate, a light emitting element mounting portion is formed on the upper surface, and an inner peripheral surface is a light reflecting surface. The first reflecting member formed so that the side wall portion surrounds the mounting portion, and the inner peripheral surface attached to the upper main surface of the base so as to surround the first reflecting member is the light reflecting surface. The frame-shaped second reflecting member, the light emitting element placed on the placing portion, and the translucency provided inside the second reflecting member so as to cover the light emitting element and the first reflecting member Light reflection for reflecting light emitted by the light emitting element, provided in the interior of or on the surface of the member and the translucent member above the light emitting element, spaced from the first reflecting member and the second reflecting member. And a wavelength conversion layer that is attached to the inner peripheral surface of the second reflecting member and converts the wavelength of light emitted from the light emitting element. By being Bei, it can be released to the outside the light emitted from the light emitting element with high strength.

すなわち、発光素子から発せられた光は、第1の反射部材によって光反射層に集められて下方に反射された後、第2の反射部材によって上方に反射されて、発光装置の外部に放出される。そして第2の反射部材の反射面には波長変換層が被着されているため、発光素子から出た光のうち、直接外部に放出されずに波長変換層を透過した光は、所望の光の色に調節されて外部に放出される。従来では、波長変換層の下側、あるいは種々の方向に進んで外部に放出されなかった光でも、本発明では波長変換層の上面から入射したのちに第2の反射部材によって波長変換層の上面から再び出て行くため、波長変換層内に閉じ込められることがなくなり、光を良好に発光装置の上方に放出させることができる。このため波長変換された光は、波長変換層で発光装置の上方に放出されて発光装置内に閉じ込められるのを有効に防止できる。   That is, the light emitted from the light emitting element is collected on the light reflecting layer by the first reflecting member and reflected downward, and then reflected upward by the second reflecting member and emitted to the outside of the light emitting device. The Since the wavelength conversion layer is deposited on the reflection surface of the second reflecting member, the light that has passed through the wavelength conversion layer without being directly emitted to the outside out of the light emitted from the light emitting element is the desired light. The color is adjusted to be released to the outside. Conventionally, even under the wavelength conversion layer, light that has traveled in various directions and was not emitted to the outside is incident on the upper surface of the wavelength conversion layer by the second reflecting member after being incident from the upper surface of the wavelength conversion layer in the present invention. Since the light exits again, the light is not confined in the wavelength conversion layer, and light can be favorably emitted above the light emitting device. Therefore, the wavelength-converted light can be effectively prevented from being emitted above the light emitting device by the wavelength conversion layer and confined in the light emitting device.

また、光反射層で反射した後に波長変換層から放出される光のうち、発光素子へ戻って吸収される光の割合は、第1の反射部材が発光素子を取り囲むように載置されていることにより抑制され、非常に少なくなる。よって、きわめて有効に放射光強度および輝度を高め、発光効率の高い発光装置とすることができる。   Moreover, the ratio of the light which returns to the light emitting element and is absorbed among the light emitted from the wavelength conversion layer after being reflected by the light reflecting layer is placed so that the first reflecting member surrounds the light emitting element. It is suppressed by this and becomes very small. Therefore, it is possible to increase the intensity and brightness of the emitted light very effectively and to obtain a light emitting device with high luminous efficiency.

また、発光素子から発生した熱を載置部および載置部と一体化した側壁部に伝え易くすることができる。特に第1の反射部材が金属から成る場合には、熱は速やかに載置部および側壁部へ伝えられるとともに第1の反射部材の下面全面から基体に伝えられ、基体の外面から良好に放散される。その結果、発光素子の温度上昇を抑制することにより、発光素子と第1の反射部材との熱膨張差により生じる接合部のクラックを抑制することができる。また、第1の反射部材の下面全面から基体に効率よく熱伝導させて発光素子および第1の反射部材の温度上昇をより有効に抑制することにより、発光素子の作動を安定に維持するとともに第1の反射部材の内周面の熱変形を抑制することができる。よって長期にわたり、発光装置の安定した光特性を良好に維持し作動させることができる。   In addition, heat generated from the light emitting element can be easily transferred to the mounting portion and the side wall portion integrated with the mounting portion. In particular, when the first reflecting member is made of metal, heat is quickly transferred to the mounting portion and the side wall portion, and is also transferred from the entire lower surface of the first reflecting member to the substrate, and is well dissipated from the outer surface of the substrate. The As a result, by suppressing the temperature rise of the light emitting element, it is possible to suppress cracks in the joint caused by the difference in thermal expansion between the light emitting element and the first reflecting member. In addition, by efficiently conducting heat from the entire lower surface of the first reflecting member to the base to more effectively suppress the temperature rise of the light emitting element and the first reflecting member, the operation of the light emitting element can be stably maintained and Thermal deformation of the inner peripheral surface of the reflecting member 1 can be suppressed. Therefore, stable light characteristics of the light emitting device can be maintained and operated over a long period of time.

本発明の発光装置は、好ましくは、上記第一および第二の発明である発光装置において、載置部の高さが第1の反射部材の内周面の下端よりも高くなるように突出していることにより、発光素子から斜め下方向に発光された光を効率よく第1の内周面で上方向に反射させることができ、発光素子からの光が第1の反射部材の内周面の下端によって発光装置の内部で閉じ込められることを抑制することができる。従って、発光装置は、発光素子から発生した光に対する第1の反射部材の内周面の光吸収による損失を低減することができる。これにより、発光装置の放射光強度を向上させることができる。   The light emitting device of the present invention is preferably the light emitting device according to the first and second inventions, wherein the mounting portion protrudes so as to be higher than the lower end of the inner peripheral surface of the first reflecting member. Therefore, the light emitted obliquely downward from the light emitting element can be efficiently reflected upward by the first inner peripheral surface, and the light from the light emitting element is reflected on the inner peripheral surface of the first reflecting member. It is possible to suppress confinement inside the light emitting device by the lower end. Therefore, the light emitting device can reduce a loss due to light absorption of the inner peripheral surface of the first reflecting member with respect to light generated from the light emitting element. Thereby, the emitted light intensity of a light-emitting device can be improved.

本発明の発光装置は、好ましくは、本発明の光反射層の外周部が発光素子の端部とその端部の反対側の第1の反射部材の内周面の上端とを通る直線よりも第2の反射部材側に位置していることにより、発光素子から出た光の大部分が光反射層に集められ、下方に反射されるため、光が波長変換層を通ることなく発光装置の外部へ直接放射されるのを抑制することができる。その結果、発光装置から発光色や発光分布にムラのない所望の波長スペクトルを有する光を高強度に放射することができる。   In the light emitting device of the present invention, preferably, the outer peripheral portion of the light reflecting layer of the present invention is more than a straight line passing through the end portion of the light emitting element and the upper end of the inner peripheral surface of the first reflecting member opposite to the end portion. By being positioned on the second reflecting member side, most of the light emitted from the light emitting element is collected in the light reflecting layer and reflected downward, so that the light does not pass through the wavelength conversion layer. Direct emission to the outside can be suppressed. As a result, light having a desired wavelength spectrum with no unevenness in emission color and emission distribution can be emitted from the light emitting device with high intensity.

つまり、発光素子から波長変換層を通らずに直接外部に出て行く光が多いと、所望の波長に変換される光の量が減り放射光強度も弱まるが、このように光反射層の外周部を、発光素子の端部とその端部の反対側の第1の反射部材の内周面の上端とを通る直線よりも第2の反射部材側に配置することで、発光素子から発光された光が、光反射層と第1の反射部材の間を通って直接外部に放出される光を減らすことができる。このようにして、発光素子から発光された光のほとんどを波長変換層に透過させることができるため、波長変換される光の量は多くなり、波長変換効率を向上させて、所望の波長スペクトルを有する光を高強度に放出させることができる。   In other words, if there is a lot of light that goes directly to the outside from the light emitting element without passing through the wavelength conversion layer, the amount of light that is converted to the desired wavelength decreases and the emitted light intensity also weakens. The light emitting element emits light by disposing the portion on the second reflecting member side with respect to a straight line passing through the end of the light emitting element and the upper end of the inner peripheral surface of the first reflecting member on the opposite side of the end. The light emitted directly between the light reflecting layer and the first reflecting member can be reduced. In this way, most of the light emitted from the light-emitting element can be transmitted to the wavelength conversion layer, so that the amount of light that is wavelength-converted increases, the wavelength conversion efficiency is improved, and the desired wavelength spectrum is obtained. The light it has can be emitted with high intensity.

本発明の照明装置は、上記本発明の発光装置を所定の配置となるように設置したことから、半導体から成る発光素子の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能な小型の照明装置とすることができる。その結果、発光素子から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。   Since the light emitting device of the present invention is installed in a predetermined arrangement, the lighting device of the present invention uses light emission by recombination of electrons of a light emitting element made of a semiconductor. Thus, a small illuminating device that can have lower power consumption and longer life than the existing illuminating device can be obtained. As a result, fluctuations in the center wavelength of light generated from the light emitting element can be suppressed, light can be emitted with a stable radiant light intensity and radiant light angle (light distribution distribution) over a long period of time, and an irradiation surface It is possible to provide a lighting device in which uneven color and uneven illuminance distribution are suppressed.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射する照明装置とすることができる。   In addition, the light emitting device of the present invention is installed in a predetermined arrangement as a light source, and by installing a reflection jig, an optical lens, a light diffusing plate, etc. optically designed in an arbitrary shape around these light emitting devices, It can be set as the illuminating device which radiates | emits the light of this light distribution.

本発明の第一の発明の発光装置について以下に詳細に説明する。図1は本発明の発光装置の実施の形態の一例を示す断面図である。この図において、1は基体、2は第1の反射部材、4は第2の反射部材、4aは第2の反射部材4の内周面、6は第2の反射部材4の内側に注入される透光性部材、5は発光素子3の上方でかつ第1の反射部材2および第2の反射部材4と間隔を開けて透光性部材6の内部または表面(図1では内部)に配置され、発光素子3が発光する光を反射する光反射層、8は第2の反射部材4の内周面4aに被着された、発光素子3が発光する光の波長を変換して蛍光を発生する波長変換層であり、主としてこれらで発光素子3を収納するための発光装置が構成される。   The light-emitting device according to the first aspect of the present invention will be described in detail below. FIG. 1 is a cross-sectional view showing an example of an embodiment of a light emitting device of the present invention. In this figure, 1 is a base, 2 is a first reflecting member, 4 is a second reflecting member, 4 a is an inner peripheral surface of the second reflecting member 4, and 6 is injected inside the second reflecting member 4. The translucent member 5 is disposed above the light emitting element 3 and inside the translucent member 6 or on the surface (inside in FIG. 1) with a gap from the first reflecting member 2 and the second reflecting member 4. The light reflecting layer 8 reflects the light emitted from the light emitting element 3, and 8 is a fluorescent light that is attached to the inner peripheral surface 4 a of the second reflecting member 4 and converts the wavelength of the light emitted from the light emitting element 3. The generated wavelength conversion layer mainly constitutes a light-emitting device for housing the light-emitting element 3.

基体1は、アルミナセラミックスや窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、Fe−Ni−Co合金やCu−W等の金属、または、エポキシ樹脂等の樹脂から成り、発光素子3が載置される載置部1aが基体1の上面に形成されている。   The substrate 1 is made of alumina ceramic, aluminum nitride sintered body, mullite sintered body, ceramic such as glass ceramic, metal such as Fe—Ni—Co alloy or Cu—W, or resin such as epoxy resin, A placement portion 1 a on which the light emitting element 3 is placed is formed on the upper surface of the base 1.

また、基体1は、上側主面に第1の反射部材2が載置部1aを取り囲むように、また第2の反射部材4が第1の反射部材2を取り囲むように、半田,Agロウ等のロウ材やエポキシ樹脂等の樹脂接着剤等の接合材により取着される。第1の反射部材2は、発光素子3の周囲に所望の面精度(例えば、発光装置の縦断面において、発光素子3を間に挟んで発光素子3の両側に設けられた光反射面が対称になっている状態)で内周面(以下、第1の内周面という)2aが設けられるように取着され、第2の反射部材4は、第1の反射部材2の周囲に所望の面精度で内周面(以下、第2の内周面という)4aが設けられるように取着される。これにより、第1の反射部材2によって発光素子3から出た光が光反射層5に集められて反射され、その後波長変換層8に進んで波長変換されるとともに、その下面側の第2の反射部材4によって、発光装置の外部へ効率よく放出される。この結果、発光装置は、高い放射光強度および高輝度を有し、発光効率を向上させることができる。   The base 1 is soldered, Ag brazed, or the like so that the first reflecting member 2 surrounds the placement portion 1a on the upper main surface, and the second reflecting member 4 surrounds the first reflecting member 2. It is attached by a bonding material such as a resin adhesive such as an epoxy resin. The first reflecting member 2 has a desired surface accuracy around the light emitting element 3 (for example, in the longitudinal section of the light emitting device, the light reflecting surfaces provided on both sides of the light emitting element 3 with the light emitting element 3 in between are symmetrical. The second reflecting member 4 is attached around the first reflecting member 2 so that an inner peripheral surface (hereinafter referred to as a first inner peripheral surface) 2a is provided. It is attached so that an inner peripheral surface (hereinafter referred to as a second inner peripheral surface) 4a is provided with surface accuracy. Thereby, the light emitted from the light emitting element 3 by the first reflecting member 2 is collected and reflected by the light reflecting layer 5, and then proceeds to the wavelength converting layer 8 to be wavelength-converted. The light is efficiently emitted to the outside of the light emitting device by the reflecting member 4. As a result, the light emitting device has high radiated light intensity and high luminance, and can improve the light emission efficiency.

発光素子3からの光をこのように第1の反射部材2によって光反射層5に集めると、発光素子3からの光は種々の角度で光反射層5に入射する。そして種々の角度で入射した光は同じように種々の反射角で光反射層5から第2の反射部材4へ進み、第2の反射部材4にまんべんなく入射する。その後発光装置から外部に放出される光もまんべんなく放出されるため、結果的に発光装置から出力される光の色むらが抑制される。   When the light from the light emitting element 3 is thus collected on the light reflecting layer 5 by the first reflecting member 2, the light from the light emitting element 3 enters the light reflecting layer 5 at various angles. The light incident at various angles similarly travels from the light reflecting layer 5 to the second reflecting member 4 at various reflection angles, and is incident on the second reflecting member 4 evenly. Thereafter, the light emitted from the light emitting device to the outside is also emitted uniformly, and as a result, the color unevenness of the light output from the light emitting device is suppressed.

なお、第2の反射部材4は、その上に被着された波長変換層8の縦の断面形状が凹曲面であることが好ましい。これにより、光反射層5から下方向に放射された光が、波長変換層8と第2の反射部材4によって高い指向性を持った光として上方に反射され、発光装置の外部に放出される。従って、これらの発光装置は、照射面に対して効率よく光を照射することができる照明装置として最適である。   In addition, as for the 2nd reflection member 4, it is preferable that the vertical cross-sectional shape of the wavelength conversion layer 8 deposited on it is a concave curved surface. As a result, the light emitted downward from the light reflecting layer 5 is reflected upward as light having high directivity by the wavelength conversion layer 8 and the second reflecting member 4 and is emitted to the outside of the light emitting device. . Therefore, these light-emitting devices are optimal as illumination devices that can efficiently irradiate light onto the irradiation surface.

また、第1の反射部材2と第2の反射部材4は、第1の反射部材2と第2の反射部材4とが一体的に金型成型や切削加工によって作製されていてもよい。これにより、発光素子3の熱が、第1の反射部材2と第2の反射部材4を介してより発光装置全体に放散されるとともに発光装置の放熱面積が増加することにより、発光素子3の温度上昇が抑制される。   Moreover, the 1st reflection member 2 and the 2nd reflection member 4 may produce the 1st reflection member 2 and the 2nd reflection member 4 integrally by die shaping | molding or cutting. Thereby, the heat of the light emitting element 3 is dissipated to the whole light emitting device through the first reflecting member 2 and the second reflecting member 4, and the heat radiation area of the light emitting device is increased, so that Temperature rise is suppressed.

また、載置部1aは、図5に示すように高さが第1の反射部材2の第1の内周面2aの下端よりも高くなるように突出しているのが好ましい。これにより、発光素子3から斜め下方向に発光された光が効率よく第1の反射部材2によって上方向に集められ、光反射層5で下方向に反射し、波長変換層8で波長変換される発光素子3の光が増加して発光装置の放射強度が向上する。   Moreover, it is preferable that the mounting portion 1a protrudes so that the height is higher than the lower end of the first inner peripheral surface 2a of the first reflecting member 2 as shown in FIG. Thereby, light emitted obliquely downward from the light emitting element 3 is efficiently collected upward by the first reflecting member 2, reflected downward by the light reflecting layer 5, and wavelength converted by the wavelength conversion layer 8. The light emitted from the light emitting element 3 increases, and the radiation intensity of the light emitting device is improved.

このような突出した載置部1aは、その周囲を研磨や切削加工、エッチング等で除去することにより、または、基体1および載置部1aと成るセラミックグリーンシートを積層して焼成一体化することにより、基体1の上面より突出して形成される。または、基体1の上側主面に載置部1aとなる別の部材が、接着剤等で取着され形成されていてもよい。例えば、アルミナセラミックスや窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミックス等のセラミックス、Fe−Ni−Co合金やCu−W等の金属、または、エポキシ樹脂等の樹脂から成る載置部1aとなる部材を、基体1の上面にロウ材や接着剤等の接合材により取着することによって設けることもできる。   Such a protruding mounting portion 1a can be integrally fired by removing the periphery thereof by polishing, cutting, etching, or the like, or by laminating the ceramic green sheets to be the base 1 and the mounting portion 1a. Thus, it is formed so as to protrude from the upper surface of the substrate 1. Alternatively, another member that becomes the mounting portion 1a may be attached to and formed on the upper main surface of the base body 1 with an adhesive or the like. For example, a mounting portion made of ceramics such as alumina ceramics, aluminum nitride sintered bodies, mullite sintered bodies, glass ceramics, metals such as Fe-Ni-Co alloys and Cu-W, or resins such as epoxy resins The member to be 1a can also be provided by attaching to the upper surface of the substrate 1 with a bonding material such as a brazing material or an adhesive.

また、載置部1aは、図6に示すようにその側面が下側に行くに伴って外側に拡がるように傾斜しているのが好ましい。これにより、熱硬化前の液状の樹脂等から成る透光性部材6が第2の反射部材4の内側に注入される際に、突出した載置部1aと基体1上面または第1の内周面2aの下端部との間の角部に気泡や空気溜りが形成されることを有効に防止できる。さらに、発光素子3から発光された光が、突出した載置部1aの側面で上方および第1の内周面2aの方向に良好に反射され、発光装置の放射強度をより向上させることができる。さらにまた、発光素子3で生じた熱が、載置部1aを介して効率よく基体1側に拡散され伝達されることにより、発光素子3の温度上昇がより有効に抑制される。   Moreover, as shown in FIG. 6, it is preferable that the mounting part 1a is inclined so that its side surface expands outward as it goes downward. Thus, when the translucent member 6 made of a liquid resin before thermosetting is injected into the second reflecting member 4, the protruding mounting portion 1a and the upper surface of the base 1 or the first inner circumference It is possible to effectively prevent bubbles and air pockets from being formed at the corner between the lower end of the surface 2a. Further, the light emitted from the light emitting element 3 is favorably reflected upward and in the direction of the first inner peripheral surface 2a by the side surface of the protruding mounting portion 1a, and the radiation intensity of the light emitting device can be further improved. . Furthermore, the heat generated in the light emitting element 3 is efficiently diffused and transmitted to the base 1 side via the mounting portion 1a, so that the temperature rise of the light emitting element 3 is more effectively suppressed.

さらに、載置部1aは、発光素子3が電気的に接続されるための配線導体(図示せず)が形成されている。この配線導体が基体1の内部に形成された配線層(図示せず)を介して発光装置の外表面に導出されて外部電気回路に接続されることにより、発光素子3と外部電気回路とが電気的に接続されることとなる。   Further, the mounting portion 1a is formed with a wiring conductor (not shown) for electrically connecting the light emitting element 3. The wiring conductor is led to the outer surface of the light emitting device via a wiring layer (not shown) formed inside the base 1 and connected to an external electric circuit, whereby the light emitting element 3 and the external electric circuit are connected. It will be electrically connected.

なお、第1の反射部材2および第2の反射部材4は、Al,Ag,Au,白金(Pt),チタン(Ti),クロム(Cr),Cu等の高反射率の金属に対して切削加工や金型成形等を行うことにより形成される。または、第1の反射部材2および第2の反射部材4が、セラミックスや樹脂等の絶縁体からなる。そして、第1の反射部材2および第2の反射部材4は、第1の内周面2aおよび第2の内周面4aにメッキや蒸着等によりAl,Ag,Au,Pt,Ti,Cr,Cu等の高反射率の金属薄膜が形成されてもよい。また、第1の内周面2aおよび第2の内周面4aがAgやCu等の酸化により変色し易い金属からなる場合、その表面に、例えば厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのが良い。これにより、第1の内周面2aおよび第2の内周面4aの耐腐食性が向上するとともに、反射率の劣化が抑制される。   The first reflecting member 2 and the second reflecting member 4 are cut with respect to a metal having high reflectivity such as Al, Ag, Au, platinum (Pt), titanium (Ti), chromium (Cr), and Cu. It is formed by performing processing or mold forming. Or the 1st reflection member 2 and the 2nd reflection member 4 consist of insulators, such as ceramics and resin. The first reflecting member 2 and the second reflecting member 4 are formed of Al, Ag, Au, Pt, Ti, Cr, and the like on the first inner peripheral surface 2a and the second inner peripheral surface 4a by plating or vapor deposition. A highly reflective metal thin film such as Cu may be formed. Further, when the first inner peripheral surface 2a and the second inner peripheral surface 4a are made of a metal that is easily discolored by oxidation of Ag, Cu or the like, a Ni plating layer with a thickness of, for example, about 1 to 10 μm is formed on the surface. It is preferable that an Au plating layer having a thickness of about 0.1 to 3 μm is sequentially deposited by an electrolytic plating method or an electroless plating method. Thereby, the corrosion resistance of the first inner peripheral surface 2a and the second inner peripheral surface 4a is improved, and the deterioration of the reflectance is suppressed.

さらに、第1の内周面2aおよび第2の内周面4aの算術平均粗さRaは、0.004〜4μmであるのが良く、これにより、発光素子3からの光や光反射層5から反射された光を良好に反射し得る。Raが4μmを超えると、発光素子3および光反射層5の光が均一に反射されず、発光装置の内部で乱反射し光損失が増加しやすくなる。一方、0.004μm未満では、そのような面を安定かつ効率良く形成することが困難となる傾向にある。   Further, the arithmetic average roughness Ra of the first inner peripheral surface 2a and the second inner peripheral surface 4a is preferably 0.004 to 4 μm, whereby the light from the light emitting element 3 and the light reflecting layer 5 are reflected. The reflected light can be reflected well. When Ra exceeds 4 μm, the light from the light emitting element 3 and the light reflecting layer 5 is not uniformly reflected, and diffusely reflects inside the light emitting device, and the light loss tends to increase. On the other hand, if it is less than 0.004 μm, it tends to be difficult to form such a surface stably and efficiently.

また、第1の反射部材2は外周面の縦断面形状を湾曲形状に変更したり、第1の反射部材2と第2の反射部材4の間に複数の反射部材を設けたりしてもなんら支障はない。   In addition, the first reflecting member 2 may be formed by changing the longitudinal sectional shape of the outer peripheral surface to a curved shape, or by providing a plurality of reflecting members between the first reflecting member 2 and the second reflecting member 4. There is no hindrance.

また、第1の反射部材2の外周面を光反射面とするのがよい。これにより、第2の反射部材4で反射した光のうち、上方向に向かわずに、発光装置内で第1の反射部材2の外周面の方向に進む光があっても、第1の反射部材2の外周面に光反射層が形成されていることでそこで反射し、上方に向かうことが可能となる。   In addition, the outer peripheral surface of the first reflecting member 2 is preferably a light reflecting surface. As a result, even if there is light that travels in the direction of the outer peripheral surface of the first reflecting member 2 in the light emitting device out of the light reflected by the second reflecting member 4, the first reflection is performed. Since the light reflecting layer is formed on the outer peripheral surface of the member 2, the light is reflected there and can be directed upward.

なお、第1の反射部材2の上端と光反射層5の下面との間の距離は0.5〜3mmであるのがよい。0.5mm未満であると、光反射層5から下方に反射された光を第1の反射部材2の外側の第2の反射部材4に反射させ難くなり、放射効率を向上させるのが困難になる。また、3mmを超えると光反射層5と第1の反射部材2との隙間から発光素子3からの光が波長変換層8を透過せずに直接外部に放射されやすくなり、放射光の色むらや強度むらが生じやすくなる。   The distance between the upper end of the first reflecting member 2 and the lower surface of the light reflecting layer 5 is preferably 0.5 to 3 mm. If it is less than 0.5 mm, it is difficult to reflect light reflected downward from the light reflecting layer 5 to the second reflecting member 4 outside the first reflecting member 2, and it is difficult to improve the radiation efficiency. . On the other hand, if the thickness exceeds 3 mm, light from the light emitting element 3 is likely to be emitted directly from the gap between the light reflecting layer 5 and the first reflecting member 2 without passing through the wavelength conversion layer 8, resulting in uneven color of the emitted light. And unevenness in strength tends to occur.

また、発光素子3は、基体1に形成された配線導体にワイヤボンディングや、発光素子3の電極を下側にして半田バンプにより接続するフリップチップボンディング方式を用いて電気的に接続される。好ましくは、フリップチップボンディング方式により接続するのがよい。これにより、配線導体を発光素子3の直下に設けることができるため、発光素子3の周辺の基体1の上面に配線導体を設けるためのスペースを設ける必要がなくなる。よって、発光素子3から発光された光がこの基体1の配線導体のスペースで吸収されて放射光強度が低下するのを有効に抑制することができる。   The light emitting element 3 is electrically connected to the wiring conductor formed on the substrate 1 by wire bonding or a flip chip bonding method in which the electrodes of the light emitting element 3 are connected to each other by solder bumps. Preferably, the connection is made by a flip chip bonding method. Thereby, since the wiring conductor can be provided immediately below the light emitting element 3, it is not necessary to provide a space for providing the wiring conductor on the upper surface of the base 1 around the light emitting element 3. Therefore, it is possible to effectively suppress the light emitted from the light emitting element 3 from being absorbed in the space of the wiring conductor of the base body 1 and the radiation light intensity from being lowered.

この配線導体は、例えば、W,Mo,Cu,Ag等の金属粉末のメタライズ層を形成することによって、Fe−Ni−Co合金等のリード端子を埋設することによって、または、配線導体が形成された絶縁体から成る入出力端子を基体1に設けた貫通孔に嵌着接合させることによって設けられる。   This wiring conductor is formed by, for example, forming a metallized layer of a metal powder such as W, Mo, Cu, Ag, or by burying a lead terminal such as an Fe-Ni-Co alloy, or by forming a wiring conductor. An input / output terminal made of an insulating material is provided by being fitted and joined to a through hole provided in the base 1.

なお、配線導体の露出する表面には、NiやAu等の耐食性に優れる金属を1〜20μm程度の厚さで被着させておくのが良く、配線導体の酸化腐食を有効に防止し得るともに、発光素子3と配線導体との電気的な接続を強固にし得る。したがって、配線導体の露出表面には、例えば、厚さ1〜10μm程度のNiメッキ層と厚さ0.1〜3μm程度のAuメッキ層とが電解メッキ法や無電解メッキ法により順次被着されているのがより好ましい。   It should be noted that the exposed surface of the wiring conductor should be coated with a metal having excellent corrosion resistance, such as Ni or Au, with a thickness of about 1 to 20 μm, which can effectively prevent oxidative corrosion of the wiring conductor. The electrical connection between the light emitting element 3 and the wiring conductor can be strengthened. Therefore, for example, an Ni plating layer having a thickness of about 1 to 10 μm and an Au plating layer having a thickness of about 0.1 to 3 μm are sequentially deposited on the exposed surface of the wiring conductor by an electrolytic plating method or an electroless plating method. Is more preferable.

また、透光性部材6は、エポキシ樹脂やシリコーン樹脂等の透光性樹脂や透光性ガラスから成り、発光素子3および必要に応じて光反射層5を被覆するとともに第1の反射部材2および第2の反射部材4の内部に注入される。これにより、発光素子3および光反射層5の内側と外側との屈折率差が小さくなり、発光素子3および光反射層5から光をより多く取り出すことができる。さらに、透光性部材6が、波長変換層8を構成する透光性部材と同じ材料から成る場合、発光装置からの発光強度が向上し、放射光強度や輝度を著しく向上できる。   The translucent member 6 is made of a translucent resin such as an epoxy resin or a silicone resin, or translucent glass, and covers the light emitting element 3 and the light reflection layer 5 as necessary and the first reflective member 2. And injected into the second reflecting member 4. Thereby, the refractive index difference between the inner side and the outer side of the light emitting element 3 and the light reflecting layer 5 is reduced, and more light can be extracted from the light emitting element 3 and the light reflecting layer 5. Furthermore, when the translucent member 6 is made of the same material as the translucent member constituting the wavelength conversion layer 8, the light emission intensity from the light emitting device is improved, and the emitted light intensity and luminance can be remarkably improved.

また、波長変換層8は、発光素子3からの光を波長変換することのできる蛍光体や顔料と、エポキシ樹脂やシリコーン樹脂、ガラス等の透光性部材に含有させて成る。波長変換層8の製法は例えば、蛍光体を含有したシリコーン樹脂を、噴霧器やスプレー等の霧状にして散布する器具で反射部材4の内周面に塗布し、加熱することによりシリコーン樹脂を硬化させ形成する。   Moreover, the wavelength conversion layer 8 is made to contain the fluorescent substance and pigment which can carry out wavelength conversion of the light from the light emitting element 3, and translucent members, such as an epoxy resin, a silicone resin, and glass. The wavelength conversion layer 8 is manufactured by, for example, applying a silicone resin containing a phosphor in the form of a mist such as a sprayer or a spray to the inner peripheral surface of the reflection member 4 and curing the silicone resin by heating. To form.

光反射層5は、発光素子3の上方に配置されていることで、発光素子3から直接照射される光や第1の反射部材2で反射された光が光反射層5で下方向に反射され、波長変換層8を通ることで、蛍光体により波長変換された所望の波長スペクトルを有する光が取り出される。   Since the light reflecting layer 5 is disposed above the light emitting element 3, the light directly irradiated from the light emitting element 3 or the light reflected by the first reflecting member 2 is reflected downward by the light reflecting layer 5. By passing through the wavelength conversion layer 8, light having a desired wavelength spectrum that has been wavelength-converted by the phosphor is extracted.

光反射層5の材料は、近紫外光から可視光領域において反射率が高い金属や樹脂、セラミックス等であり、金属ではアルミニウム等、樹脂ではポリエステルやポリオレフィン、スペクトラロン(Labsphere社製の拡散反射材料)等、セラミックスではアルミナセラミックス等が材料としてあげられる。あるいは金属や樹脂、セラミックス等の基板の表面に、めっきや蒸着等の周知の薄膜形成法により、AgやAuを被着させて光反射層5としてもよい。   The material of the light reflecting layer 5 is a metal, resin, ceramics, or the like that has high reflectivity in the near ultraviolet to visible light region, such as aluminum for a metal, polyester, polyolefin, or Spectralon for a resin (a diffuse reflection material manufactured by Labsphere). As for ceramics, alumina ceramics and the like are listed as materials. Alternatively, the light reflecting layer 5 may be formed by depositing Ag or Au on the surface of a substrate made of metal, resin, ceramics or the like by a known thin film forming method such as plating or vapor deposition.

光反射層5の製法は、光反射層5がアルミニウム板から成る場合、例えば、アルミニウムを打ち抜き加工や切削加工により円板状等に形成し、その表面に硫酸バリウムや酸化チタン等の光散乱材を樹脂に含有して霧状に塗布することにより高反射率の光散乱面を有する光反射層5を形成することができる。光反射層5を発光装置内に固定する方法としては、例えば、第2の反射部材4のほぼ上端部まで透光性部材6を注入して熱硬化させた後に、その上に光反射層5を載置し、その上から未硬化の透光性部材6を注入して熱硬化させることで固定することができる。   When the light reflecting layer 5 is made of an aluminum plate, for example, the light reflecting layer 5 is formed into a disk shape by punching or cutting, and a light scattering material such as barium sulfate or titanium oxide is formed on the surface thereof. Can be formed in a resin to form a light reflection layer 5 having a light scattering surface with a high reflectance. As a method for fixing the light reflecting layer 5 in the light emitting device, for example, the light transmissive member 6 is injected to the substantially upper end of the second reflecting member 4 and thermally cured, and then the light reflecting layer 5 is formed thereon. Can be fixed by injecting uncured translucent member 6 from above and thermosetting it.

また、光反射層5は、図1に示すように発光素子3の上方でかつ透光性部材6の内部に第1の反射部材2および第2の反射部材4と間隔を開けて配置されてもよい。この場合、光反射層5が透光性部材6から剥離するのを有効に防止できる。光反射層5は、図2に示すように発光素子3の上方でかつ透光性部材6の表面に、第1の反射部材2および第2の反射部材4と間隔を開けて配置されてもよい。この場合、第1の光反射部材2と光反射層5との間隔をより大きくすることができるので、光反射層5から反射される光の多くが、その間隔を通って波長変換層8に、より容易に入射しやすくなり、発光装置の発光効率を向上させることができるとともに放射光強度および輝度を向上させることができる。   Further, as shown in FIG. 1, the light reflecting layer 5 is disposed above the light emitting element 3 and inside the translucent member 6 so as to be spaced apart from the first reflecting member 2 and the second reflecting member 4. Also good. In this case, it is possible to effectively prevent the light reflecting layer 5 from being peeled off from the translucent member 6. As shown in FIG. 2, the light reflecting layer 5 may be disposed above the light emitting element 3 and on the surface of the translucent member 6 so as to be spaced from the first reflecting member 2 and the second reflecting member 4. Good. In this case, since the space | interval of the 1st light reflection member 2 and the light reflection layer 5 can be enlarged more, most of the light reflected from the light reflection layer 5 passes through the space | interval, and becomes the wavelength conversion layer 8 Therefore, it becomes easier to enter, and the light emission efficiency of the light emitting device can be improved and the intensity and brightness of the emitted light can be improved.

また、光反射層5は図7に示すように、その外周部が発光素子3の端部とその端部の反対側の第1の反射部材2の内周面2aの上端とを通る直線よりも第2の反射部材4側に位置していることが好ましい。これにより、発光素子3からの光が発光装置の外部へ直接放射されることを抑制することができる。その結果、発光装置から発光色や発光分布にムラのない光を照射することができる。   Further, as shown in FIG. 7, the light reflecting layer 5 has an outer peripheral portion that is a straight line passing through the end portion of the light emitting element 3 and the upper end of the inner peripheral surface 2a of the first reflecting member 2 opposite to the end portion. Is preferably located on the second reflecting member 4 side. Thereby, it can suppress that the light from the light emitting element 3 is radiated | emitted directly outside the light-emitting device. As a result, the light emitting device can irradiate light with no unevenness in emission color or emission distribution.

さらに、光反射層5は図8や図9に示すように、その縦断面形状が発光素子3側に凸の曲面になっていることが好ましい。これにより、光反射層5の下面で反射される光が第2の反射部材4に被着された波長変換層8に一様に照射されることとなり、波長変換層8からの蛍光の色ムラが抑制される。したがって、発光装置の光学特性を向上させることができる。   Further, as shown in FIGS. 8 and 9, the light reflecting layer 5 preferably has a longitudinal cross-sectional shape that is a convex curved surface toward the light emitting element 3. As a result, the light reflected by the lower surface of the light reflecting layer 5 is uniformly applied to the wavelength converting layer 8 attached to the second reflecting member 4, and the color unevenness of the fluorescence from the wavelength converting layer 8 is thus determined. Is suppressed. Therefore, the optical characteristics of the light emitting device can be improved.

また、透光性部材6は、図10に示すように第1の反射部材2の内側と外側を異なる透光性材料6でそれぞれ充填してもよい。例えば、第1の反射部材2の内側と外側を屈折率の異なる透光性材料6でそれぞれ充填し、発光素子3から出た光が発光装置外部に向かって進むに従って、徐々に屈折率の小さい透光性部材へ向かって通るように透光性部材を決定するのが好ましい。つまり、第1の反射部材2の内側でかつ上端まで注入された透光性部材7と、第2の反射部材4の内側に注入された透光性部材6について、発光素子3、透光性部材7、透光性部材6、空気層の順番で屈折率が小さくなるようにするのが好ましい。なぜなら、まず透光性部材7について、発光素子3自身の屈折率が極めて高いため、その発光素子3からの光をできる限り取り出すためには、発光素子3の屈折率に近い、高屈折率を有する透光性部材7で発光素子3を覆うのがよいからである。また、第2の反射部材4aに被着されている波長変換層8からあらゆる方向に放射される光(蛍光)に対して全反射を抑制するために、できる限り空気層と透光性部材6との屈折率の差を小さくする必要がある。よって、発光素子3から透光性部材7、透光性部材6、空気層へと、屈折率を段階的に小さくすることでそれぞれの界面における光損失を抑制できるため、屈折率は上記のような順番をもつように材質を選定するのが好ましい。   Further, the translucent member 6 may be filled with different translucent materials 6 on the inner side and the outer side of the first reflecting member 2 as shown in FIG. For example, the inner side and the outer side of the first reflecting member 2 are filled with translucent materials 6 having different refractive indexes, and the refractive index gradually decreases as the light emitted from the light emitting element 3 travels toward the outside of the light emitting device. The translucent member is preferably determined so as to pass toward the translucent member. That is, the light-emitting element 3, the light-transmitting member 7, and the light-transmitting member 7 injected to the upper end inside the first reflecting member 2 and the light-transmitting member 6 injected to the inside of the second reflecting member 4. It is preferable to make the refractive index smaller in the order of the member 7, the translucent member 6, and the air layer. Because, for the light-transmissive member 7, the refractive index of the light emitting element 3 itself is extremely high. Therefore, in order to extract light from the light emitting element 3 as much as possible, a high refractive index close to the refractive index of the light emitting element 3 is used. It is because it is good to cover the light emitting element 3 with the translucent member 7 which has. Moreover, in order to suppress total reflection with respect to light (fluorescence) emitted in all directions from the wavelength conversion layer 8 attached to the second reflecting member 4a, the air layer and the translucent member 6 as much as possible. It is necessary to reduce the difference in refractive index between Therefore, since the light loss at each interface can be suppressed by gradually reducing the refractive index from the light emitting element 3 to the translucent member 7, the translucent member 6, and the air layer, the refractive index is as described above. It is preferable to select materials so that they have a proper order.

なお、透光性部材6と透光性部材7については、発光装置の放射光強度が最大となるように屈折率差や透過率を考慮して選定することができる。   The translucent member 6 and the translucent member 7 can be selected in consideration of the refractive index difference and the transmissivity so that the emitted light intensity of the light emitting device is maximized.

次に本発明の第二の発明について説明する。なお、本発明の第二の発明において、第1の反射部材2に載置部2bが形成されていること以外は上記第一の発明と同じであり、詳細な説明は省略する。   Next, the second invention of the present invention will be described. In addition, in 2nd invention of this invention, it is the same as said 1st invention except the mounting part 2b being formed in the 1st reflection member 2, and detailed description is abbreviate | omitted.

第1の反射部材2は、図3(a)に示すように上面に発光素子3を載置する載置部2bが形成されるとともに、載置部2bを取り囲む、内周面が光反射面とされた側壁部2cを有し、基体1の上側主面の中央部に取着される。さらに、第1の反射部材2の外周部には、第2の内周面4aに波長変換層が形成された枠状の第2の反射部材4が基体1の上側主面の外周部に取着される。そして、第2の反射部材4の内側には、発光素子3と第1の反射部材2とを覆うように透光性部材6が充填されるとともに、発光素子3の上方でかつ透光性部材6の内部または表面には、第1の反射部材2および第2の反射部材4との間に間隔を開けて、発光素子3が発光する光を反射する光反射層5が配置される。   As shown in FIG. 3A, the first reflecting member 2 has a mounting portion 2b on which the light emitting element 3 is mounted on the upper surface, and an inner peripheral surface that surrounds the mounting portion 2b is a light reflecting surface. The side wall 2c is attached to the central portion of the upper main surface of the base 1. Further, a frame-like second reflecting member 4 having a wavelength conversion layer formed on the second inner peripheral surface 4 a is attached to the outer peripheral portion of the upper main surface of the base 1 at the outer peripheral portion of the first reflecting member 2. Worn. The inside of the second reflecting member 4 is filled with a translucent member 6 so as to cover the light emitting element 3 and the first reflecting member 2, and above the light emitting element 3 and the translucent member. A light reflecting layer 5 that reflects light emitted from the light emitting element 3 is disposed inside or on the surface of the light emitting element 3 with a space between the first reflecting member 2 and the second reflecting member 4.

これにより、発光素子3から発光された光が光反射層5で下方に反射された後、波長変換層8を通過するとともに、第2の反射部材4で上方に反射され、光反射層5と第2の反射部材4との隙間から発光装置外部へ放出される。その結果、波長変換層8から下側等のあらゆる方向に光が放出されて発光装置内に閉じ込められるのを、きわめて有効に抑制することができ、放射光強度および輝度を高め、発光効率の高い発光装置とすることができる。   Thereby, after the light emitted from the light emitting element 3 is reflected downward by the light reflecting layer 5, it passes through the wavelength conversion layer 8 and is reflected upward by the second reflecting member 4. The light is emitted to the outside of the light emitting device through the gap with the second reflecting member 4. As a result, it is possible to extremely effectively prevent light from being emitted from the wavelength conversion layer 8 in any direction such as the lower side and confined in the light emitting device, increasing the emitted light intensity and luminance, and having high luminous efficiency. A light-emitting device can be obtained.

また、発光素子3から発生した熱を載置部2bおよび載置部2bと一体化した側壁部2cに伝え易くすることができる。特に第1の反射部材2が金属から成る場合には、熱は速やかに側壁部2cへ伝えられるとともに第1の反射部材2の下面全体から基体1に伝えられ、基体1の外面から良好に放散される。その結果、発光素子3の温度上昇を抑制することができ、発光素子3と第1の反射部材2との熱膨張差により生じる接合部のクラックを抑制することができる。また、第1の反射部材2の下面全面から基体1に効率よく熱伝導させて発光素子3および第1の反射部材2の温度上昇をより有効に抑制することにより、発光素子3の作動を安定に維持するとともに第1の反射部材2の内周面の熱変形を抑制することができる。よって長期にわたり、発光装置の安定した光特性を良好に維持することができる。   In addition, the heat generated from the light emitting element 3 can be easily transmitted to the mounting portion 2b and the side wall portion 2c integrated with the mounting portion 2b. In particular, when the first reflecting member 2 is made of metal, heat is quickly transferred to the side wall portion 2c and is also transferred from the entire lower surface of the first reflecting member 2 to the base 1 and is well dissipated from the outer surface of the base 1. Is done. As a result, the temperature rise of the light emitting element 3 can be suppressed, and cracks in the joint caused by the difference in thermal expansion between the light emitting element 3 and the first reflecting member 2 can be suppressed. In addition, by efficiently conducting heat from the entire lower surface of the first reflecting member 2 to the base 1 to suppress the temperature rise of the light emitting element 3 and the first reflecting member 2 more effectively, the operation of the light emitting element 3 is stabilized. The thermal deformation of the inner peripheral surface of the first reflecting member 2 can be suppressed while maintaining the above. Therefore, stable light characteristics of the light emitting device can be maintained well over a long period of time.

なお、発光素子3は、図3(b)に示すように載置部2bを取り囲む内周面2aに形成された貫通孔2dを挿通して基体1に形成された配線導体(図示せず)とボンディングワイヤ9によって電気的に接続され、電力供給が行なわれる。   Note that the light emitting element 3 has a wiring conductor (not shown) formed in the base body 1 through the through hole 2d formed in the inner peripheral surface 2a surrounding the mounting portion 2b as shown in FIG. Are electrically connected by a bonding wire 9 to supply power.

また、第1の反射部材2と第2の反射部材4は、図4に示すように、第1の反射部材2と第2の反射部材4とが一体的に金型成型や切削加工によって作製された反射部材10であってもよい。一体的であることにより、発光素子3の熱が、第1の反射部材2と第2の反射部材4を介してより発光装置全体に放散されるとともに発光装置の放熱面積が増加し、発光素子3の温度上昇が抑制される
また、本発明の発光装置は、1個のものを所定の配置となるように設置したことにより、または複数個を、例えば、格子状や千鳥状,放射状,複数の発光装置から成る、円状や多角形状の発光装置群を同心状に複数群形成したもの等の所定の配置となるように設置したことにより、照明装置とすることができる。これにより、半導体から成る発光素子3の電子の再結合による発光を利用しているため、従来の放電を用いた照明装置よりも低消費電力かつ長寿命とすることが可能であり、発熱の小さな小型の照明装置とすることができる。その結果、発光素子3から発生する光の中心波長の変動を抑制することができ、長期間にわたり安定した放射光強度かつ放射光角度(配光分布)で光を照射することができるとともに、照射面における色むらや照度分布の偏りが抑制された照明装置とすることができる。
Further, as shown in FIG. 4, the first reflecting member 2 and the second reflecting member 4 are produced by integrally molding the first reflecting member 2 and the second reflecting member 4 by molding or cutting. The reflecting member 10 may be used. By being integrated, the heat of the light emitting element 3 is more dissipated to the whole light emitting device through the first reflecting member 2 and the second reflecting member 4, and the heat radiation area of the light emitting device is increased, and the light emitting element In addition, the light emitting device of the present invention can be provided by installing one light emitting device in a predetermined arrangement, or a plurality of light emitting devices, for example, a lattice shape, a staggered shape, a radial shape, or a plurality of light emitting devices. It is possible to obtain an illuminating device by providing a predetermined arrangement such as a plurality of concentrically formed circular or polygonal light emitting device groups composed of the above light emitting devices. Thereby, since light emission by recombination of electrons of the light emitting element 3 made of a semiconductor is used, it is possible to achieve lower power consumption and longer life than a lighting device using a conventional discharge, and generate less heat. It can be set as a small illuminating device. As a result, fluctuations in the center wavelength of the light generated from the light emitting element 3 can be suppressed, and light can be emitted with a stable radiant light intensity and radiant light angle (light distribution distribution) over a long period of time. It can be set as the illuminating device by which the color nonuniformity in the surface and the bias of illuminance distribution were suppressed.

また、本発明の発光装置を光源として所定の配置に設置するとともに、これらの発光装置の周囲に任意の形状に光学設計した反射治具や光学レンズ、光拡散板等を設置することにより、任意の配光分布の光を放射できる照明装置とすることができる。   In addition, the light emitting device of the present invention is installed in a predetermined arrangement as a light source, and by installing a reflection jig, an optical lens, a light diffusing plate, etc. optically designed in an arbitrary shape around these light emitting devices, It can be set as the illuminating device which can radiate | emit the light of this light distribution.

例えば、図11,図12に示す平面図,断面図のように複数個の発光装置101が発光装置駆動回路基板102に複数列に配置され、発光装置101の周囲に任意の形状に光学設計した反射治具9が設置されて成る照明装置の場合、隣接する一列上に配置された複数個の発光装置101において、隣り合う発光装置101との間隔が最短に成らないような配置、いわゆる千鳥状とすることが好ましい。即ち、発光装置101が格子状に配置される際には、光源となる発光装置101が直線上に配列されることによりグレアが強くなり、このような照明装置が人の視覚に入ってくることにより、不快感や目の障害を起こしやすくなるのに対し、千鳥状とすることにより、グレアが抑制され人間の目に対する不快感や目に及ぼす障害を低減することができる。さらに、隣り合う発光装置101間の距離が長くなることにより、隣接する発光装置101間の熱的な干渉が有効に抑制され、発光装置101が実装された発光装置駆動回路基板102内における熱のこもりが抑制され、発光装置101の外部に効率よく熱が放散される。その結果、人の目に対しても障害の小さく、長期間にわたって光学特性の安定した長寿命の照明装置を作製することができる。   For example, a plurality of light emitting devices 101 are arranged in a plurality of rows on the light emitting device driving circuit board 102 as shown in the plan view and the cross-sectional view shown in FIGS. 11 and 12, and are optically designed around the light emitting device 101 in an arbitrary shape. In the case of an illuminating device in which the reflecting jig 9 is installed, in a plurality of light emitting devices 101 arranged on one adjacent row, an arrangement in which the interval between the adjacent light emitting devices 101 is not shortest, a so-called staggered pattern It is preferable that That is, when the light emitting devices 101 are arranged in a grid, the glare is strengthened by arranging the light emitting devices 101 as light sources on a straight line, and such a lighting device enters human vision. Thus, discomfort and eye damage are likely to occur, but by forming a staggered pattern, glare is suppressed and discomfort and damage to the eyes of the human eye can be reduced. Furthermore, since the distance between adjacent light emitting devices 101 is increased, thermal interference between adjacent light emitting devices 101 is effectively suppressed, and heat in the light emitting device driving circuit board 102 on which the light emitting devices 101 are mounted is reduced. Clouding is suppressed, and heat is efficiently dissipated to the outside of the light emitting device 101. As a result, it is possible to manufacture a long-life lighting device that has little obstacle to human eyes and has stable optical characteristics over a long period of time.

また、照明装置が、図13,図14に示す平面図,断面図のような発光装置駆動回路基板102上に複数の発光装置101から成る円状や多角形状の発光装置101群を、同心状に複数群形成した照明装置の場合、1つの円状や多角形状の発光装置101群における発光装置101の配置数を照明装置の中央側より外周側ほど多くすることが好ましい。これにより、発光装置101同士の間隔を適度に保ちながら発光装置101をより多く配置することができ、照明装置の照度をより向上させることができる。また、照明装置の中央部の発光装置101の密度を低くして発光装置駆動回路基板102の中央部における熱のこもりを抑制することができる。よって、発光装置駆動回路基板102内における温度分布が一様となり、照明装置を設置した外部電気回路基板やヒートシンクに効率よく熱が伝達され、発光装置101の温度上昇を抑制することができる。その結果、発光装置101は長期間にわたり安定して動作することができるとともに長寿命の照明装置を作製することができる。   Further, the lighting device is a concentric arrangement of a circular or polygonal light emitting device 101 group composed of a plurality of light emitting devices 101 on the light emitting device driving circuit board 102 as shown in the plan view and the sectional view shown in FIGS. In the case of the illuminating device formed in a plurality of groups, it is preferable that the number of the light emitting devices 101 in one circular or polygonal light emitting device 101 group is increased from the central side of the illuminating device to the outer peripheral side. Thereby, it is possible to arrange more light emitting devices 101 while maintaining an appropriate interval between the light emitting devices 101, and it is possible to further improve the illuminance of the lighting device. In addition, the density of the light emitting device 101 in the central portion of the lighting device can be reduced to suppress heat accumulation in the central portion of the light emitting device driving circuit board 102. Therefore, the temperature distribution in the light emitting device driving circuit board 102 becomes uniform, heat is efficiently transmitted to the external electric circuit board and the heat sink on which the lighting device is installed, and the temperature rise of the light emitting device 101 can be suppressed. As a result, the light-emitting device 101 can operate stably over a long period of time, and a long-life lighting device can be manufactured.

このような照明装置としては、例えば、室内や室外で用いられる、一般照明用器具、シャンデリア用照明器具、住宅用照明器具、オフィス用照明器具、店装,展示用照明器具、街路用照明器具、誘導灯器具及び信号装置、舞台及びスタジオ用の照明器具、広告灯、照明用ポール、水中照明用ライト、ストロボ用ライト、スポットライト、電柱等に埋め込む防犯用照明、非常用照明器具、懐中電灯、電光掲示板等や、調光器、自動点滅器、ディスプレイ等のバックライト、動画装置、装飾品、照光式スイッチ、光センサ、医療用ライト、車載ライト等が挙げられる。   Examples of such lighting devices include general lighting fixtures, chandelier lighting fixtures, residential lighting fixtures, office lighting fixtures, store lighting, display lighting fixtures, street lighting fixtures, used indoors and outdoors. Guide light fixtures and signaling devices, stage and studio lighting fixtures, advertising lights, lighting poles, underwater lighting lights, strobe lights, spotlights, security lights embedded in power poles, emergency lighting fixtures, flashlights, Examples include electronic bulletin boards and the like, backlights for dimmers, automatic flashers, displays and the like, moving image devices, ornaments, illuminated switches, optical sensors, medical lights, in-vehicle lights, and the like.

本発明の発光装置について以下に実施例を示す。まず、基体1となるアルミナセラミックスから成る基体1を準備した。なお、基体1は図5に示すように載置部1aが突出するように一体的に形成されており、載置部1aの上面と載置部1a以外の部位の基体1の上面とを平行にした。   Examples of the light emitting device of the present invention are shown below. First, a substrate 1 made of alumina ceramic to be the substrate 1 was prepared. As shown in FIG. 5, the base body 1 is integrally formed so that the mounting portion 1a protrudes, and the upper surface of the mounting portion 1a and the upper surface of the base body 1 other than the mounting portion 1a are parallel to each other. I made it.

基体1は、幅17mm×奥行き17mm×厚さ0.5mmの直方体の上面中央部に幅0.35mm×奥行き0.35mm×厚さ0.15mmの直方体の載置部1aが形成されたものとした。   The base body 1 has a rectangular parallelepiped mounting portion 1a having a width of 0.35 mm, a depth of 0.35 mm, and a thickness of 0.15 mm formed at the center of the upper surface of a rectangular parallelepiped having a width of 17 mm, a depth of 17 mm, and a thickness of 0.5 mm.

また、載置部1aの発光素子3が搭載される部位に、発光素子3と外部電気回路基板とを基体1の内部に形成した内部配線を介して電気的に接続するための配線導体を形成した。配線導体は、Mo−Mn粉末からなるメタライズ層により直径が0.1mmの円形パッドに成形され、その表面には厚さ3μmのNiメッキ層と厚さ2μmのAuメッキ層を順次被着された。また、基体1内部の内部配線は、貫通導体から成る電気接続部、いわゆるスルーホールによって形成した。このスルーホールについても配線導体と同様にMo−Mn粉末からなるメタライズ導体で成形された。   In addition, a wiring conductor for electrically connecting the light emitting element 3 and the external electric circuit board through an internal wiring formed inside the base body 1 is formed at a portion where the light emitting element 3 of the mounting portion 1a is mounted. did. The wiring conductor was formed into a circular pad having a diameter of 0.1 mm by a metallized layer made of Mo—Mn powder, and a Ni plating layer having a thickness of 3 μm and an Au plating layer having a thickness of 2 μm were sequentially deposited on the surface thereof. Further, the internal wiring inside the substrate 1 was formed by an electrical connection portion made of a through conductor, so-called through hole. This through hole was also formed with a metallized conductor made of Mo-Mn powder in the same manner as the wiring conductor.

また、第1の反射部材2は、第1の内周面2aの最上端の直径が2.7mmで高さが1.5mmであり、第1の内周面2aの下端の高さ(基体1上面に接合される下面から第1の内周面2aの傾斜面の下辺までの高さ)が0.1mmであった。さらに、基体1の上側主面に直交する断面における第1の内周面2aの形状が、第1の内周面2aの下端からの高さをZ、内寸法の半径をrとしたときに
=(cr )/[1+{1−(1+k)c }1/2]
で表される曲面とし、定数kを−1.053、曲率cを1.818とした。また、第1の内周面2aの算術平均粗さRaは、0.1μmとした。
The first reflecting member 2 has a diameter of the uppermost end of the first inner peripheral surface 2a of 2.7 mm and a height of 1.5 mm, and the lower end of the first inner peripheral surface 2a (the upper surface of the base 1). The height from the lower surface joined to the lower side of the inclined surface of the first inner peripheral surface 2a) was 0.1 mm. Further, the shape of the first inner peripheral surface 2a in the cross section orthogonal to the upper main surface of the base body 1 is such that the height from the lower end of the first inner peripheral surface 2a is Z 1 and the radius of the inner dimension is r 1 . Sometimes Z 1 = (cr 1 2 ) / [1+ {1- (1 + k) c 2 r 1 2 } 1/2 ]
The constant k is -1.053, and the curvature c is 1.818. The arithmetic average roughness Ra of the first inner peripheral surface 2a was 0.1 μm.

また、第2の反射部材4は、第2の内周面4aの最上端の直径が16.1mmで高さが3.5mmであり、第2の内周面4aの下端の高さ(基体1上面に接合される下面から第2の内周面4aの傾斜面の下辺までの高さ)が0.18mmであった。さらに、基体1の上側主面に直交する断面における第2の内周面4aの形状が、第2の内周面4aの下端からの高さをZ、内寸法の半径をrとしたときに
=(cr )/[1+{1−(1+k)c }1/2]
で表される曲面とし、定数kを−2.3、曲率cを0.143とした。また、第2の内周面4aの算術平均粗さRaは、0.1μmとした。
The second reflecting member 4 has a diameter of the uppermost end of the second inner peripheral surface 4a of 16.1 mm and a height of 3.5 mm. The height of the lower end of the second inner peripheral surface 4a (the upper surface of the base 1) The height from the lower surface joined to the lower side of the inclined surface of the second inner peripheral surface 4a) was 0.18 mm. Further, the shape of the second inner peripheral surface 4a in the cross section orthogonal to the upper main surface of the substrate 1 is such that the height from the lower end of the second inner peripheral surface 4a is Z 2 and the radius of the inner dimension is r 2 . Sometimes Z 2 = (cr 2 2 ) / [1+ {1- (1 + k) c 2 r 2 2 } 1/2 ]
The constant k is -2.3 and the curvature c is 0.143. The arithmetic average roughness Ra of the second inner peripheral surface 4a was 0.1 μm.

次に、蛍光体を含有したシリコーン樹脂を、スプレーで霧状に散布することにより第2の反射部材4の内周面4aに塗布し、加熱することによりシリコーン樹脂を硬化させ波長変換層8を形成した。   Next, the silicone resin containing the phosphor is applied to the inner peripheral surface 4a of the second reflecting member 4 by spraying it in the form of a mist, and the wavelength conversion layer 8 is cured by heating to cure the silicone resin. Formed.

そして、基体1上面に形成された配線導体にAu−Snバンプを設けておき、このAu−Snバンプを介して発光素子3を配線導体に接合するとともに、第1の反射部材2が載置部1aを取り囲むように、第2の反射部材4が第1の反射部材2を取り囲むように基体1の外周部に樹脂接着剤で接合した。   Then, an Au—Sn bump is provided on the wiring conductor formed on the upper surface of the substrate 1, and the light emitting element 3 is joined to the wiring conductor via the Au—Sn bump, and the first reflecting member 2 is mounted on the mounting portion. The second reflecting member 4 was joined to the outer peripheral portion of the base 1 with a resin adhesive so as to surround the first reflecting member 2 so as to surround 1a.

そして、ディスペンサーを用いて、透明なシリコーン樹脂から成る透光性部材6を第1の反射部材2、および第2の反射部材4のほぼ上端部まで注入し、オーブンで熱硬化して、透光性部材6を形成した。   Then, using a dispenser, the translucent member 6 made of a transparent silicone resin is injected to almost the upper ends of the first reflecting member 2 and the second reflecting member 4, and is thermally cured in an oven. The sex member 6 was formed.

次に、アルミニウムを打ち抜き加工により円板状に形成した後に、その表面に光散乱材としての硫酸バリウムを含有させたシリコーン樹脂を、霧状に塗布することにより高反射率の光散乱面を有する光反射層5を形成した。そして第2の反射部材4のほぼ上端部まで注入され、熱硬化された透光性部材6の上に光反射層5を載置し、その上から未硬化のシリコーン樹脂から成る透光性部材6を注入して熱硬化させることで光反射層5を固定し、発光装置とした。   Next, after forming aluminum into a disk shape by stamping, a silicone resin containing barium sulfate as a light scattering material is applied to the surface in a mist form to have a highly reflective light scattering surface. A light reflecting layer 5 was formed. Then, the light reflecting layer 5 is placed on the translucent member 6 which is injected almost to the upper end of the second reflecting member 4 and thermally cured, and the translucent member made of an uncured silicone resin is placed thereon. The light reflecting layer 5 was fixed by injecting 6 and thermosetting to obtain a light emitting device.

また、比較例の発光装置として、図15に示す構成の発光装置を作製した。   Further, a light-emitting device having the configuration shown in FIG. 15 was manufactured as a light-emitting device of a comparative example.

図15において、発光装置は、上面の中央部に発光素子13を載置するための載置部11aを有し、載置部11aおよびその周辺から発光装置の内外を電気的に導通接続するリード端子からなる配線導体(図示せず)が形成された絶縁体からなる基体11と、基体11の上面に接着固定され、内周面12aが上側に向かうに伴って外側に広がるように傾斜しているとともに、内周面12aが発光素子13の発光する光を反射する反射面とされている枠状の反射部材12と、透光性部材に発光素子13が発光する光を波長変換する蛍光体(図示せず)を含有させて成る波長変換層15と、発光素子13を保護するため反射部材12の内側に充填された透光性部材16とから主に構成した。   In FIG. 15, the light emitting device has a mounting portion 11a for mounting the light emitting element 13 at the center of the upper surface, and leads that electrically connect the inside and outside of the light emitting device from the mounting portion 11a and its periphery. A base 11 made of an insulator on which a wiring conductor (not shown) made of a terminal is formed, and is bonded and fixed to the upper surface of the base 11, and is inclined so that the inner peripheral surface 12a spreads outward as it goes upward. And a frame-like reflecting member 12 whose inner peripheral surface 12a is a reflecting surface for reflecting the light emitted from the light emitting element 13, and a phosphor for converting the wavelength of the light emitted from the light emitting element 13 to the translucent member It mainly comprises a wavelength conversion layer 15 containing (not shown) and a translucent member 16 filled inside the reflecting member 12 to protect the light emitting element 13.

基体11は、酸化アルミニウム質焼結体(アルミナセラミックス)から成る。基体11の上面に配線導体がWから成る金属ペーストを高温で焼成して形成した。   The substrate 11 is made of an aluminum oxide sintered body (alumina ceramic). A metal paste whose wiring conductor is made of W was formed on the upper surface of the substrate 11 by firing at a high temperature.

また、反射部材12は、Alから成り、切削加工により形成した。さらに、反射部材12の内周面12aは、Alが蒸着法により被着されることにより形成した。そして、反射部材12は、半田により、載置部11aを内周面12aで取り囲むように基体11の上面に接合した。   The reflecting member 12 is made of Al and formed by cutting. Furthermore, the inner peripheral surface 12a of the reflecting member 12 was formed by depositing Al by a vapor deposition method. The reflecting member 12 was joined to the upper surface of the base 11 by solder so as to surround the mounting portion 11a with the inner peripheral surface 12a.

また、発光素子13は、液相成長法によりサファイア基板上に、Ga−Al−Nの発光層を形成することにより作製した。発光素子13の構造は、MIS接合(metal insulator semiconductor structure)を有している。なお、発光素子13は、発光素子13の電極を下側に設置して半田バンプにより接続するフリップチップボンディング方式を用いて電気的に接続した。   The light-emitting element 13 was fabricated by forming a Ga—Al—N light-emitting layer on a sapphire substrate by a liquid phase growth method. The structure of the light emitting element 13 has a MIS junction (metal insulator semiconductor structure). The light emitting element 13 was electrically connected using a flip chip bonding method in which the electrode of the light emitting element 13 was placed on the lower side and connected by solder bumps.

また、波長変換層15は、エポキシ樹脂の透光性部材に蛍光体を含有しこれを透光性部材16の上面に注入し、熱硬化させ、また、透光性部材16はエポキシ樹脂を反射部材12の内側に発光素子13を覆うように注入し、熱硬化させることにより形成した。   The wavelength conversion layer 15 contains a phosphor in an epoxy resin translucent member, which is injected into the upper surface of the translucent member 16 and thermally cured, and the translucent member 16 reflects the epoxy resin. It was formed by injecting inside the member 12 so as to cover the light emitting element 13 and thermosetting.

なお、蛍光体は、Ceで付活されたイットリウム・アルミニウム・ガーネット系蛍光体を用いた。   The phosphor used was an yttrium / aluminum / garnet phosphor activated with Ce.

これらの発光装置について、それぞれ20mAの電流を印加し、点灯させて全光束量を測定した。その結果、図15の構成の比較例の発光装置は8.5lm/W、図5の構成の発光装置は14lm/Wであった。本発明によって、全光束量において約1.6倍もの効果が得られることが判明し、本発明の発光装置の優位性を確認することを確認できた。   About these light-emitting devices, the electric current of 20 mA was applied, it was made to light, and the total luminous flux amount was measured. As a result, the light emitting device of the comparative example having the configuration in FIG. 15 was 8.5 lm / W, and the light emitting device having the configuration in FIG. 5 was 14 lm / W. According to the present invention, it has been found that the effect of about 1.6 times can be obtained in the total luminous flux, and it has been confirmed that the superiority of the light emitting device of the present invention is confirmed.

なお、本発明は以上の実施の形態の例および実施例に限定されず、本発明の要旨を逸脱しない範囲内であれば種々の変更を行なうことは何等支障ない。   It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.

例えば、放射強度の向上のために基体1に発光素子3を複数設けてしても良い。また、第1の内周面2aおよび第2の内周面4aの角度や、第2の内周面4aの上端から透光性部材6の上面までの距離を任意に調整することも可能であり、これにより、補色域を設けることによりさらに良好な演色性を得ることができる。   For example, a plurality of light emitting elements 3 may be provided on the base 1 in order to improve the radiation intensity. It is also possible to arbitrarily adjust the angles of the first inner peripheral surface 2a and the second inner peripheral surface 4a and the distance from the upper end of the second inner peripheral surface 4a to the upper surface of the translucent member 6. With this, it is possible to obtain better color rendering by providing a complementary color gamut.

また、本発明の照明装置は、複数個の発光装置101を所定の配置となるように設置したものだけでなく、1個の発光装置101を所定の配置となるように設置したものでもよい。   Further, the lighting device of the present invention is not limited to one in which a plurality of light emitting devices 101 are installed in a predetermined arrangement, but may be one in which one light emitting device 101 is installed in a predetermined arrangement.

本発明の第一の発明の発光装置の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. (a)(b)はそれぞれ、本発明の第二の発明の発光装置の実施の形態の一例を示す、異なる位置における断面図である。(A) (b) is sectional drawing in a different position which shows an example of embodiment of the light-emitting device of 2nd invention of this invention, respectively. 本発明の第二の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 2nd invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の第一の発明の発光装置の実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the light-emitting device of 1st invention of this invention. 本発明の照明装置の実施の形態の一例を示す平面図である。It is a top view which shows an example of embodiment of the illuminating device of this invention. 図11の照明装置の断面図である。FIG. 12 is a cross-sectional view of the lighting device of FIG. 本発明の照明装置の実施の形態の他の例を示す平面図である。It is a top view which shows the other example of embodiment of the illuminating device of this invention. 図13の照明装置の断面図である。FIG. 14 is a cross-sectional view of the lighting device of FIG. 従来の発光装置の断面図である。It is sectional drawing of the conventional light-emitting device.

符号の説明Explanation of symbols

1:基体
1a:載置部
2:第1の反射部材
2a:第1の内周面
2b:載置部
2c:側壁部
3:発光素子
4:第2の反射部材
4a:第2の内周面
5:光反射層
6,7:透光性部材
8:波長変換層
1: Base 1a: Placement part 2: First reflecting member 2a: First inner peripheral surface 2b: Placement part 2c: Side wall part 3: Light emitting element
4: Second reflecting member 4a: Second inner peripheral surface 5: Light reflecting layer 6, 7: Translucent member 8: Wavelength converting layer

Claims (5)

上側主面に発光素子の載置部が形成された基体と、該基体の上側主面に前記載置部を取り囲むように取着された、内周面が光反射面とされた枠状の第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光を反射する光反射層と、前記第2の反射部材の内周面に被着された、前記発光素子が発光する光の波長を変換する波長変換層とを具備していることを特徴とする発光装置。 A base having a light emitting element mounting portion formed on the upper main surface, and a frame-like shape in which the inner peripheral surface is a light reflecting surface attached to the upper main surface of the base so as to surround the mounting portion. A first reflecting member, a frame-like second reflecting member attached to an upper main surface of the base so as to surround the first reflecting member, and having an inner peripheral surface as a light reflecting surface; The light-emitting element placed on the placement unit, a translucent member provided inside the second reflective member so as to cover the light-emitting element and the first reflective member, and above the light-emitting element A light-reflecting layer that reflects light emitted from the light-emitting element, is provided on the inside or on the surface of the translucent member at a distance from the first and second reflecting members, and the second reflecting member. A wavelength conversion layer that is attached to the inner peripheral surface of the reflecting member and converts the wavelength of light emitted from the light emitting element. The light emitting device according to claim and. 平板状の基体と、該基体の上側主面に接合され、上面に発光素子の載置部が形成されるとともに内周面が光反射面とされた側壁部が前記載置部を取り囲むように形成された第1の反射部材と、前記基体の上側主面に前記第1の反射部材を取り囲むように取着された、内周面が光反射面とされた枠状の第2の反射部材と、前記載置部に載置された前記発光素子と、前記第2の反射部材の内側に、前記発光素子および前記第1の反射部材を覆うように設けられた透光性部材と、前記発光素子の上方に位置する前記透光性部材の内部または表面に前記第1および第2の反射部材と間隔を開けて設けられた、前記発光素子が発光する光を反射する光反射層と、前記第2の反射部材の内周面に被着された、前記発光素子が発光する光の波長を変換する波長変換層とを具備していることを特徴とする発光装置。 A flat substrate and a side wall portion which is bonded to the upper main surface of the substrate and has a light emitting element mounting portion formed on the upper surface and whose inner peripheral surface is a light reflecting surface surround the mounting portion. The formed first reflecting member, and a frame-like second reflecting member attached to the upper main surface of the base so as to surround the first reflecting member and having an inner peripheral surface as a light reflecting surface And the light-emitting element placed on the mounting portion, the translucent member provided inside the second reflective member so as to cover the light-emitting element and the first reflective member, and A light reflecting layer for reflecting light emitted from the light emitting element, provided inside or on the surface of the translucent member located above the light emitting element and spaced from the first and second reflecting members; Waves for converting the wavelength of light emitted from the light emitting element, which is attached to the inner peripheral surface of the second reflecting member. Light-emitting device characterized in that it comprises a conversion layer. 前記載置部は、高さが前記第1の反射部材の前記内周面の下端よりも高くなるように突出していることを特徴とする請求項1または請求項2記載の発光装置。 The light emitting device according to claim 1, wherein the mounting portion protrudes so that a height is higher than a lower end of the inner peripheral surface of the first reflecting member. 前記光反射層は、その外周部が前記発光素子の端部とその端部の反対側の前記第1の反射部材の前記内周面の上端とを通る直線よりも前記第2の反射部材側に位置していることを特徴とする請求項1乃至請求項3のいずれかに記載の発光装置。 The light reflecting layer has an outer peripheral portion on the second reflecting member side with respect to a straight line passing through an end portion of the light emitting element and an upper end of the inner peripheral surface of the first reflecting member on the opposite side of the end portion. The light-emitting device according to claim 1, wherein the light-emitting device is located at a position. 請求項1乃至請求項4のいずれかに記載の発光装置を所定の配置となるように設置したことを特徴とする照明装置。 An illuminating device comprising: the light emitting device according to claim 1 installed in a predetermined arrangement.
JP2004247660A 2004-06-28 2004-08-27 Light emitting device and lighting device Pending JP2006066657A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004247660A JP2006066657A (en) 2004-08-27 2004-08-27 Light emitting device and lighting device
CNB2005100791757A CN100411207C (en) 2004-06-28 2005-06-28 Light emitting device and lighting device
US11/168,887 US20060034084A1 (en) 2004-06-28 2005-06-28 Light-emitting apparatus and illuminating apparatus
DE102005030128A DE102005030128B4 (en) 2004-06-28 2005-06-28 Light-emitting device and lighting device
TW094121703A TWI267211B (en) 2004-06-28 2005-06-28 Light-emitting apparatus and illuminating apparatus
KR1020050056282A KR100752586B1 (en) 2004-06-28 2005-06-28 Light-emitting apparatus and illuminating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247660A JP2006066657A (en) 2004-08-27 2004-08-27 Light emitting device and lighting device

Publications (2)

Publication Number Publication Date
JP2006066657A true JP2006066657A (en) 2006-03-09
JP2006066657A5 JP2006066657A5 (en) 2007-09-06

Family

ID=36112856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247660A Pending JP2006066657A (en) 2004-06-28 2004-08-27 Light emitting device and lighting device

Country Status (1)

Country Link
JP (1) JP2006066657A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273603A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
JP2007273602A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
JP2009543335A (en) * 2006-06-27 2009-12-03 クリー インコーポレイテッド Efficient emitting LED package and method for efficiently emitting light
JP2012009470A (en) * 2010-06-22 2012-01-12 Nitto Denko Corp Semiconductor light-emitting device
JP2012009469A (en) * 2010-06-22 2012-01-12 Nitto Denko Corp Composite sheet and semiconductor light-emitting device using the same
KR101134409B1 (en) * 2010-03-29 2012-04-09 엘지이노텍 주식회사 Light emitting diode package
WO2012081141A1 (en) * 2010-12-15 2012-06-21 パナソニック株式会社 Semiconductor light-emitting device
JP4962635B1 (en) * 2011-03-15 2012-06-27 オムロン株式会社 Optical semiconductor package, optical semiconductor module, and manufacturing method thereof
JP2012244085A (en) * 2011-05-24 2012-12-10 Panasonic Corp Lighting apparatus
RU2537091C2 (en) * 2009-10-29 2014-12-27 Нития Корпорейшн Light-emitting device and method of its manufacturing
WO2015016048A1 (en) * 2013-07-30 2015-02-05 堺ディスプレイプロダクト株式会社 Light source device, illumination device, and liquid crystal display device
JP2015535951A (en) * 2012-09-19 2015-12-17 ヴェンティス テクノロジーズ エルエルシー Light scattering device
JP2019165122A (en) * 2018-03-20 2019-09-26 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2021106184A (en) * 2019-12-26 2021-07-26 日亜化学工業株式会社 Light-emitting device
JP2021141174A (en) * 2020-03-04 2021-09-16 ローム株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
CN116449608A (en) * 2023-04-28 2023-07-18 惠科股份有限公司 Backlight module and display device
JP7525779B2 (en) 2020-07-14 2024-07-31 日亜化学工業株式会社 Light emitting device and lighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148512A (en) * 1999-11-18 2001-05-29 Matsushita Electric Works Ltd Illuminating light source
JP2003298117A (en) * 2002-04-05 2003-10-17 Toyoda Gosei Co Ltd Light emitting diode
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148512A (en) * 1999-11-18 2001-05-29 Matsushita Electric Works Ltd Illuminating light source
JP2003298117A (en) * 2002-04-05 2003-10-17 Toyoda Gosei Co Ltd Light emitting diode
JP2004056075A (en) * 2002-05-31 2004-02-19 Stanley Electric Co Ltd Light-emitting device and method of manufacturing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273603A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
JP2007273602A (en) * 2006-03-30 2007-10-18 Kyocera Corp Wiring board for light emitting element, and light emitting device
JP2009543335A (en) * 2006-06-27 2009-12-03 クリー インコーポレイテッド Efficient emitting LED package and method for efficiently emitting light
RU2537091C2 (en) * 2009-10-29 2014-12-27 Нития Корпорейшн Light-emitting device and method of its manufacturing
KR101134409B1 (en) * 2010-03-29 2012-04-09 엘지이노텍 주식회사 Light emitting diode package
JP2012009469A (en) * 2010-06-22 2012-01-12 Nitto Denko Corp Composite sheet and semiconductor light-emitting device using the same
JP2012009470A (en) * 2010-06-22 2012-01-12 Nitto Denko Corp Semiconductor light-emitting device
US9608178B2 (en) 2010-06-22 2017-03-28 Nitto Denko Corporation Semiconductor light emitting device
WO2012081141A1 (en) * 2010-12-15 2012-06-21 パナソニック株式会社 Semiconductor light-emitting device
JP4962635B1 (en) * 2011-03-15 2012-06-27 オムロン株式会社 Optical semiconductor package, optical semiconductor module, and manufacturing method thereof
WO2012124147A1 (en) * 2011-03-15 2012-09-20 オムロン株式会社 Optical semiconductor package, optical semiconductor module, and manufacturing method of these
US9006750B2 (en) 2011-03-15 2015-04-14 Omron Corporation Optical semiconductor package, optical semiconductor module, and manufacturing method of these
JP2012244085A (en) * 2011-05-24 2012-12-10 Panasonic Corp Lighting apparatus
JP2015535951A (en) * 2012-09-19 2015-12-17 ヴェンティス テクノロジーズ エルエルシー Light scattering device
WO2015016048A1 (en) * 2013-07-30 2015-02-05 堺ディスプレイプロダクト株式会社 Light source device, illumination device, and liquid crystal display device
JP2019165122A (en) * 2018-03-20 2019-09-26 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2021106184A (en) * 2019-12-26 2021-07-26 日亜化学工業株式会社 Light-emitting device
JP7481610B2 (en) 2019-12-26 2024-05-13 日亜化学工業株式会社 Light-emitting device
JP2021141174A (en) * 2020-03-04 2021-09-16 ローム株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7413086B2 (en) 2020-03-04 2024-01-15 ローム株式会社 semiconductor light emitting device
JP7525779B2 (en) 2020-07-14 2024-07-31 日亜化学工業株式会社 Light emitting device and lighting device
CN116449608A (en) * 2023-04-28 2023-07-18 惠科股份有限公司 Backlight module and display device

Similar Documents

Publication Publication Date Title
KR100752586B1 (en) Light-emitting apparatus and illuminating apparatus
KR100620844B1 (en) Light-emitting apparatus and illuminating apparatus
JP4789672B2 (en) Light emitting device and lighting device
JP4675906B2 (en) Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
JP3898721B2 (en) Light emitting device and lighting device
JP2006049814A (en) Light emitting device and illumination system
JP2006237264A (en) Light emitting device and lighting apparatus
JP4143043B2 (en) Light emitting device and lighting device
JP2006210627A (en) Light emitting element housing package, light emitting unit, and lighting device
JP3921474B2 (en) Light emitting device and lighting device
JP2006066657A (en) Light emitting device and lighting device
JP4938255B2 (en) Light emitting element storage package, light source, and light emitting device
JP2005210042A (en) Light emitting apparatus and illumination apparatus
JP2006093399A (en) Light-emitting device, its manufacturing method and luminaire
JP2006295230A (en) Light emitting device and lighting apparatus
JP2006100441A (en) Light emitting element housing package, light emitting device, and illumination device
JP4845370B2 (en) Light emitting device and lighting device
JP4557613B2 (en) Light emitting element storage package, light emitting device, and lighting device
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2005310911A (en) Package for housing light emitting element, light emitting device, and lighting apparatus
JP5085851B2 (en) Light emitting device and lighting device
JP4593974B2 (en) Light emitting device and lighting device
JP4637623B2 (en) Light emitting device and lighting device
JP4601404B2 (en) Light emitting device and lighting device
JP2006093612A (en) Light emitting device and illuminator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831