Nothing Special   »   [go: up one dir, main page]

JP7481610B2 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP7481610B2
JP7481610B2 JP2019235905A JP2019235905A JP7481610B2 JP 7481610 B2 JP7481610 B2 JP 7481610B2 JP 2019235905 A JP2019235905 A JP 2019235905A JP 2019235905 A JP2019235905 A JP 2019235905A JP 7481610 B2 JP7481610 B2 JP 7481610B2
Authority
JP
Japan
Prior art keywords
light
resin
emitting element
light emitting
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019235905A
Other languages
Japanese (ja)
Other versions
JP2021106184A (en
Inventor
裕一 濱田
篤史 板東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2019235905A priority Critical patent/JP7481610B2/en
Publication of JP2021106184A publication Critical patent/JP2021106184A/en
Application granted granted Critical
Publication of JP7481610B2 publication Critical patent/JP7481610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本開示は、発光装置に関する。 This disclosure relates to a light emitting device.

凹部が設けられたパッケージの凹部内に発光素子を配置し、発光素子を樹脂材料で封止した発光装置が知られている。例えば、下記の特許文献1は、基体と、基体に支持された発光素子と、発光素子を取り囲むように形成された内周面を有する反射部材とを含む発光装置を開示している。反射部材の内周面は、光反射面としての機能を有し、発光素子から出射された光を発光素子の上方に向けて反射させる。特許文献1に記載の発光装置では、反射部材の内周面を波長変換層で覆っている。 Light emitting devices are known in which a light emitting element is disposed in a recess of a package provided with a recess, and the light emitting element is sealed with a resin material. For example, the following Patent Document 1 discloses a light emitting device including a base, a light emitting element supported by the base, and a reflective member having an inner peripheral surface formed to surround the light emitting element. The inner peripheral surface of the reflective member functions as a light reflective surface, and reflects light emitted from the light emitting element toward above the light emitting element. In the light emitting device described in Patent Document 1, the inner peripheral surface of the reflective member is covered with a wavelength conversion layer.

特開2006-066657号公報JP 2006-066657 A

発光装置の分野においては、輝度向上の要求がある。 In the field of light-emitting devices, there is a demand for improved brightness.

本開示のある実施形態による発光装置は、第1リードおよび第2リードを含む複数のリード、ならびに、第1樹脂部、第2樹脂部および第3樹脂部を含む樹脂体を有する樹脂パッケージであって、前記複数のリード、前記第1樹脂部および前記第2樹脂部により形成される凹部を有する樹脂パッケージと、少なくとも1つの発光素子と、光反射性部材と、第1母材および第1蛍光体を含有する波長変換部材と、第2母材を含有する封止部材とを備え、前記第1樹脂部は、前記樹脂パッケージの外側面を構成し、前記第2樹脂部は、前記第1リードと前記第2リードとの間に位置し、前記複数のリードの上面の一部は、前記凹部の底面に位置し、前記第1リードは、前記凹部の前記底面に位置する素子載置領域を有し、前記第3樹脂部は、前記凹部の前記底面より上側の位置にあって前記素子載置領域を環状に取り囲んでおり、前記少なくとも1つの発光素子は、前記素子載置領域に配置されており、前記光反射性部材は、前記樹脂パッケージの前記凹部内において前記凹部の内側壁面と前記第3樹脂部との間に位置し、前記波長変換部材は、前記光反射性部材上に位置し、前記封止部材は、前記樹脂パッケージの前記凹部内において前記少なくとも1つの発光素子および前記波長変換部材を覆っている。 A light emitting device according to an embodiment of the present disclosure is a resin package having a plurality of leads including a first lead and a second lead, and a resin body including a first resin part, a second resin part, and a third resin part, and the light emitting device comprises a resin package having a recess formed by the plurality of leads, the first resin part, and the second resin part, at least one light emitting element, a light reflective member, a wavelength conversion member containing a first base material and a first phosphor, and a sealing member containing a second base material, the first resin part constituting an outer surface of the resin package, the second resin part being located between the first lead and the second lead, and over the plurality of leads. A portion of the surface is located on the bottom surface of the recess, the first lead has an element mounting area located on the bottom surface of the recess, the third resin part is located above the bottom surface of the recess and surrounds the element mounting area in a ring shape, the at least one light-emitting element is disposed in the element mounting area, the light-reflecting member is located between the inner wall surface of the recess and the third resin part within the recess of the resin package, the wavelength conversion member is located on the light-reflecting member, and the sealing member covers the at least one light-emitting element and the wavelength conversion member within the recess of the resin package.

本開示の実施形態によれば、輝度が向上された発光装置を提供し得る。 Embodiments of the present disclosure can provide a light-emitting device with improved brightness.

本開示の実施形態による発光装置を上面側から見たときの外観の一例を模式的に示す斜視図である。1 is a perspective view showing an example of an external appearance of a light-emitting device according to an embodiment of the present disclosure as viewed from above. 図1に示す発光装置100を下面側から見たときの外観の一例を模式的に示す斜視図である。2 is a perspective view showing an example of the external appearance of the light emitting device 100 shown in FIG. 1 when viewed from the bottom side. FIG. 発光装置100から封止部材75、波長変換部材85および光反射性部材50を取り除いた構造を樹脂パッケージ10の上面10aの法線方向から見たときの外観の一例を模式的に示す平面図である。1 is a plan view showing an example of the appearance of a structure in which a sealing member 75, a wavelength conversion member 85, and a light reflective member 50 have been removed from a light emitting device 100, as viewed in the normal direction of an upper surface 10a of a resin package 10. FIG. 図3に示すIV-IV線の位置で発光装置100を樹脂パッケージ10の上面10aに垂直に切断したときの模式的な断面を示す図である。4 is a schematic cross-sectional view of the light emitting device 100 cut perpendicularly to the upper surface 10a of the resin package 10 at the position of line IV-IV shown in FIG. 図3に示すV-V線の位置で発光装置100を樹脂パッケージ10の上面10aに垂直に切断したときの断面を示す模式的な図である。4 is a schematic diagram showing a cross section of the light emitting device 100 taken along line VV in FIG. 3, perpendicular to the upper surface 10a of the resin package 10. FIG. 図5に示す発光装置100のYZ断面のうち第1発光素子41とその周辺とを拡大して模式的に示す図である。6 is an enlarged schematic diagram showing a first light-emitting element 41 and its periphery in a YZ cross section of the light-emitting device 100 shown in FIG. 5. 第1発光素子41を覆う封止部材76中の第2蛍光体の分布の例を参考例として模式的に示す図である。11 is a diagram showing a schematic diagram of a reference example of a distribution of a second phosphor in a sealing member 76 that covers a first light-emitting element 41. FIG. 本開示の他の実施形態による発光装置の模式的な断面を示す図である。FIG. 13 is a schematic cross-sectional view of a light-emitting device according to another embodiment of the present disclosure. 本開示のさらに他の実施形態による発光装置の模式的な断面を示す図である。FIG. 13 is a schematic cross-sectional view of a light-emitting device according to still another embodiment of the present disclosure. 集合基板のうちリードフレームの一部を取り出して模式的に示す平面図である。2 is a plan view showing a schematic view of a part of a lead frame of an aggregate substrate. FIG. リードフレームの一部を取り出して示す図であり、図10に示す面とは反対側の面を模式的に示す平面図である。11 is a diagram showing a part of the lead frame, and is a plan view showing a schematic view of the surface opposite to the surface shown in FIG. 10 . FIG. 樹脂成形体付リードフレームのうち、図10に示す4つの発光構造100Lに相当する部分を取り出して模式的に示す平面図である。11 is a plan view showing a schematic view of a portion of the lead frame with a resin molding, the portion corresponding to the four light emitting structures 100L shown in FIG. 10. FIG. 素子載置領域21Rに1つの発光素子を配置する例を示す模式的な平面図である。10 is a schematic plan view showing an example in which one light emitting element is arranged in element mounting region 21R. FIG. 第3樹脂部33の頂部を覆うように光反射性部材50を形成した例を示す模式的な断面図である。13 is a schematic cross-sectional view showing an example in which a light reflective member 50 is formed so as to cover the top of a third resin portion 33. FIG. 凹部11内に位置する光反射性部材の形状の他の例を示す模式的な断面図である。5A to 5C are schematic cross-sectional views showing other examples of the shape of the light reflective member located in the recess 11. 積層構造を有する光反射性部材の例を示す模式的な断面図である。1 is a schematic cross-sectional view showing an example of a light reflective member having a laminated structure. 第1リード相当領域21Aに設けられる溝部21hの配置の他の例を説明するための模式的な平面図である。13 is a schematic plan view for explaining another example of the arrangement of grooves 21h provided in the first lead corresponding region 21A. FIG. 実施例1のサンプルに関するスペクトルの測定結果を示すグラフである。1 is a graph showing the results of spectrum measurement for the sample of Example 1. 参考例1のサンプルに関するスペクトルの測定結果を示すグラフである。1 is a graph showing the results of spectrum measurement for the sample of Reference Example 1. 実施例1のサンプルに関するスペクトルの測定結果と、参考例1のサンプルに関するスペクトルの測定結果とをあわせて1つに描いた図である。FIG. 1 is a graph showing the results of spectral measurement for the sample of Example 1 and the results of spectral measurement for the sample of Reference Example 1 in a single plot. 実施例1に関する全光束の測定結果と、参考例1に関する全光束の測定結果とをあわせて示す図である。1 is a diagram showing the measurement results of the total luminous flux for Example 1 and the measurement results of the total luminous flux for Reference Example 1. FIG.

以下、図面を参照しながら、本開示の発光装置を詳細に説明する。以下の実施形態は、例示であり、本開示による発光装置の構成は、以下の実施形態に限られない。以下の説明では、特定の方向または位置を示す用語(例えば、「上」、「下」およびそれらの用語を含む別の用語)を用いる場合がある。それらの用語は、参照した図面における相対的な方向または位置を分かりやすさのために用いているに過ぎない。図面が示す構成要素の大きさ、位置関係等は、分かりやすさのために誇張されている場合があり、実際の発光装置における構成要素の大きさおよび位置関係を反映していない場合がある。なお、過度に複雑になることを避けるために、図面において一部の要素の図示を省略することがある。 The light-emitting device of the present disclosure will be described in detail below with reference to the drawings. The following embodiments are illustrative, and the configuration of the light-emitting device according to the present disclosure is not limited to the following embodiments. In the following description, terms indicating a specific direction or position (for example, "upper", "lower", and other terms including these terms) may be used. These terms are used merely for the sake of clarity to indicate relative directions or positions in the referenced drawings. The size, positional relationship, etc. of components shown in the drawings may be exaggerated for clarity, and may not reflect the size and positional relationship of the components in an actual light-emitting device. Note that in order to avoid excessive complexity, some elements may be omitted from the drawings.

[発光装置100]
図1および図2は、本開示の実施形態による発光装置の例示的な外観を示す。図1は、本開示の実施形態による発光装置を上面側から見たときの外観の一例を模式的に示し、図2は、図1に示す発光装置を下面側から見たときの外観の一例を模式的に示す。なお、図1および図2には、説明の便宜のために、互いに垂直なX方向、Y方向およびZ方向を示す矢印があわせて図示されている。本開示の他の図面においてもこれらの方向を示す矢印を図示することがある。
[Light-emitting device 100]
1 and 2 show an exemplary appearance of a light-emitting device according to an embodiment of the present disclosure. FIG. 1 shows an example of the appearance of a light-emitting device according to an embodiment of the present disclosure when viewed from the top side, and FIG. 2 shows an example of the appearance of the light-emitting device shown in FIG. 1 when viewed from the bottom side. For convenience of explanation, arrows indicating the mutually perpendicular X-direction, Y-direction, and Z-direction are also shown in FIG. 1 and FIG. 2. Arrows indicating these directions may also be shown in other drawings of the present disclosure.

図1に示す発光装置100は、凹部11を有する樹脂パッケージ10と、少なくとも1つの発光素子と、発光素子を覆う封止部材75とを有する。樹脂パッケージ10は、発光装置100の筐体であり、第1樹脂部31、第2樹脂部32および第3樹脂部33を含む樹脂体30と、発光素子を支持する複数のリードとを有する。図1に例示する構成において、発光装置100は、2つの発光素子41および42を含んでいる。以下では、発光素子41および42をそれぞれ第1発光素子41および第2発光素子42と呼ぶ。これら第1発光素子41および第2発光素子42は、樹脂パッケージ10の凹部11内に位置する。 The light emitting device 100 shown in FIG. 1 has a resin package 10 having a recess 11, at least one light emitting element, and a sealing member 75 that covers the light emitting element. The resin package 10 is the housing of the light emitting device 100, and has a resin body 30 including a first resin part 31, a second resin part 32, and a third resin part 33, and a plurality of leads that support the light emitting element. In the configuration illustrated in FIG. 1, the light emitting device 100 includes two light emitting elements 41 and 42. Hereinafter, the light emitting elements 41 and 42 are referred to as the first light emitting element 41 and the second light emitting element 42, respectively. The first light emitting element 41 and the second light emitting element 42 are located in the recess 11 of the resin package 10.

凹部11は、封止部材75で充填されている。封止部材75の表面は、樹脂パッケージ10の上面10aとともに発光装置100の上面を構成する。封止部材75は、透光性を有し、図1では、凹部11の内部の構造を示すために封止部材75を透明な部材として描いている。本開示の他の図面においても、封止部材75を図1と同様に透明な部材として示すことがある。後述するように、封止部材75は、蛍光体の粒子を含有することがある。なお、本明細書における「透光性」の用語は、入射した光に対して拡散性を示すことをも包含するように解釈され、「透明」であることに限定されない。 The recess 11 is filled with a sealing member 75. The surface of the sealing member 75, together with the upper surface 10a of the resin package 10, constitutes the upper surface of the light emitting device 100. The sealing member 75 has light transmissivity, and in FIG. 1, the sealing member 75 is depicted as a transparent member in order to show the internal structure of the recess 11. In other drawings of this disclosure, the sealing member 75 may also be depicted as a transparent member, as in FIG. 1. As will be described later, the sealing member 75 may contain phosphor particles. Note that the term "light transmissive" in this specification is interpreted to include the ability to diffuse incident light, and is not limited to being "transparent".

図1に示すように、凹部11の内側には、波長変換部材85と、樹脂パッケージ10の樹脂体30のうちの第3樹脂部33とが配置されている。この例では、樹脂体30の第3樹脂部33は、第1発光素子41および第2発光素子42を環状に取り囲んでいる。また、この例では、波長変換部材85も、第1発光素子41および第2発光素子42を環状に取り囲むようにして凹部11の内側に形成されている。図1では、分かりやすさのために、凹部11の内側に位置する構造のうち、波長変換部材85に相当する部分に網掛けを付している。 As shown in FIG. 1, a wavelength conversion member 85 and a third resin portion 33 of the resin body 30 of the resin package 10 are disposed inside the recess 11. In this example, the third resin portion 33 of the resin body 30 surrounds the first light-emitting element 41 and the second light-emitting element 42 in a ring shape. In this example, the wavelength conversion member 85 is also formed inside the recess 11 so as to surround the first light-emitting element 41 and the second light-emitting element 42 in a ring shape. For ease of understanding, in FIG. 1, the portion of the structure located inside the recess 11 that corresponds to the wavelength conversion member 85 is shaded.

後に図面を参照しながら詳しく説明するように、波長変換部材85は、樹脂パッケージ10の凹部11の内側に設けられた光反射性部材上に位置する。本開示の典型的な実施形態において、光反射性部材は、凹部11の内側壁面と第3樹脂部33との間に位置し、第1発光素子41および第2発光素子42を取り囲むように形成される。凹部11内において光反射性部材上に波長変換部材85を配置することにより、第1発光素子41および第2発光素子42からの光の少なくとも一部を波長変換部材85に入射させることができる。また、波長変換部材85と光反射性部材との界面での反射を利用して、波長変換部材85によって波長変換された光を樹脂パッケージ10の外部に取り出すことができる。そのため、例えば、封止部材75中の蛍光体の濃度を低下させたり、封止部材75に蛍光体を含有させなくしたりすることが可能になる。その結果、光取出し効率が向上し、発光装置の輝度が増大する。また、後に実施例を参照しながら説明するように、このような構成によれば、封止部材75中の蛍光体の濃度を低下させながらも、蛍光体の濃度の低下に伴うスペクトルの変調、すなわち色味の変化を抑制可能である。 As will be described in detail later with reference to the drawings, the wavelength conversion member 85 is located on a light reflective member provided inside the recess 11 of the resin package 10. In a typical embodiment of the present disclosure, the light reflective member is located between the inner wall surface of the recess 11 and the third resin part 33, and is formed so as to surround the first light emitting element 41 and the second light emitting element 42. By disposing the wavelength conversion member 85 on the light reflective member in the recess 11, at least a part of the light from the first light emitting element 41 and the second light emitting element 42 can be made to enter the wavelength conversion member 85. In addition, by utilizing the reflection at the interface between the wavelength conversion member 85 and the light reflective member, the light whose wavelength is converted by the wavelength conversion member 85 can be taken out of the resin package 10. Therefore, for example, it is possible to reduce the concentration of the phosphor in the sealing member 75 or to eliminate the inclusion of the phosphor in the sealing member 75. As a result, the light extraction efficiency is improved and the brightness of the light emitting device is increased. Furthermore, as will be explained later with reference to examples, this configuration makes it possible to reduce the concentration of the phosphor in the sealing member 75 while suppressing the spectral modulation, i.e., the change in color, that accompanies the reduction in phosphor concentration.

以下、各構成要素を詳細に説明する。 Each component is explained in detail below.

[樹脂パッケージ10]
樹脂パッケージ10は、上面10a、および、上面10aと反対側に位置する下面10bを有する。図1および図2に例示する構成において、樹脂パッケージ10は、上面視において略四角形状の外形を有する。図1において、樹脂パッケージ10の上面10aの四角形状の一辺は、図1中に示すX方向またはY方向に一致している。
[Resin package 10]
The resin package 10 has an upper surface 10a and a lower surface 10b located opposite to the upper surface 10a. In the configuration illustrated in Figures 1 and 2, the resin package 10 has a substantially rectangular shape when viewed from above. In Figure 1, one side of the rectangular shape of the upper surface 10a of the resin package 10 coincides with the X direction or the Y direction shown in Figure 1.

樹脂パッケージ10は、4つの外側面10c、10d、10eおよび10fを含む。外側面10dは、外側面10cの反対側に位置し、外側面10fは、外側面10eの反対側に位置する。上述の第1樹脂部31は、樹脂体30のうち、樹脂パッケージ10のこれら外側面10c、10d、10eおよび10fを構成する部分である。上面視における樹脂パッケージ10の外形は、四角形状に限られず、他の形状であってもよい。なお、この例では、樹脂パッケージ10の上面10aに位置する、凹部11の開口11aは、略四角形状を有している。 The resin package 10 includes four outer surfaces 10c, 10d, 10e, and 10f. The outer surface 10d is located opposite the outer surface 10c, and the outer surface 10f is located opposite the outer surface 10e. The above-mentioned first resin part 31 is a part of the resin body 30 that constitutes these outer surfaces 10c, 10d, 10e, and 10f of the resin package 10. The outer shape of the resin package 10 in a top view is not limited to a rectangular shape, and may be other shapes. In this example, the opening 11a of the recess 11 located on the upper surface 10a of the resin package 10 has an approximately rectangular shape.

樹脂パッケージ10は、樹脂体30に加えて、樹脂体30と一体的に形成された複数のリードを含む。ここでは、樹脂パッケージ10の複数のリードは、図2に示すように、互いに間隔をあけて配置された第1リード21および第2リード22を含む。第1リード21と第2リード22との間には、樹脂体30の一部である第2樹脂部32が位置し、これにより、第1リード21および第2リード22は、互いに電気的に絶縁されている。 The resin package 10 includes a resin body 30 and a plurality of leads formed integrally with the resin body 30. Here, the plurality of leads of the resin package 10 include a first lead 21 and a second lead 22 arranged at a distance from each other, as shown in FIG. 2. A second resin portion 32, which is a part of the resin body 30, is located between the first lead 21 and the second lead 22, whereby the first lead 21 and the second lead 22 are electrically insulated from each other.

図2に示すように、第1リード21の下面21bの一部および第2リード22の下面22bの一部は、樹脂パッケージ10の樹脂体30から露出される。第1リード21の下面21bのうち樹脂パッケージ10の下面10bにおいて露出された部分、および、第2リード22の下面22bのうち樹脂パッケージ10の下面10bにおいて露出された部分は、同一平面上に位置する。本明細書における「同一平面」には、±10μm以内のずれがあるような配置関係も含まれる。第1リード21および第2リード22のうち樹脂パッケージ10の下面10bにおいて露出された部分は、第1発光素子41および第2発光素子42への給電用の端子として機能する。図2に例示するように、第1リード21の下面21bのうち樹脂体30から露出された部分の形状と、第2リード22の下面22bのうち樹脂体30から露出された部分の形状とを互いに異ならせてもよい。これらの形状を互いに異ならせることにより、樹脂体30から露出された2つの部分の形状によって第1リード21および第2リード22の極性を判断することができる。 2, a part of the lower surface 21b of the first lead 21 and a part of the lower surface 22b of the second lead 22 are exposed from the resin body 30 of the resin package 10. The part of the lower surface 21b of the first lead 21 exposed on the lower surface 10b of the resin package 10 and the part of the lower surface 22b of the second lead 22 exposed on the lower surface 10b of the resin package 10 are located on the same plane. In this specification, "the same plane" also includes an arrangement relationship in which there is a deviation of within ±10 μm. The parts of the first lead 21 and the second lead 22 exposed on the lower surface 10b of the resin package 10 function as terminals for supplying power to the first light-emitting element 41 and the second light-emitting element 42. As illustrated in FIG. 2, the shape of the part of the lower surface 21b of the first lead 21 exposed from the resin body 30 and the shape of the part of the lower surface 22b of the second lead 22 exposed from the resin body 30 may be made different from each other. By making these shapes different from each other, the polarity of the first lead 21 and the second lead 22 can be determined by the shapes of the two parts exposed from the resin body 30.

後述するように、第1リード21は、1以上の延伸部21sを有し、第2リード22も1以上の延伸部22sを有する。図1および図2に模式的に示すように、ここでは、第1リード21の一部である延伸部21sの端面が、樹脂パッケージ10の外側面10c、10eおよび10fから露出されている。また、第2リード22の一部である延伸部22sの端面が、樹脂パッケージ10の外側面10d、10eおよび10fから露出されている。 As described below, the first lead 21 has one or more extensions 21s, and the second lead 22 also has one or more extensions 22s. As shown typically in FIG. 1 and FIG. 2, here, the end face of the extension 21s, which is a part of the first lead 21, is exposed from the outer surfaces 10c, 10e, and 10f of the resin package 10. Also, the end face of the extension 22s, which is a part of the second lead 22, is exposed from the outer surfaces 10d, 10e, and 10f of the resin package 10.

図3は、発光装置100から封止部材75、波長変換部材85および光反射性部材を取り除いた構造を樹脂パッケージ10の上面10aの法線方向から見たときの外観の一例を模式的に示す。第1リード21は、下面21bと反対側に位置する上面21aを有し、第2リード22は、下面22bと反対側に位置する上面22aを有する。第1リード21の上面21aの一部および第2リード22の上面22aの一部は、凹部11の底面11bにおいて樹脂体30から露出される。すなわち、凹部11の底面11bには、第1リード21の上面21aの一部および第2リード22の上面22aの一部が位置する。なお、第1リード21の上面21aの一部および第2リード22の上面22aの一部と同様に、第2樹脂部32の上面32aも、凹部11の底面11bに位置する。凹部11の底面11bとは、凹部11の形状を規定する面のうち、第1リード21の上面21aおよび第2リード22の上面22aと同一平面にある部分を指す。 3 is a schematic diagram showing an example of the appearance of the light emitting device 100 with the sealing member 75, the wavelength conversion member 85, and the light reflective member removed, viewed from the normal direction of the upper surface 10a of the resin package 10. The first lead 21 has an upper surface 21a located opposite the lower surface 21b, and the second lead 22 has an upper surface 22a located opposite the lower surface 22b. A part of the upper surface 21a of the first lead 21 and a part of the upper surface 22a of the second lead 22 are exposed from the resin body 30 at the bottom surface 11b of the recess 11. That is, a part of the upper surface 21a of the first lead 21 and a part of the upper surface 22a of the second lead 22 are located at the bottom surface 11b of the recess 11. Note that, like a part of the upper surface 21a of the first lead 21 and a part of the upper surface 22a of the second lead 22, the upper surface 32a of the second resin part 32 is also located at the bottom surface 11b of the recess 11. The bottom surface 11b of the recess 11 refers to the portion of the surface that defines the shape of the recess 11 that is flush with the top surface 21a of the first lead 21 and the top surface 22a of the second lead 22.

この例では、第1リード21の上面21a上に第1発光素子41および第2発光素子42が配置されている。すなわち、第1リード21は、少なくとも1つの発光素子が配置される素子載置領域21Rを上面21aに有する。輝度向上の観点から、第1リード21の素子載置領域21Rの表面に、発光素子(この例では第1発光素子41および第2発光素子42)からの光を反射するめっき層が形成されていることが好ましい。なお、この例では、第2リード22の上面22a上に保護素子60が配置されている。 In this example, a first light-emitting element 41 and a second light-emitting element 42 are arranged on the upper surface 21a of the first lead 21. That is, the first lead 21 has an element mounting area 21R on the upper surface 21a where at least one light-emitting element is arranged. From the viewpoint of improving brightness, it is preferable that a plating layer that reflects light from the light-emitting element (in this example, the first light-emitting element 41 and the second light-emitting element 42) is formed on the surface of the element mounting area 21R of the first lead 21. Note that in this example, a protective element 60 is arranged on the upper surface 22a of the second lead 22.

第1リード21の素子載置領域21Rは、凹部11の底面11bに位置する。樹脂体30のうち第3樹脂部33は、凹部11の底面11bから開口11aに向けて突出し、素子載置領域21Rを取り囲む。この例では、第3樹脂部33は、第2樹脂部32上に位置する部分を含んでおり、切れ目なく環状に素子載置領域21Rを取り囲んでいる。素子載置領域21Rは、第1リード21の上面21aのうち樹脂体30から露出された領域であって、かつ、環状の第3樹脂部33の内側の領域であるといってもよい。上面視において、環状の第3樹脂部33の内縁の形状は、特に限定されず、例えば多角形状でもよく、円形状等であってもよい。 The element mounting region 21R of the first lead 21 is located on the bottom surface 11b of the recess 11. The third resin portion 33 of the resin body 30 protrudes from the bottom surface 11b of the recess 11 toward the opening 11a and surrounds the element mounting region 21R. In this example, the third resin portion 33 includes a portion located on the second resin portion 32, and surrounds the element mounting region 21R in a continuous ring shape. The element mounting region 21R is an area of the upper surface 21a of the first lead 21 that is exposed from the resin body 30, and may be the inner area of the ring-shaped third resin portion 33. In a top view, the shape of the inner edge of the ring-shaped third resin portion 33 is not particularly limited, and may be, for example, a polygonal shape or a circular shape.

図3に模式的に示すように、第1発光素子41および第2発光素子42のそれぞれは、ワイヤ43によって第1リード21および第2リード22に電気的に接続される。ここで第2リード22に注目すると、第2リード22は、ワイヤ接続領域22Rを有している。ワイヤ接続領域22Rは、第2リード22の上面22aのうち樹脂体30から露出された領域であって、発光素子との接続を有するワイヤが接続される領域である。素子載置領域21Rと同様に、ワイヤ接続領域22Rの表面にめっき層が位置してもよい。なお、図3では、分かりやすさのために、ワイヤ接続領域22Rが網掛けの付された領域として描かれているが、第2リード22の上面22aにおいて、ワイヤ接続領域22Rと、その他の領域との間に必ずしも明確な境界が存在するわけではない。 As shown in FIG. 3, the first light-emitting element 41 and the second light-emitting element 42 are electrically connected to the first lead 21 and the second lead 22 by wires 43. Focusing on the second lead 22, the second lead 22 has a wire connection region 22R. The wire connection region 22R is a region of the upper surface 22a of the second lead 22 that is exposed from the resin body 30, and is a region to which a wire having a connection to the light-emitting element is connected. As with the element mounting region 21R, a plating layer may be located on the surface of the wire connection region 22R. Note that in FIG. 3, the wire connection region 22R is depicted as a shaded region for ease of understanding, but there is not necessarily a clear boundary between the wire connection region 22R and other regions on the upper surface 22a of the second lead 22.

ワイヤ接続領域22Rは、凹部11の底面11bのうち樹脂体30の第3樹脂部33によって取り囲まれた領域の外側に位置する。この例では、発光装置100が第1発光素子41および第2発光素子42の2つの素子を含むことに対応して、アノードまたはカソードとしての第2リード22の上面22aに2つのワイヤ接続領域22Rが設けられている。ワイヤ接続領域22Rの数および配置は、発光装置に含まれる発光素子の数、複数の発光素子を直列に接続するかあるいは並列に接続するか等に応じて、第2リード22の上面22aのうち第1樹脂部31と第3樹脂部33との間に位置する領域において適宜に変更することができる。 The wire connection region 22R is located outside the region surrounded by the third resin portion 33 of the resin body 30 on the bottom surface 11b of the recess 11. In this example, two wire connection regions 22R are provided on the upper surface 22a of the second lead 22 as an anode or cathode, in response to the fact that the light emitting device 100 includes two elements, the first light emitting element 41 and the second light emitting element 42. The number and arrangement of the wire connection regions 22R can be appropriately changed in the region located between the first resin portion 31 and the third resin portion 33 on the upper surface 22a of the second lead 22 depending on the number of light emitting elements included in the light emitting device, whether multiple light emitting elements are connected in series or in parallel, etc.

樹脂体30の第1樹脂部31は、凹部11の内側壁面を構成する壁面31c、31d、31eおよび31fを有する。樹脂パッケージ10の凹部11は、複数のリードの上面と、第2樹脂部32の上面と、樹脂体30の第1樹脂部31の内側壁面とにより形成される構造であるといえる。壁面31cおよび壁面31dは、互いに対向し、壁面31eおよび壁面31fは、互いに対向する。壁面31c、31d、31eおよび31fは、それぞれ、外側面10c、10d、10eおよび10fの反対側に位置する。図3に示す例では、壁面31c、31d、31eおよび31fのうち、隣接する2つは、曲面を構成するように滑らかに接続されており、2つの壁面の間に明瞭な境界は形成されていない。 The first resin part 31 of the resin body 30 has walls 31c, 31d, 31e, and 31f that form the inner wall surface of the recess 11. The recess 11 of the resin package 10 can be said to be a structure formed by the upper surfaces of the multiple leads, the upper surface of the second resin part 32, and the inner wall surface of the first resin part 31 of the resin body 30. The wall surfaces 31c and 31d face each other, and the wall surfaces 31e and 31f face each other. The wall surfaces 31c, 31d, 31e, and 31f are located on the opposite side of the outer surfaces 10c, 10d, 10e, and 10f, respectively. In the example shown in FIG. 3, two of the wall surfaces 31c, 31d, 31e, and 31f that are adjacent to each other are smoothly connected to form a curved surface, and no clear boundary is formed between the two wall surfaces.

図3に示す例では、凹部11の開口11aは、上面視において、略四角形状を有し、4つの角部のうちの3つが丸まっている。図3に示す例では、開口11aの略四角形状の4つの角部のうちの1つが直線状に面取りされることにより、樹脂パッケージ10にマークMkが形成されている。このマークMkは、第1リード21および第2リード22の極性を示すアノードマークあるいはカソードマークとして機能する。なお、この例では、凹部11の底面11bの外縁は、上面視において、4つの角部の位置で、開口11aの外縁の角部と比較して、より半径の大きい円弧を描くように丸まっている。 In the example shown in FIG. 3, the opening 11a of the recess 11 has a generally rectangular shape in top view, with three of the four corners being rounded. In the example shown in FIG. 3, one of the four corners of the generally rectangular shape of the opening 11a is chamfered linearly to form a mark Mk on the resin package 10. This mark Mk functions as an anode mark or a cathode mark indicating the polarity of the first lead 21 and the second lead 22. Note that in this example, the outer edge of the bottom surface 11b of the recess 11 is rounded at the four corners in top view to form an arc with a larger radius than the corners of the outer edge of the opening 11a.

図4は、発光装置100を発光装置100の中央付近で樹脂パッケージ10の上面10aに垂直に切断したときの断面を模式的に示す。図4に示す断面は、図3に示すIV-IV線の位置で発光装置100を切断したときのZX面断面である。ただし、図面が過度に複雑になることを避けるために、図4ではワイヤ43等の一部の要素の図示を省略している。なお、図3は、発光装置100から封止部材75、波長変換部材85および後述の光反射性部材50を取り除いた模式的な平面図であるが、図4には、これら封止部材75、波長変換部材85および光反射性部材50も表されている。 Figure 4 shows a schematic cross section of the light emitting device 100 cut perpendicular to the top surface 10a of the resin package 10 near the center of the light emitting device 100. The cross section shown in Figure 4 is a ZX plane cross section of the light emitting device 100 cut at the position of line IV-IV shown in Figure 3. However, to avoid overly complicating the drawing, some elements such as the wire 43 are omitted from Figure 4. Note that Figure 3 is a schematic plan view of the light emitting device 100 with the sealing member 75, wavelength conversion member 85, and light reflective member 50 described below removed, but Figure 4 also shows these sealing member 75, wavelength conversion member 85, and light reflective member 50.

第3樹脂部33は、樹脂体30のうち凹部11の底面11bより上側の位置にある。図4に示すように、凹部11の底面11bのうち第1樹脂部31の内側壁面(図4においては壁面31e、31f)と第3樹脂部33との間の領域には、傾斜面50sを有する光反射性部材50が形成されている。第3樹脂部33が凹部11の底面11bから突出する形状を有することにより、光反射性部材50の形成の工程において、第3樹脂部33を、光反射性部材50の材料が素子載置領域21Rに流入することを防止するダムとして機能させ得る。すなわち、樹脂体30に第3樹脂部33を設けることにより、光反射性部材50の形成の工程において第1発光素子41、第2発光素子42の側面が光反射性部材50で覆われることを抑制できる。 The third resin part 33 is located above the bottom surface 11b of the recess 11 in the resin body 30. As shown in FIG. 4, a light reflective member 50 having an inclined surface 50s is formed in the area between the inner wall surface (wall surfaces 31e, 31f in FIG. 4) of the first resin part 31 and the third resin part 33 on the bottom surface 11b of the recess 11. Since the third resin part 33 has a shape that protrudes from the bottom surface 11b of the recess 11, the third resin part 33 can function as a dam that prevents the material of the light reflective member 50 from flowing into the element mounting region 21R in the process of forming the light reflective member 50. In other words, by providing the third resin part 33 in the resin body 30, it is possible to prevent the side surfaces of the first light emitting element 41 and the second light emitting element 42 from being covered by the light reflective member 50 in the process of forming the light reflective member 50.

第3樹脂部33の高さ、すなわち、凹部11の底面11bから第3樹脂部33の頂部までの距離は、例えば70μm以上100μm以下程度の範囲である。なお、第3樹脂部33の断面形状は、図4に例示する形状に限定されず、種々の断面形状を採用し得る。第3樹脂部33の表面が、断面視において凹部11の底面11bに対して傾斜する傾斜部を含んでいてもよい。後述するように、第3樹脂部33は、酸化チタンの粒子等の光反射性のフィラーを含有する樹脂材料から形成され得る。第3樹脂部33が、発光素子に対向する傾斜部を有することにより、傾斜部の表面を反射面として利用することが可能である。すなわち、発光素子から出射されて第3樹脂部33に入射した光を傾斜部の位置で凹部11の開口11a側に反射させることができるようになり、光の取出し効率が向上する。すなわち、より高い輝度が得られる。環状の第3樹脂部33の全周にわたって傾斜部が設けられていると、発光装置の光の取出し効率の向上に有利である。 The height of the third resin part 33, i.e., the distance from the bottom surface 11b of the recess 11 to the top of the third resin part 33, is, for example, in the range of about 70 μm to 100 μm. The cross-sectional shape of the third resin part 33 is not limited to the shape exemplified in FIG. 4, and various cross-sectional shapes can be adopted. The surface of the third resin part 33 may include an inclined portion that is inclined with respect to the bottom surface 11b of the recess 11 in a cross-sectional view. As described later, the third resin part 33 may be formed from a resin material containing a light-reflective filler such as titanium oxide particles. By having the third resin part 33 have an inclined portion facing the light-emitting element, it is possible to use the surface of the inclined portion as a reflective surface. That is, the light emitted from the light-emitting element and incident on the third resin part 33 can be reflected at the position of the inclined portion toward the opening 11a of the recess 11, improving the light extraction efficiency. That is, higher brightness is obtained. If an inclined portion is provided around the entire circumference of the annular third resin part 33, it is advantageous to improve the light extraction efficiency of the light-emitting device.

図4に例示する構成において、光反射性部材50の傾斜面50sは、凹部11の底面11b側に窪んでいる。光反射性部材50の表面は、樹脂体30の第1樹脂部31に向かって窪んだ凹面形状を有し得る。さらに本開示の実施形態では、光反射性部材50上に波長変換部材85が配置される。凹部11のうちの残りの空間は、封止部材75で充填されている。すなわち、封止部材75は、凹部11内において、素子載置領域21Rに配置された発光素子(この例では第1発光素子41および第2発光素子42)と、波長変換部材85とを覆う。 In the configuration illustrated in FIG. 4, the inclined surface 50s of the light-reflective member 50 is recessed toward the bottom surface 11b of the recess 11. The surface of the light-reflective member 50 may have a concave shape recessed toward the first resin portion 31 of the resin body 30. Furthermore, in an embodiment of the present disclosure, a wavelength conversion member 85 is disposed on the light-reflective member 50. The remaining space of the recess 11 is filled with a sealing member 75. That is, the sealing member 75 covers the light-emitting elements (in this example, the first light-emitting element 41 and the second light-emitting element 42) disposed in the element mounting region 21R and the wavelength conversion member 85 within the recess 11.

図4に例示する構成において、第1リード21の上面21aは、溝部21gを有しており、樹脂体30の材料の一部は、この溝部21g内に位置している。図4は、樹脂体30のうち第1リード21の溝部21gの内部に位置する部分が、樹脂体30の第3樹脂部33の材料と同一の材料から形成された例を示している。この例のように、第1リード21の上面21aに設けた溝部21g内に樹脂体30の材料の一部を配置し、その少なくとも一部が溝部21gと重なるように第3樹脂部33を形成することが好ましい。第3樹脂部33が溝部21gと重なる部分を含むことにより、第1リード21の上面21aに直接に第3樹脂部33を形成した場合と比較して、第1リード21から第3樹脂部33が剥離してしまうおそれを低減できる。図4に例示するように、樹脂体30のうち第1リード21の溝部21gの内部に位置する部分の幅は、典型的には、その部分の直上に位置する第3樹脂部33の幅よりも大きい。第3樹脂部33の幅と比較して樹脂体30のうち第1リード21の溝部21gの内部に位置する部分の幅を大きくすることにより、樹脂体30と第1リード21との間の界面の面積を大きくすることができるので、第1リード21からの第3樹脂部33の剥離をより効果的に抑制し得る。 In the configuration illustrated in FIG. 4, the upper surface 21a of the first lead 21 has a groove 21g, and a part of the material of the resin body 30 is located in this groove 21g. FIG. 4 shows an example in which the part of the resin body 30 located inside the groove 21g of the first lead 21 is formed from the same material as the material of the third resin part 33 of the resin body 30. As in this example, it is preferable to place a part of the material of the resin body 30 in the groove 21g provided on the upper surface 21a of the first lead 21, and form the third resin part 33 so that at least a part of it overlaps with the groove 21g. By including a part of the third resin part 33 that overlaps with the groove 21g, the risk of the third resin part 33 peeling off from the first lead 21 can be reduced compared to the case in which the third resin part 33 is formed directly on the upper surface 21a of the first lead 21. As shown in FIG. 4, the width of the portion of the resin body 30 located inside the groove 21g of the first lead 21 is typically larger than the width of the third resin portion 33 located directly above that portion. By making the width of the portion of the resin body 30 located inside the groove 21g of the first lead 21 larger than the width of the third resin portion 33, the area of the interface between the resin body 30 and the first lead 21 can be increased, and peeling of the third resin portion 33 from the first lead 21 can be more effectively suppressed.

図4に示す例では、樹脂体30は、第1リード21の上面21aの一部を覆う第4樹脂部34をさらに有している。図3および図4に示すように、第4樹脂部34は、第1樹脂部31の壁面31eと第3樹脂部33とを接続している。この例のように、第1リード21の上面21aを覆う第4樹脂部34を樹脂体30に設けることにより、樹脂体30と第1リード21との間の結合をより強固とすることができる。なお、図4に示す例において第4樹脂部34の上面は、凹部11の底面11bよりも高い位置にある。 In the example shown in FIG. 4, the resin body 30 further has a fourth resin part 34 that covers a part of the upper surface 21a of the first lead 21. As shown in FIGS. 3 and 4, the fourth resin part 34 connects the wall surface 31e of the first resin part 31 and the third resin part 33. As in this example, by providing the fourth resin part 34 that covers the upper surface 21a of the first lead 21 in the resin body 30, the bond between the resin body 30 and the first lead 21 can be made stronger. Note that in the example shown in FIG. 4, the upper surface of the fourth resin part 34 is located higher than the bottom surface 11b of the recess 11.

この例では、第1リード21の上面21aは、2つの溝部21hをさらに有している。溝部21hは、第1発光素子41、第2発光素子42と重なる位置に上面21aに設けられている。図4に模式的に示すように、第1発光素子41および第2発光素子42は、樹脂あるいは半田等の接合部材44によって第1リード21の上面21aに接合される。このとき、第1発光素子41、第2発光素子42と重なる位置に溝部21hを形成しておくことにより、接合部材44の一部を溝部21hの内部に配置させることができる。溝部21hの内部に接合部材44の一部を位置させることにより、第1リード21と接合部材44との間の接合強度を向上させる効果が得られる。 In this example, the upper surface 21a of the first lead 21 further has two grooves 21h. The grooves 21h are provided on the upper surface 21a at positions overlapping the first light-emitting element 41 and the second light-emitting element 42. As shown in FIG. 4, the first light-emitting element 41 and the second light-emitting element 42 are joined to the upper surface 21a of the first lead 21 by a joining member 44 such as resin or solder. At this time, by forming the grooves 21h at positions overlapping the first light-emitting element 41 and the second light-emitting element 42, a part of the joining member 44 can be disposed inside the grooves 21h. By positioning a part of the joining member 44 inside the grooves 21h, the effect of improving the joining strength between the first lead 21 and the joining member 44 can be obtained.

溝部21hは、素子載置領域21Rのうち発光素子と重なる領域に例えば直線状に形成される。溝部21hの形状、本数、配置等は、発光素子の数、配置等に応じて適宜に変更可能であり、この例のような2本の直線状の形態に限定されない。なお、素子載置領域21Rに配置される発光素子の数が1つである場合、発光素子が2本の溝部の間に配置されることもあり得る。 The grooves 21h are formed, for example, linearly, in the area of the element mounting region 21R that overlaps with the light-emitting elements. The shape, number, arrangement, etc. of the grooves 21h can be changed as appropriate depending on the number and arrangement, etc. of the light-emitting elements, and are not limited to the two linear shapes in this example. Note that when there is only one light-emitting element arranged in the element mounting region 21R, the light-emitting element may be arranged between two grooves.

[第1発光素子41、第2発光素子42]
第1発光素子41および第2発光素子42としては、LED等の半導体発光素子を用いることができる。図4に例示する構成において、発光装置100は、第1発光素子41および第2発光素子42の2つの発光素子を有する。しかしながら、本開示の実施形態による発光装置が有する発光素子の数は、この例に限定されず、1つであってもよいし、3つ以上であってもよい。
[First light-emitting element 41, second light-emitting element 42]
Semiconductor light-emitting elements such as LEDs can be used as the first light-emitting element 41 and the second light-emitting element 42. In the configuration illustrated in Fig. 4, the light-emitting device 100 has two light-emitting elements, the first light-emitting element 41 and the second light-emitting element 42. However, the number of light-emitting elements included in the light-emitting device according to the embodiment of the present disclosure is not limited to this example, and may be one, or three or more.

第1発光素子41および第2発光素子42は、紫外~可視域の発光が可能な窒化物半導体(InAlGa1-x-yN、0≦x、0≦y、x+y≦1)を含み得る。第1発光素子41および第2発光素子42から発せられる光のスペクトルは、同じであってもよいし、互いに異なっていてもよい。例えば、第1発光素子41が青色光を出射し、第2発光素子42が緑色光を出射してもよい。発光装置が3つの発光素子を有する場合、3つの発光素子が、それぞれ、青色光、緑色光、赤色光を出射してもよい。以下では、第1発光素子41および第2発光素子42として、青色光を出射するLEDを例示する。 The first light-emitting element 41 and the second light-emitting element 42 may include a nitride semiconductor (In x Al y Ga 1-x-y N, 0≦x, 0≦y, x+y≦1) capable of emitting light in the ultraviolet to visible range. The spectrum of light emitted from the first light-emitting element 41 and the second light-emitting element 42 may be the same or different from each other. For example, the first light-emitting element 41 may emit blue light, and the second light-emitting element 42 may emit green light. When the light-emitting device has three light-emitting elements, the three light-emitting elements may emit blue light, green light, and red light, respectively. In the following, an LED that emits blue light will be exemplified as the first light-emitting element 41 and the second light-emitting element 42.

[接合部材44]
第1発光素子41および第2発光素子42は、接合部材44によって第1リード21の素子載置領域21Rに固定される。接合部材44としては、例えば、樹脂体30の母材として用いられ得る樹脂材料を用いることができる。あるいは、錫-ビスマス系、錫-銅系、錫-銀系もしくは金-錫系などの半田、銀、金もしくはパラジウム等を含有する導電性ペーストもしくはバンプ、低融点金属等のろう材、または、異方性導電材を接合部材44として用いることができる。
[Joint member 44]
The first light emitting element 41 and the second light emitting element 42 are fixed to the element mounting region 21R of the first lead 21 by a bonding member 44. For example, a resin material that can be used as the base material of the resin body 30 can be used as the bonding member 44. Alternatively, the bonding member 44 can be made of tin-bismuth-based, tin-copper-based, tin-silver-based, or gold-tin-based solder, a conductive paste or bump containing silver, gold, palladium, or the like, a brazing material such as a low melting point metal, or an anisotropic conductive material.

[ワイヤ43]
第1発光素子41および第2発光素子42は、ワイヤ43によって第1リード21および第2リード22に電気的に接続される(図3参照)。図3に示す例では、第1発光素子41および第2発光素子42は、電気的に並列に接続されている。第1発光素子41および第2発光素子42が直列に接続されることもあり得る。
[Wire 43]
The first light-emitting element 41 and the second light-emitting element 42 are electrically connected to the first lead 21 and the second lead 22 by wires 43 (see FIG. 3 ). In the example shown in FIG. 3 , the first light-emitting element 41 and the second light-emitting element 42 are electrically connected in parallel. The first light-emitting element 41 and the second light-emitting element 42 may also be connected in series.

ワイヤ43としては、例えば、金、銅、銀、白金、アルミニウム、パラジウム等の金属またはこれらの1種以上を含む合金のワイヤを用いることができる。ワイヤ43の材料が金を含んでいると、熱抵抗等に優れ、封止部材75からの応力による破断が生じにくいワイヤが得られるので有利である。ワイヤ43の材料が銀を含んでいると、高い光反射率を示すワイヤが得られるので有利である。特に、金および銀の双方を含むワイヤを用いると有益である。ワイヤ43が金および銀の双方を含むワイヤである場合、銀の含有比率を例えば15%以上20%以下、45%以上55%以下、70%以上90%以下または95%%以上99%以下の範囲とすることができる。特に、銀の含有比率が45%以上55%以下である場合、高い光反射率を得ながら、硫化の可能性を低減し得る。ワイヤ43の断面の直径は、適宜選択でき、例えば5μm以上50μm以下とすることができる。ワイヤ43の断面の直径は、10μm以上40μm以下であるとより好ましく、15μm以上30μm以下であるとよりいっそう好ましい。 For example, the wire 43 may be a wire of a metal such as gold, copper, silver, platinum, aluminum, or palladium, or an alloy containing one or more of these metals. If the material of the wire 43 contains gold, it is advantageous to obtain a wire that has excellent heat resistance and is less likely to break due to stress from the sealing member 75. If the material of the wire 43 contains silver, it is advantageous to obtain a wire that exhibits high light reflectance. In particular, it is beneficial to use a wire that contains both gold and silver. When the wire 43 is a wire that contains both gold and silver, the silver content can be in the range of, for example, 15% to 20%, 45% to 55%, 70% to 90%, or 95% to 99%. In particular, when the silver content is 45% to 55%, it is possible to reduce the possibility of sulfurization while obtaining a high light reflectance. The diameter of the cross section of the wire 43 can be appropriately selected, and can be, for example, 5 μm to 50 μm. The cross-sectional diameter of the wire 43 is preferably 10 μm or more and 40 μm or less, and even more preferably 15 μm or more and 30 μm or less.

[保護素子60]
図3に例示するように、発光装置100は、保護素子60を有し得る。保護素子60としては、ツェナーダイオードに代表される種々の保護素子を用いることができる。保護素子60は、例えば第2リード22の上面22aに配置され、光反射性部材50内に埋め込まれる。保護素子60を覆うように光反射性部材50を形成することにより、第1発光素子41、第2発光素子42からの光が保護素子60に吸収されることを抑制することができる。
[Protection element 60]
3, the light emitting device 100 may have a protective element 60. As the protective element 60, various protective elements such as a Zener diode can be used. The protective element 60 is disposed on the upper surface 22a of the second lead 22, for example, and embedded in the light reflective member 50. By forming the light reflective member 50 so as to cover the protective element 60, it is possible to suppress absorption of light from the first light emitting element 41 and the second light emitting element 42 by the protective element 60.

保護素子60は、典型的には、発光素子(ここでは第1発光素子41および第2発光素子42)と電気的に並列に接続される。図3に示す例では、保護素子60の2つの端子のうちの一方が、ワイヤによって第1リード21の上面21aに接続されている。保護素子60の他方の端子は、例えば半田、導電性ペースト、バンプ、異方性導電材、または、低融点金属等のろう材によって第2リード22の上面22aに電気的に接続され得る。 The protective element 60 is typically electrically connected in parallel with the light-emitting elements (here, the first light-emitting element 41 and the second light-emitting element 42). In the example shown in FIG. 3, one of the two terminals of the protective element 60 is connected to the upper surface 21a of the first lead 21 by a wire. The other terminal of the protective element 60 can be electrically connected to the upper surface 22a of the second lead 22 by, for example, solder, conductive paste, a bump, an anisotropic conductive material, or a brazing material such as a low-melting point metal.

[光反射性部材50]
図1および図4から理解されるように、光反射性部材50は、樹脂パッケージ10の凹部11内において、凹部11の内側壁面(壁面31c、31d、31eおよび31f)と、樹脂体30の第3樹脂部33との間の領域に位置する。光反射性部材50は、発光素子からの光および/または外光に対する透過率が低いか、あるいは、発光素子からの光および/または外光を吸収しにくい材料を用いることができる。例えば、母材としての樹脂に光反射性のフィラーが分散された樹脂材料から光反射性部材50を形成することができる。凹部11の底面11bのうち内側壁面と第3樹脂部33との間の領域に未硬化の樹脂材料をポッティング等によって付与した後、付与された樹脂材料を硬化させることによって凹部11内に光反射性部材50を形成できる。
[Light-reflective member 50]
As can be seen from FIG. 1 and FIG. 4, the light reflective member 50 is located in the recess 11 of the resin package 10 in a region between the inner wall surface (wall surfaces 31c, 31d, 31e, and 31f) of the recess 11 and the third resin portion 33 of the resin body 30. The light reflective member 50 can be made of a material that has a low transmittance for light from the light emitting element and/or external light, or that does not easily absorb light from the light emitting element and/or external light. For example, the light reflective member 50 can be formed from a resin material in which a light reflective filler is dispersed in a resin as a base material. The light reflective member 50 can be formed in the recess 11 by applying an uncured resin material to the region between the inner wall surface of the bottom surface 11b of the recess 11 and the third resin portion 33 by potting or the like, and then curing the applied resin material.

光反射性部材50は、凹部11の内側壁面と、素子載置領域21Rを取り囲む第3樹脂部33との間に形成される。平面視において第1発光素子41および第2発光素子42を取り囲むようにして凹部11内に光反射性部材50を形成することにより、第1発光素子41、第2発光素子42から出射され、光反射性部材50に入射した光を傾斜面50sで凹部11の開口11aに向けて反射させることができる。すなわち、凹部11内に光反射性部材50を設けることにより、発光装置の光取り出し効率を向上させ得る。 The light-reflective member 50 is formed between the inner wall surface of the recess 11 and the third resin part 33 surrounding the element mounting region 21R. By forming the light-reflective member 50 in the recess 11 so as to surround the first light-emitting element 41 and the second light-emitting element 42 in a plan view, the light emitted from the first light-emitting element 41 and the second light-emitting element 42 and incident on the light-reflective member 50 can be reflected by the inclined surface 50s toward the opening 11a of the recess 11. In other words, by providing the light-reflective member 50 in the recess 11, the light extraction efficiency of the light-emitting device can be improved.

図4に模式的に示すように、光反射性部材50は、凹部11の開口11aから、少なくとも第3樹脂部33の位置にわたって形成され得る。図4に示す例のように、断面視において、光反射性部材50の傾斜面50sの上端部および下端部を結ぶ直線と、凹部11の底面11bとにより形成される傾斜角は、凹部11の内側壁面(例えば壁面31f)の上端部および下端部を結ぶ直線と、凹部11の底面11bとにより形成される傾斜角よりも小さいことが好ましい。傾斜面50sの傾斜が凹部11の内側壁面の傾斜よりもなだらかであると、光反射性部材50を発光素子のより近くにまで形成できる。発光素子の近傍にまで光反射性部材50を形成することにより、第1発光素子41、第2発光素子42から出射されて光反射性部材50に入射した光を効率的に開口11aへ向けて反射させることができる。第3樹脂部33の頂部が発光素子の上面よりも低いことが好ましい。このような構成によれば、発光素子からの光を光反射性部材50の傾斜面50sに入射させやすくなるので、発光素子から出射した光を効率的に開口11aから外部へ出射させることが可能になる。 As shown in FIG. 4, the light reflective member 50 can be formed from the opening 11a of the recess 11 to at least the position of the third resin part 33. As shown in FIG. 4, in a cross-sectional view, the inclination angle formed by the straight line connecting the upper and lower ends of the inclined surface 50s of the light reflective member 50 and the bottom surface 11b of the recess 11 is preferably smaller than the inclination angle formed by the straight line connecting the upper and lower ends of the inner wall surface (e.g., wall surface 31f) of the recess 11 and the bottom surface 11b of the recess 11. If the inclination of the inclined surface 50s is gentler than the inclination of the inner wall surface of the recess 11, the light reflective member 50 can be formed closer to the light emitting element. By forming the light reflective member 50 up to the vicinity of the light emitting element, the light emitted from the first light emitting element 41 and the second light emitting element 42 and incident on the light reflective member 50 can be efficiently reflected toward the opening 11a. It is preferable that the top of the third resin part 33 is lower than the upper surface of the light emitting element. This configuration makes it easier for light from the light-emitting element to be incident on the inclined surface 50s of the light-reflective member 50, so that the light emitted from the light-emitting element can be efficiently emitted to the outside through the opening 11a.

断面視において、光反射性部材50の表面である傾斜面50sの形状は、直線形状に限定されない。特にここでは、光反射性部材50の傾斜面50sは、樹脂体30の第1樹脂部31に向かって窪んだ凹面形状を有している。光反射性部材50の表面が凹面であることにより、入射した光を凹部11の底面11bとは反対側に向けて反射させやすくなる。また、光反射性部材50の表面を凹面とすることにより、光反射性部材50上への波長変換部材85の形成が容易になる。 In a cross-sectional view, the shape of the inclined surface 50s, which is the surface of the light-reflective member 50, is not limited to a linear shape. In particular, here, the inclined surface 50s of the light-reflective member 50 has a concave shape recessed toward the first resin part 31 of the resin body 30. By having a concave surface of the light-reflective member 50, it becomes easier to reflect incident light toward the side opposite the bottom surface 11b of the recess 11. In addition, by making the surface of the light-reflective member 50 a concave surface, it becomes easier to form the wavelength conversion member 85 on the light-reflective member 50.

光反射性部材50の母材としては、熱硬化性樹脂、熱可塑性樹脂等を用いることができる。母材の具体例は、フェノール樹脂、エポキシ樹脂、BTレジン、ポリフタルアミド(PPA)、シリコーン樹脂等である。母材に分散させる光反射性のフィラーとしては、酸化チタン、酸化亜鉛、酸化ケイ素、酸化ジルコニウム、酸化アルミニウムまたは窒化アルミニウム等の粒子を用いることができる。光反射性部材50が白色を有すると有益である。母材としての樹脂に、発光素子からの光を吸収しにくくかつ母材との間の屈折率差の大きい反射部材を分散させてもよい。 The base material of the light-reflective member 50 may be a thermosetting resin, a thermoplastic resin, or the like. Specific examples of the base material include phenolic resin, epoxy resin, BT resin, polyphthalamide (PPA), silicone resin, and the like. The light-reflective filler dispersed in the base material may be particles of titanium oxide, zinc oxide, silicon oxide, zirconium oxide, aluminum oxide, aluminum nitride, or the like. It is beneficial for the light-reflective member 50 to have a white color. A reflective material that does not easily absorb light from the light-emitting element and has a large refractive index difference with the base material may be dispersed in the resin as the base material.

[波長変換部材85]
光反射性部材50上に位置する波長変換部材85は、樹脂等の母材(第1母材)と、母材中に分散された蛍光体の粒子とを含有し、入射した光の一部を吸収して、入射した光とは異なる波長の光を発する。光反射性部材50上に波長変換部材85を形成することにより、第1発光素子41または第2発光素子42から出射された光と、波長変換部材85から発せられた光とにより、例えば白色光を取り出すことが可能になる。波長変換部材85の母材としては、シリコーン樹脂、変性シリコーン樹脂、エポキシ樹脂、変性エポキシ樹脂、ユリア樹脂、フェノール樹脂、アクリル樹脂、ウレタン樹脂もしくはフッ素樹脂、または、これらの樹脂の2種以上を含む樹脂から選択された材料を用いることができる。
[Wavelength conversion member 85]
The wavelength conversion member 85 located on the light reflective member 50 contains a base material (first base material) such as resin and phosphor particles dispersed in the base material, absorbs a part of the incident light, and emits light of a wavelength different from the incident light. By forming the wavelength conversion member 85 on the light reflective member 50, it becomes possible to extract, for example, white light by the light emitted from the first light emitting element 41 or the second light emitting element 42 and the light emitted from the wavelength conversion member 85. As the base material of the wavelength conversion member 85, a material selected from silicone resin, modified silicone resin, epoxy resin, modified epoxy resin, urea resin, phenol resin, acrylic resin, urethane resin, or fluororesin, or a resin containing two or more of these resins can be used.

波長変換部材85は、第1蛍光体を含む1種以上の蛍光体を含有する。波長変換部材85の母材に分散させる蛍光体には、公知の材料を適用することができる。第1蛍光体としては、例えば、525nm超535nm以下の帯域に発光ピーク波長を有する蛍光体を適用することができる。525nm超535nm以下の帯域に発光ピーク波長を有する蛍光体の例は、G-YAGと呼ばれるYAG系蛍光体(例えばY(Al,Ga)12:Ce )である。YAG系蛍光体は、青色光を黄色光~黄緑色光に変換する。第1蛍光体として、KSF系蛍光体等のフッ化物系蛍光体、CASN等の窒化物系蛍光体、βサイアロン蛍光体等を適用してもよい。KSF系蛍光体およびCASNは、青色光を赤色光に変換する蛍光体の例であり、βサイアロン蛍光体は、青色光を緑色光に変換する蛍光体の例である。第1蛍光体は、量子ドット蛍光体であってもよい。 The wavelength conversion member 85 contains one or more phosphors including the first phosphor. The phosphor dispersed in the base material of the wavelength conversion member 85 can be a known material. For example, a phosphor having an emission peak wavelength in a band of more than 525 nm and not more than 535 nm can be applied as the first phosphor. An example of a phosphor having an emission peak wavelength in a band of more than 525 nm and not more than 535 nm is a YAG phosphor called G-YAG (for example, Y 3 (Al, Ga) 5 O 12 : Ce 3 + ). The YAG phosphor converts blue light into yellow light to yellow-green light. As the first phosphor, a fluoride phosphor such as a KSF phosphor, a nitride phosphor such as CASN, a β-sialon phosphor, or the like may be applied. The KSF phosphor and CASN are examples of phosphors that convert blue light into red light, and the β-sialon phosphor is an example of a phosphor that converts blue light into green light. The first phosphor may be a quantum dot phosphor.

図1に例示するように、波長変換部材85は、平面視において、素子載置領域21Rに配置された1以上の発光素子を連続的に取り囲む形状を有し得る。平面視において発光素子を連続的に取り囲むように凹部11内に波長変換部材85を形成することにより、凹部11内において波長変換部材85が点在するような配置と比較して、発光面である封止部材75の上面における色ムラをより効果的に抑制できる。 1, the wavelength conversion member 85 may have a shape that, in plan view, continuously surrounds one or more light-emitting elements arranged in the element mounting region 21R. By forming the wavelength conversion member 85 in the recess 11 so as to continuously surround the light-emitting elements in plan view, color unevenness on the upper surface of the sealing member 75, which is the light-emitting surface, can be more effectively suppressed compared to an arrangement in which the wavelength conversion member 85 is dotted in the recess 11.

図4に例示するように、本開示の典型的な実施形態において、波長変換部材85は、第1リード21から離れている。また、図4には表れていないが、波長変換部材85は、第2リード22からも離れている。換言すれば、波長変換部材85は、第1リード21の上面21aと接している部分を有しておらず、また、第2リード22の上面22aと接している部分も有しない。図4に示す例では、波長変換部材85は、凹部11の底面11bのうち樹脂体30の第3樹脂部33で取り囲まれた領域の内側には延びていない。したがって、図4に例示する構成において、波長変換部材85は、第1発光素子41および第2発光素子42のいずれからも離れている。このような構成によれば、素子載置領域21Rに配置された発光素子が波長変換部材85によって覆われない。そのため、発光素子からの光のうち波長変換部材85によって反射された光が発光素子に吸収されることを抑制できる。これにより、発光装置の光取出し効率の低下を抑制することができる。 4, in a typical embodiment of the present disclosure, the wavelength conversion member 85 is separated from the first lead 21. Although not shown in FIG. 4, the wavelength conversion member 85 is also separated from the second lead 22. In other words, the wavelength conversion member 85 does not have a portion in contact with the upper surface 21a of the first lead 21, and does not have a portion in contact with the upper surface 22a of the second lead 22. In the example shown in FIG. 4, the wavelength conversion member 85 does not extend inside the area surrounded by the third resin part 33 of the resin body 30 on the bottom surface 11b of the recess 11. Therefore, in the configuration shown in FIG. 4, the wavelength conversion member 85 is separated from both the first light-emitting element 41 and the second light-emitting element 42. With this configuration, the light-emitting element arranged in the element mounting region 21R is not covered by the wavelength conversion member 85. Therefore, it is possible to suppress the light reflected by the wavelength conversion member 85 from being absorbed by the light-emitting element. This makes it possible to suppress a decrease in the light extraction efficiency of the light-emitting device.

[封止部材75]
封止部材75は、樹脂等の第2母材を少なくとも含有し、凹部11内において第1発光素子41、第2発光素子42、樹脂体30の第3樹脂部33、波長変換部材85およびワイヤ43等を覆っている。封止部材75は、第1発光素子41および第2発光素子42を被覆することにより、これらを外力、埃、水分等から保護する機能を有する。
[Sealing member 75]
The sealing member 75 contains at least a second base material such as resin, and covers the first light-emitting element 41, the second light-emitting element 42, the third resin part 33 of the resin body 30, the wavelength conversion member 85, the wire 43, and the like within the recess 11. The sealing member 75 covers the first light-emitting element 41 and the second light-emitting element 42, thereby having the function of protecting them from external forces, dust, moisture, and the like.

第2母材としては、波長変換部材85の第1母材と同様の材料を適用できる。発光素子から出射される光に対して60%以上の透過率を有する材料を第2母材に選択すると有益であり、発光素子から出射される光に対する第2母材の透過率が90%以上であるとより有益である。第2母材の具体例は、シリコーン樹脂、エポキシ樹脂、アクリル樹脂またはこれらの1つ以上を含む樹脂材料等である。封止部材75は、単層であってもよいし、複数層から構成されてもよい。第2母材に、酸化チタン、酸化ケイ素、酸化ジルコニウム、酸化アルミニウム等の粒子を分散させてもよい。 The second base material may be the same material as the first base material of the wavelength conversion member 85. It is advantageous to select a material having a transmittance of 60% or more for the light emitted from the light-emitting element as the second base material, and it is more advantageous if the second base material has a transmittance of 90% or more for the light emitted from the light-emitting element. Specific examples of the second base material include silicone resin, epoxy resin, acrylic resin, or a resin material containing one or more of these. The sealing member 75 may be a single layer or may be composed of multiple layers. Particles of titanium oxide, silicon oxide, zirconium oxide, aluminum oxide, etc. may be dispersed in the second base material.

素子載置領域21R内の発光素子から出射されて凹部11の内側壁面に向かって進行する光は、光反射性部材50の傾斜面50sの位置で凹部11の開口11aに向けて反射される。換言すれば、波長変換部材85と光反射性部材50との間の界面は、反射面としての機能を有する。封止部材75と波長変換部材85との間の界面での全反射を低減させて、波長変換部材85と光反射性部材50との間の界面に効果的に光を到達させる観点からは、波長変換部材85中の第1母材の屈折率と、封止部材75中の第2母材の屈折率との間に実質的な差異が無いと有利である。より具体的には、波長変換部材85中の第1母材の屈折率をn、封止部材75中の第2母材の屈折率をnとしたとき、|n-n|≦0.05の関係が成立することが好ましい。封止部材75と波長変換部材85との間の界面での全反射が低減される結果、素子載置領域21R内の発光素子からの光を波長変換部材85に入射させやすくなる。これにより、発光素子からの光によって励起されることにより波長変換部材85から発せられた光を発光装置100の外部に取り出しやすくなる。第1母材および第2母材として、ともにフェニルシリコーン樹脂(少なくとも1つのフェニル基を分子中に有する有機ポリシロキサンを含有する樹脂)を選択することにより、|n-n|≦0.05の関係を満足させることができる。 The light emitted from the light emitting element in the element mounting region 21R and traveling toward the inner wall surface of the recess 11 is reflected toward the opening 11a of the recess 11 at the position of the inclined surface 50s of the light reflective member 50. In other words, the interface between the wavelength conversion member 85 and the light reflective member 50 functions as a reflecting surface. From the viewpoint of reducing the total reflection at the interface between the sealing member 75 and the wavelength conversion member 85 and effectively allowing the light to reach the interface between the wavelength conversion member 85 and the light reflective member 50, it is advantageous that there is no substantial difference between the refractive index of the first base material in the wavelength conversion member 85 and the refractive index of the second base material in the sealing member 75. More specifically, when the refractive index of the first base material in the wavelength conversion member 85 is n 1 and the refractive index of the second base material in the sealing member 75 is n 2 , it is preferable that the relationship |n 1 -n 2 |≦0.05 is established. As a result of reducing total reflection at the interface between the sealing member 75 and the wavelength conversion member 85, it becomes easier for light from the light-emitting element in the element mounting region 21R to be incident on the wavelength conversion member 85. This makes it easier to extract light emitted from the wavelength conversion member 85 by being excited by light from the light-emitting element to the outside of the light-emitting device 100. By selecting a phenyl silicone resin (a resin containing an organic polysiloxane having at least one phenyl group in the molecule) as both the first base material and the second base material, it is possible to satisfy the relationship |n 1 -n 2 |≦0.05.

ここで、本明細書における「屈折率」は、素子載置領域21Rに配置された発光素子の発光ピーク波長における屈折率を意味する。図4に示す例のように、素子載置領域21Rに複数の発光素子が配置される場合、本明細書における「屈折率」は、それら発光素子のうちのいずれか1つの発光ピーク波長における屈折率として解釈される。 Here, the "refractive index" in this specification means the refractive index at the emission peak wavelength of the light-emitting element placed in the element mounting region 21R. When multiple light-emitting elements are placed in the element mounting region 21R, as in the example shown in Figure 4, the "refractive index" in this specification is interpreted as the refractive index at the emission peak wavelength of any one of those light-emitting elements.

上述したように、波長変換部材85と光反射性部材50との間の界面は、反射面としての機能を有する。したがって、光反射性部材50中の母材(第4母材)の屈折率が、波長変換部材85中の第1母材の屈折率よりも小さいと有益である。光反射性部材50中の母材が波長変換部材85中の第1母材よりも小さい屈折率を有することにより、波長変換部材85と光反射性部材50との間の界面における全反射を利用して発光装置100の光取出し効率を向上させ得る。例えば、波長変換部材85中の第1母材としてフェニルシリコーン樹脂を選択し、光反射性部材50中の母材として、ジメチルシリコーン樹脂(2つのメチル基がケイ素原子に結合したDユニットを有する有機ポリシロキサンを含有する樹脂)を選択することにより、発光装置100の輝度向上の効果が期待できる。 As described above, the interface between the wavelength conversion member 85 and the light reflecting member 50 functions as a reflective surface. Therefore, it is beneficial if the refractive index of the base material (fourth base material) in the light reflecting member 50 is smaller than the refractive index of the first base material in the wavelength conversion member 85. By having the base material in the light reflecting member 50 have a smaller refractive index than the first base material in the wavelength conversion member 85, the light extraction efficiency of the light emitting device 100 can be improved by utilizing total reflection at the interface between the wavelength conversion member 85 and the light reflecting member 50. For example, by selecting a phenyl silicone resin as the first base material in the wavelength conversion member 85 and a dimethyl silicone resin (a resin containing an organic polysiloxane having a D unit in which two methyl groups are bonded to a silicon atom) as the base material in the light reflecting member 50, the effect of improving the brightness of the light emitting device 100 can be expected.

封止部材75は、第1発光素子41および/または第2発光素子42からの光の波長を変換する1種以上の蛍光体を含有していてもよい。例えば、封止部材75は、第2母材に加えて第2蛍光体を含有し得る。第2蛍光体として、波長変換部材85中の第1蛍光体よりも長波長側に発光ピーク波長が位置する蛍光体を選択することが有益である。波長変換部材85が第1蛍光体として例えばG-YAGを含有する場合、封止部材75中に分散させる第2蛍光体として、515nm以上525nm以下の帯域に発光ピーク波長を有する蛍光体を用いることができる。このような蛍光体の例は、LAG系蛍光体(例えばLuAl12:Ce)である。 The sealing member 75 may contain one or more phosphors that convert the wavelength of light from the first light-emitting element 41 and/or the second light-emitting element 42. For example, the sealing member 75 may contain a second phosphor in addition to the second base material. It is beneficial to select a phosphor whose emission peak wavelength is located on the longer wavelength side than the first phosphor in the wavelength conversion member 85 as the second phosphor. When the wavelength conversion member 85 contains, for example, G-YAG as the first phosphor, a phosphor having an emission peak wavelength in the band of 515 nm or more and 525 nm or less can be used as the second phosphor dispersed in the sealing member 75. An example of such a phosphor is a LAG-based phosphor (for example, Lu 3 Al 5 O 12 :Ce 3 ).

封止部材75中の第2蛍光体の発光ピーク波長が、封止部材75と比較して発光素子からより遠くに位置する波長変換部材85中の第1蛍光体の発光ピーク波長よりも長いことにより、第2蛍光体からの光による波長変換部材85中の第1蛍光体の励起を回避し得る。換言すれば、第2蛍光体からの光が第1蛍光体に吸収されることによる、光取出し効率の低下を回避し得る。 The emission peak wavelength of the second phosphor in the sealing member 75 is longer than the emission peak wavelength of the first phosphor in the wavelength conversion member 85, which is located farther from the light emitting element than the sealing member 75, so that excitation of the first phosphor in the wavelength conversion member 85 by light from the second phosphor can be avoided. In other words, a decrease in light extraction efficiency due to absorption of light from the second phosphor by the first phosphor can be avoided.

封止部材75は、第2蛍光体に加えてさらに別種の蛍光体を含有していてもよい。例えば、波長変換部材85が第1蛍光体としてG-YAGを含有し、封止部材75が第2蛍光体としてのG-YAGと、付加的にYAGとを含有していてもよい。ただし、封止部材75中の全体としての蛍光体の濃度は、波長変換部材85中に含まれる全ての蛍光体(これは第1蛍光体を含む。)の濃度よりも低い。例えば、波長変換部材85が第1蛍光体としてG-YAGを含有し、封止部材75がYAGと、第2蛍光体としてのG-YAGとを含有する場合、封止部材75中の、YAGおよびG-YAG全体としての濃度は、波長変換部材85中のG-YAGの濃度よりも低くされる。 The sealing member 75 may contain another type of phosphor in addition to the second phosphor. For example, the wavelength conversion member 85 may contain G-YAG as the first phosphor, and the sealing member 75 may contain G-YAG as the second phosphor and additionally YAG. However, the overall concentration of the phosphor in the sealing member 75 is lower than the concentration of all phosphors (including the first phosphor) contained in the wavelength conversion member 85. For example, if the wavelength conversion member 85 contains G-YAG as the first phosphor and the sealing member 75 contains YAG and G-YAG as the second phosphor, the overall concentration of YAG and G-YAG in the sealing member 75 is lower than the concentration of G-YAG in the wavelength conversion member 85.

発光装置を構成する部材中の蛍光体の濃度は、発光装置を発光装置の中央付近で上面に垂直に切断したときの断面(例えば図3中のIV-IV断面)のSEM画像から算出できる。例えば封止部材75中の蛍光体の濃度であれば、まず、発光装置の全体が含まれるようにして発光装置の断面に関する画像を取得する。そして得られた画像中の封止部材75全体に対して封止部材75中の蛍光体が占める面積の割合を、封止部材75中の蛍光体の濃度とすることができる。波長変換部材85中の蛍光体の濃度についても同様に、発光装置の断面に関する画像中に表れた波長変換部材85中の蛍光体の面積を求め、波長変換部材85全体の面積に対する割合を計算すればよい。なお、蛍光体の濃度を算出するための断面は、発光装置の上面の矩形状の一辺と平行、垂直のいずれであってもよい。あるいは、発光装置の上面の矩形状の対角線に沿って切断したときの断面画像に基づいて部材中の蛍光体の濃度を算出してもよい。 The concentration of the phosphor in the member constituting the light-emitting device can be calculated from an SEM image of a cross section (for example, cross section IV-IV in FIG. 3) when the light-emitting device is cut perpendicularly to the upper surface near the center of the light-emitting device. For example, in the case of the concentration of the phosphor in the sealing member 75, first, an image of the cross section of the light-emitting device is obtained so that the entire light-emitting device is included. Then, the ratio of the area occupied by the phosphor in the sealing member 75 to the entire sealing member 75 in the obtained image can be regarded as the concentration of the phosphor in the sealing member 75. Similarly, for the concentration of the phosphor in the wavelength conversion member 85, the area of the phosphor in the wavelength conversion member 85 shown in the image of the cross section of the light-emitting device is obtained, and the ratio to the area of the entire wavelength conversion member 85 can be calculated. The cross section for calculating the concentration of the phosphor may be either parallel or perpendicular to one side of the rectangular upper surface of the light-emitting device. Alternatively, the concentration of the phosphor in the member may be calculated based on a cross-sectional image when the light-emitting device is cut along the diagonal of the rectangular upper surface.

後に実施例を参照しながら説明するように、本発明者の検討によれば、波長変換部材85と比較して発光素子のより近くに位置する部分を有する封止部材75中の蛍光体の濃度を低下させることにより、光取出し効率を向上させ得る。封止部材75中の、第2蛍光体を含む全ての蛍光体の濃度は、好ましくは、波長変換部材85中の、第1蛍光体を含む全ての蛍光体の濃度の0.1倍以上0.5倍未満である。封止部材75中の蛍光体の全体の濃度が、波長変換部材85中の蛍光体の濃度の0.1倍以上であると、演色性向上の観点から有利である。 As will be described later with reference to the examples, according to the inventor's study, the light extraction efficiency can be improved by reducing the concentration of the phosphor in the sealing member 75, which has a portion located closer to the light emitting element compared to the wavelength conversion member 85. The concentration of all phosphors, including the second phosphor, in the sealing member 75 is preferably 0.1 to less than 0.5 times the concentration of all phosphors, including the first phosphor, in the wavelength conversion member 85. It is advantageous from the viewpoint of improving color rendering if the total concentration of phosphors in the sealing member 75 is 0.1 times or more the concentration of phosphors in the wavelength conversion member 85.

後述するように、封止部材75は、波長変換部材85の形成後、ポッティング等によって凹部11を樹脂等の第2母材と少なくとも第2蛍光体とを含有する材料で充填後、充填された材料を硬化することにより形成できる。このとき、凹部11内に充填された材料の硬化までに、第2母材に分散された第2蛍光体が沈降することがあり得る。 As described later, the sealing member 75 can be formed by filling the recess 11 with a material containing a second base material such as a resin and at least a second phosphor by potting or the like after the wavelength conversion member 85 is formed, and then hardening the filled material. At this time, the second phosphor dispersed in the second base material may settle before the material filled in the recess 11 hardens.

図5は、図3に示すV-V線の位置で発光装置100を樹脂パッケージ10の上面10aに垂直に切断したときの断面を模式的に示す。図3は、発光装置100から封止部材75、波長変換部材85および光反射性部材50を取り除いた模式的な平面図である。図4と同様に、図5においても、封止部材75、波長変換部材85および光反射性部材50を省略せずにこれらの部材を図示している。図6は、図5に示す発光装置100のYZ断面のうち第1発光素子41とその周辺とを拡大して模式的に示す。なお、これらの図では、図面が過度に複雑になることを避けるために、一部の要素の図示が省略されている。 Figure 5 is a schematic cross-section of the light-emitting device 100 cut perpendicularly to the upper surface 10a of the resin package 10 at the position of the V-V line shown in Figure 3. Figure 3 is a schematic plan view of the light-emitting device 100 with the sealing member 75, the wavelength conversion member 85, and the light-reflective member 50 removed. As in Figure 4, Figure 5 also illustrates the sealing member 75, the wavelength conversion member 85, and the light-reflective member 50 without omitting these members. Figure 6 is a schematic enlarged view of the first light-emitting element 41 and its surroundings in the YZ cross-section of the light-emitting device 100 shown in Figure 5. Note that in these figures, some elements are omitted to avoid overly complicating the drawings.

図5および図6に例示する構成において、第1発光素子41は、下面411bを有する支持基板411と、1以上の半導体層を含む半導体積層構造412とを有する。支持基板411は、例えばサファイア基板または窒化ガリウム基板である。図5および図6に示す例では、第1発光素子41は、支持基板411の下面411bが第1リード21の上面21aと対向するようにして、接合部材44によって第1リード21に接合されている。この例では、半導体積層構造412は、支持基板411の、下面411bとは反対側の主面上に形成されている。すなわち、ここでは、半導体積層構造412は、支持基板411に関して第1リード21とは反対側に位置している。 5 and 6, the first light-emitting element 41 has a support substrate 411 having a lower surface 411b and a semiconductor laminate structure 412 including one or more semiconductor layers. The support substrate 411 is, for example, a sapphire substrate or a gallium nitride substrate. In the example shown in FIG. 5 and FIG. 6, the first light-emitting element 41 is bonded to the first lead 21 by a bonding member 44 such that the lower surface 411b of the support substrate 411 faces the upper surface 21a of the first lead 21. In this example, the semiconductor laminate structure 412 is formed on the main surface of the support substrate 411 opposite the lower surface 411b. That is, here, the semiconductor laminate structure 412 is located on the opposite side of the support substrate 411 to the first lead 21.

半導体積層構造412は、活性層と、活性層を挟むn型半導体層およびp型半導体層とを含む。図5および図6に示す例では、半導体積層構造412上にp側およびn側の電極414が設けられている。この例では、支持基板411の下面411bは、第1発光素子41の下面に一致しており、したがって、電極414は、第1発光素子41の下面とは反対側の上面41a側に位置するといえる。 The semiconductor laminate structure 412 includes an active layer, and an n-type semiconductor layer and a p-type semiconductor layer that sandwich the active layer. In the example shown in Figures 5 and 6, p-side and n-side electrodes 414 are provided on the semiconductor laminate structure 412. In this example, the lower surface 411b of the support substrate 411 coincides with the lower surface of the first light-emitting element 41, and therefore the electrodes 414 can be said to be located on the upper surface 41a side opposite the lower surface of the first light-emitting element 41.

上述したように、封止部材75の形成の工程において、凹部11内に充填された材料の硬化までに、第2母材に分散された第2蛍光体が沈降することがあり得る。したがって、封止部材75中の第2蛍光体の濃度は、図のZ方向に沿って凹部11の底面11bから開口11aに向かって低下するような勾配を有し得る。図6中、網掛けの丸75pは、封止部材75中の第2蛍光体を模式的に表している。図6に示す例では、素子載置領域21Rに配置される発光素子、例えば第1発光素子41の上面41aの高さにおける第2蛍光体の濃度は、第1発光素子41の下面の高さ(ここでは支持基板411の下面411bの高さに一致)における第2蛍光体の濃度よりも小さい。換言すれば、図6に例示する構成において、封止部材75のうち断面視において第1発光素子41と第3樹脂部33との間に位置する部分における第2蛍光体の濃度は、第1リード21の上面21aの位置から第1発光素子41の上面41aの位置に向かって低下している。 As described above, in the process of forming the sealing member 75, the second phosphor dispersed in the second base material may settle before the material filled in the recess 11 hardens. Therefore, the concentration of the second phosphor in the sealing member 75 may have a gradient that decreases from the bottom surface 11b of the recess 11 toward the opening 11a along the Z direction in the figure. In FIG. 6, the shaded circle 75p typically represents the second phosphor in the sealing member 75. In the example shown in FIG. 6, the concentration of the second phosphor at the height of the light-emitting element arranged in the element mounting region 21R, for example, the upper surface 41a of the first light-emitting element 41, is smaller than the concentration of the second phosphor at the height of the lower surface of the first light-emitting element 41 (here, the height of the lower surface 411b of the support substrate 411). In other words, in the configuration illustrated in FIG. 6, the concentration of the second phosphor in the portion of the sealing member 75 that is located between the first light-emitting element 41 and the third resin portion 33 in a cross-sectional view decreases from the position of the upper surface 21a of the first lead 21 toward the position of the upper surface 41a of the first light-emitting element 41.

図7は、封止部材中の第2蛍光体の分布の他の例を参考例として模式的に示す。図7は、光反射性部材50上への波長変換部材85への形成が省略された構成を有する発光装置における封止部材中の第2蛍光体の分布の一例を模式的に示している。図6を参照しながら説明した例と比較して、図7に示す例では、第1発光素子41を覆う封止部材76中に、より多くの第2蛍光体76pが分散されている。 Figure 7 shows a schematic diagram of another example of the distribution of the second phosphor in the sealing member as a reference example. Figure 7 shows a schematic diagram of an example of the distribution of the second phosphor in the sealing member in a light-emitting device having a configuration in which the formation of the wavelength conversion member 85 on the light-reflective member 50 is omitted. Compared to the example described with reference to Figure 6, in the example shown in Figure 7, more second phosphor 76p is dispersed in the sealing member 76 that covers the first light-emitting element 41.

上述したように、第2蛍光体の沈降が生じた場合、封止部材のうち凹部11の底面11b付近に位置する部分の第2蛍光体の濃度が高くなりやすい。図7に示す例では、より多くの量の第2蛍光体76pが封止部材76中に含まれる結果、第1発光素子41の上面と下面との間に位置する側面を覆うように第2蛍光体76pが凹部11の底面11b付近に位置している。この例のように発光素子の側面付近に多くの蛍光体が存在すると、発光素子の側面から出射された光の一部が蛍光体によって反射されて発光素子に吸収されることがある。すなわち、発光素子からの光が、発光素子の側面付近に位置する蛍光体によって反射されることを抑制することにより、発光装置の光取り出し効率を向上できる余地がある。 As described above, when settling of the second phosphor occurs, the concentration of the second phosphor in the portion of the sealing member located near the bottom surface 11b of the recess 11 tends to be high. In the example shown in FIG. 7, a larger amount of the second phosphor 76p is contained in the sealing member 76, and as a result, the second phosphor 76p is located near the bottom surface 11b of the recess 11 so as to cover the side surface located between the upper and lower surfaces of the first light-emitting element 41. If a large amount of phosphor is present near the side surface of the light-emitting element as in this example, some of the light emitted from the side surface of the light-emitting element may be reflected by the phosphor and absorbed by the light-emitting element. In other words, there is room to improve the light extraction efficiency of the light-emitting device by suppressing the light from the light-emitting element from being reflected by the phosphor located near the side surface of the light-emitting element.

これに対し、本開示の実施形態では、発光素子を取り囲むようにして凹部11内に形成される光反射性部材50上に、波長変換部材85を配置している。そのため、光反射性部材50上に波長変換部材85を有しない構成と比較して、封止部材75中の蛍光体の濃度を低下させ得る。光反射性部材50上に波長変換部材85を有しない構成と比較して封止部材75中の蛍光体の濃度を低下させることが可能であるので、発光素子の側面付近への蛍光体の堆積を抑制できる。これにより、発光素子の特に側面から出射された光が封止部材75中の蛍光体によって反射されて発光素子に吸収されることを抑制し得る。すなわち、より多くの光を光反射性部材50の傾斜面50sに到達させることが可能になり、発光素子の側面付近への蛍光体の堆積に起因する光取出し効率の低下を抑制し得る。なお、封止部材75中の蛍光体に沈降が生じていない場合でも、蛍光体の濃度の低下により、封止部材75中の蛍光体によって反射されて発光素子に吸収されてしまう光を減少させ得る。すなわち、封止部材75中の蛍光体に沈降が生じていない場合であっても、封止部材75中の蛍光体の濃度の低下により、発光装置の輝度向上の効果が期待できる。また、反射面として機能する光反射性部材50の表面を選択的に覆うようにして凹部11内に波長変換部材85を配置することにより、封止部材75中の蛍光体の濃度を低下させながらも、封止部材75中の蛍光体の濃度の低下に伴う、出射光の色味の変化を抑制することが可能になる。 In contrast, in the embodiment of the present disclosure, the wavelength conversion member 85 is disposed on the light reflective member 50 formed in the recess 11 so as to surround the light emitting element. Therefore, the concentration of the phosphor in the sealing member 75 can be reduced compared to a configuration in which the wavelength conversion member 85 is not provided on the light reflective member 50. Since the concentration of the phosphor in the sealing member 75 can be reduced compared to a configuration in which the wavelength conversion member 85 is not provided on the light reflective member 50, the accumulation of the phosphor near the side surface of the light emitting element can be suppressed. This can suppress the light emitted from the side surface of the light emitting element, in particular, being reflected by the phosphor in the sealing member 75 and absorbed by the light emitting element. In other words, it is possible to allow more light to reach the inclined surface 50s of the light reflective member 50, and the decrease in light extraction efficiency caused by the accumulation of the phosphor near the side surface of the light emitting element can be suppressed. Note that even if sedimentation does not occur in the phosphor in the sealing member 75, the decrease in the concentration of the phosphor can reduce the light reflected by the phosphor in the sealing member 75 and absorbed by the light emitting element. That is, even if no sedimentation occurs in the phosphor in the sealing member 75, the effect of improving the brightness of the light-emitting device can be expected due to the reduction in the concentration of the phosphor in the sealing member 75. In addition, by disposing the wavelength conversion member 85 in the recess 11 so as to selectively cover the surface of the light-reflective member 50 that functions as a reflective surface, it is possible to reduce the concentration of the phosphor in the sealing member 75 while suppressing the change in the color of the emitted light that accompanies the reduction in the concentration of the phosphor in the sealing member 75.

素子載置領域21Rに配置される発光素子の上面の高さにおける第2蛍光体の濃度、および、発光装置の下面の高さにおける第2蛍光体の濃度は、発光装置を構成する部材中の蛍光体の濃度と同様に、発光装置を上面に垂直に切断したときの断面画像から算出することができる。まず、発光装置の断面画像中に、一辺の長さが発光装置の高さ(上面と下面との間の距離)の例えば1/3の正方形の領域を想定する。そして、発光素子の下面の高さにおける第2蛍光体の濃度であれば、この正方形の領域の底辺が発光素子の下面の位置に一致するようにして、この領域全体の面積に占める蛍光体の面積の割合を求める。同様の面積比を複数箇所で算出し、それらの平均値を、発光素子の下面の高さにおける第2蛍光体の濃度とすることができる。発光素子の上面の高さにおける第2蛍光体の濃度であれば、正方形の領域の底辺に対向する辺が発光素子の上面の位置に一致するようにして、同様の手順で面積比の平均値を求め、これを発光素子の上面の高さにおける第2蛍光体の濃度とすればよい。なお、第2蛍光体の濃度の算出に利用する正方形の領域の一辺の長さは、発光装置の高さの1/3に限定されず、他の値を採用してもよい。 The concentration of the second phosphor at the height of the upper surface of the light-emitting element placed in the element mounting region 21R and the concentration of the second phosphor at the height of the lower surface of the light-emitting device can be calculated from a cross-sectional image of the light-emitting device cut perpendicularly to the upper surface, similar to the concentration of the phosphor in the member constituting the light-emitting device. First, a square region with a side length of, for example, 1/3 of the height of the light-emitting device (the distance between the upper surface and the lower surface) is assumed in the cross-sectional image of the light-emitting device. Then, in the case of the concentration of the second phosphor at the height of the lower surface of the light-emitting element, the base of this square region is made to coincide with the position of the lower surface of the light-emitting element, and the ratio of the area of the phosphor to the area of the entire region is obtained. The same area ratio can be calculated at multiple locations, and the average value of these can be used as the concentration of the second phosphor at the height of the lower surface of the light-emitting element. In the case of the concentration of the second phosphor at the height of the upper surface of the light-emitting element, the side opposite to the base of the square region is made to coincide with the position of the upper surface of the light-emitting element, and the average value of the area ratio is obtained in the same manner, and this is used as the concentration of the second phosphor at the height of the upper surface of the light-emitting element. The length of one side of the square area used to calculate the concentration of the second phosphor is not limited to 1/3 of the height of the light-emitting device, and other values may be used.

図8は、本開示の他の実施形態による発光装置の模式的な断面を示す。図4、図5等を参照しながら説明した発光装置100と比較して、図8に示す発光装置100Aは、第1発光素子41の上面41a上に位置する被覆部材751をさらに有している。図8に例示する構成において、樹脂パッケージ10の凹部11内に位置する封止部材75は、この被覆部材751をも覆っている。なお、図8では、図4に示す断面と同様に、発光装置100Aを発光装置100Aの中央付近で樹脂パッケージ10の上面10aに垂直に切断したときのZX断面を模式的に示している。 Figure 8 shows a schematic cross-section of a light-emitting device according to another embodiment of the present disclosure. Compared to the light-emitting device 100 described with reference to Figures 4, 5, etc., the light-emitting device 100A shown in Figure 8 further has a covering member 751 located on the upper surface 41a of the first light-emitting element 41. In the configuration illustrated in Figure 8, the sealing member 75 located in the recess 11 of the resin package 10 also covers this covering member 751. Note that Figure 8 also shows a schematic ZX cross-section of the light-emitting device 100A when the light-emitting device 100A is cut perpendicular to the upper surface 10a of the resin package 10 near the center of the light-emitting device 100A, similar to the cross-section shown in Figure 4.

被覆部材751は、第3母材と、第3母材中に分散された第3蛍光体とを含有し得る。第3母材、第3蛍光体を含有する未硬化の状態の材料をポッティングによって第1発光素子41の上面41a上に付与し、付与された材料を硬化させることにより、被覆部材751を形成することができる。 The covering member 751 may contain a third base material and a third phosphor dispersed in the third base material. The covering member 751 can be formed by applying an uncured material containing the third base material and the third phosphor onto the upper surface 41a of the first light-emitting element 41 by potting, and then curing the applied material.

ここで、第3蛍光体としては、波長変換部材85中の第1蛍光体とは異なる蛍光体が選択され得る。例えば、第3蛍光体としては、波長変換部材85中の第1蛍光体と比較して、より長い発光ピーク波長を有する蛍光体が用いられ得る。第1発光素子41のより近くに配置された被覆部材751中の第3蛍光体の発光ピーク波長が波長変換部材85中の第1蛍光体の発光ピーク波長よりも長波長側に位置することにより、第3蛍光体からの光による波長変換部材85中の第1蛍光体の励起を回避し得る。すなわち、発光装置100Aの光取出し効率を向上させ得る。このように、本開示の実施形態では、発光素子からより離れた位置にある部材中の蛍光体ほど、より短い発光ピーク波長を示し得る。波長変換部材85が第1蛍光体として例えばG-YAGを含有する場合、被覆部材751は、607nm以上640nm以下の帯域に発光ピーク波長を有する蛍光体を第3蛍光体として含有し得る。607nm以上640nm以下の帯域に発光ピーク波長を有する蛍光体の例は、SCASNと呼ばれる窒化物系蛍光体(例えば(Sr,Ca)AlSiN:Eu )である。 Here, as the third phosphor, a phosphor different from the first phosphor in the wavelength conversion member 85 may be selected. For example, as the third phosphor, a phosphor having a longer emission peak wavelength may be used as compared with the first phosphor in the wavelength conversion member 85. The emission peak wavelength of the third phosphor in the covering member 751 arranged closer to the first light emitting element 41 is located on the longer wavelength side than the emission peak wavelength of the first phosphor in the wavelength conversion member 85, so that excitation of the first phosphor in the wavelength conversion member 85 by light from the third phosphor can be avoided. That is, the light extraction efficiency of the light emitting device 100A can be improved. Thus, in the embodiment of the present disclosure, the phosphor in the member located farther away from the light emitting element may exhibit a shorter emission peak wavelength. When the wavelength conversion member 85 contains, for example, G-YAG as the first phosphor, the covering member 751 may contain, as the third phosphor, a phosphor having an emission peak wavelength in the band of 607 nm or more and 640 nm or less. An example of a phosphor having an emission peak wavelength in the band of 607 nm or more and 640 nm or less is a nitride-based phosphor called SCASN (for example, (Sr,Ca)AlSiN 3 :Eu 2 + ).

一般的に、LED等の発光素子においては光軸付近の光強度が高い。図8に例示する構成のように、発光素子の上面を覆うようにして、第3蛍光体を含有する被覆部材751を発光素子の上面に形成することにより、発光装置100Aから出射される光のスペクトルの長波長側における強度を向上させ得る。すなわち、色温度を低下させる効果が得られる。 Generally, light emitting elements such as LEDs have high light intensity near the optical axis. As shown in the configuration illustrated in FIG. 8, by forming a coating member 751 containing a third phosphor on the upper surface of the light emitting element so as to cover the upper surface of the light emitting element, the intensity on the long wavelength side of the spectrum of the light emitted from the light emitting device 100A can be improved. In other words, the effect of lowering the color temperature can be obtained.

第3母材としては、波長変換部材85中の第1母材または封止部材75中の第2母材と同様の材料を適用できる。ただし、封止部材75中の第2母材の屈折率nと、被覆部材751中の第3母材の屈折率nとの間に、|n-n|≦0.05の関係が成立することが好ましい。封止部材75中の第2母材の屈折率と被覆部材751中の第3母材の屈折率との間に実質的な差異が無いことにより、封止部材75と被覆部材751との界面における全反射を抑制でき、発光装置の光取出し効率の向上が期待できるからである。|n-n|≦0.05の関係を満足する第2母材および第3母材の組み合わせとして、第2母材および第3母材ともにフェニルシリコーン樹脂を用いる構成を例示できる。 As the third base material, a material similar to the first base material in the wavelength conversion member 85 or the second base material in the sealing member 75 can be applied. However, it is preferable that the relationship of |n 2 -n 3 |≦0.05 is established between the refractive index n 2 of the second base material in the sealing member 75 and the refractive index n 3 of the third base material in the covering member 751. This is because there is no substantial difference between the refractive index of the second base material in the sealing member 75 and the refractive index of the third base material in the covering member 751, and total reflection at the interface between the sealing member 75 and the covering member 751 can be suppressed, and the light extraction efficiency of the light emitting device can be expected to be improved. As a combination of the second base material and the third base material that satisfies the relationship of |n 2 -n 3 |≦0.05, a configuration in which both the second base material and the third base material are made of phenyl silicone resin can be exemplified.

図9は、本開示のさらに他の実施形態による発光装置の模式的な断面を示す。素子載置領域21Rに複数の発光素子が配置される場合、それら発光素子の上面上に被覆部材を形成してもよい。図8に示す発光装置100Aと比較して、図9に示す発光装置100Bは、第1発光素子41の上面41a上に位置する被覆部材751に加えて、第2発光素子42の上面42a上に位置する被覆部材752を有する。なお、図9は、上述の図8と同様に、発光装置100Bを発光装置100Bの中央付近で樹脂パッケージ10の上面10aに垂直に切断したときのZX断面を模式的に示している。 Figure 9 shows a schematic cross-section of a light-emitting device according to yet another embodiment of the present disclosure. When multiple light-emitting elements are arranged in the element mounting region 21R, a covering member may be formed on the upper surfaces of the light-emitting elements. Compared to the light-emitting device 100A shown in Figure 8, the light-emitting device 100B shown in Figure 9 has a covering member 752 located on the upper surface 42a of the second light-emitting element 42 in addition to a covering member 751 located on the upper surface 41a of the first light-emitting element 41. Note that Figure 9, like Figure 8 described above, shows a schematic ZX cross-section of the light-emitting device 100B when cut perpendicularly to the upper surface 10a of the resin package 10 near the center of the light-emitting device 100B.

第2発光素子42上の被覆部材752は、蛍光体を含有していてもよいし、含有していなくてもよい。例えば、第1発光素子41上に被覆部材751を配置するだけでは、樹脂パッケージ10の外部に取り出される光の色温度が低すぎる場合等には、被覆部材752の母材中にSCASN等の蛍光体を分散させてもよい。このとき、第1発光素子41上の被覆部材751と第2発光素子42上の被覆部材752との間で、蛍光体の濃度を異ならせてもよい。 The covering member 752 on the second light-emitting element 42 may or may not contain a phosphor. For example, if the color temperature of the light extracted to the outside of the resin package 10 is too low when the covering member 751 is simply placed on the first light-emitting element 41, a phosphor such as SCASN may be dispersed in the base material of the covering member 752. In this case, the concentration of the phosphor may be different between the covering member 751 on the first light-emitting element 41 and the covering member 752 on the second light-emitting element 42.

被覆部材751中の蛍光体と、被覆部材752中の蛍光体とが共通であることは、必須ではない。すなわち、被覆部材752中の蛍光体が被覆部材751中の第3蛍光体と同じでないこともあり得る。例えば、被覆部材751には、青色光を赤色光に変換するCASN等の波長変換部材を第3蛍光体として含有させ、被覆部材752には、入射した光を赤色光よりも短波長の光(黄色光、緑色光または青色光)に変換する蛍光体を含有させてもよい。このとき、図9に例示する構成のように、被覆部材751および被覆部材752が独立して第1発光素子41上および第2発光素子42上にそれぞれ個別に形成されると、被覆部材751と被覆部材752とが空間的に離れて配置されることになる。このような被覆部材751および被覆部材752の配置によれば、被覆部材752中の蛍光体によって波長変換を受けた光による被覆部材751中の第3蛍光体の励起を抑制することが可能になる。すなわち、凹部11の内部において被覆部材751と被覆部材752とを空間的に離して配置することにより、被覆部材752中の蛍光体によって波長変換を受けることにより生じる、赤色光よりも短波長の光が被覆部材751に吸収されることを抑制できる。そのため、被覆部材752から出射される、赤色光より短波長の光を取り出しやすくなる。なお、より高い輝度を得る観点からは、樹脂パッケージ10の凹部11の内部に複数の発光素子が配置される場合、蛍光体を含有する被覆部材を、図8の例のように複数の発光素子のうちの一部の発光素子の上面上に選択的に配置することが有利である。 It is not essential that the phosphor in the covering member 751 and the phosphor in the covering member 752 are the same. That is, the phosphor in the covering member 752 may not be the same as the third phosphor in the covering member 751. For example, the covering member 751 may contain a wavelength conversion material such as CASN that converts blue light into red light as the third phosphor, and the covering member 752 may contain a phosphor that converts the incident light into light with a shorter wavelength than red light (yellow light, green light, or blue light). In this case, as in the configuration illustrated in FIG. 9, when the covering member 751 and the covering member 752 are independently formed on the first light-emitting element 41 and the second light-emitting element 42, respectively, the covering member 751 and the covering member 752 are arranged spatially apart. According to such an arrangement of the covering member 751 and the covering member 752, it is possible to suppress the excitation of the third phosphor in the covering member 751 by the light that has been wavelength-converted by the phosphor in the covering member 752. That is, by disposing the covering member 751 and the covering member 752 spatially apart inside the recess 11, it is possible to suppress absorption by the covering member 751 of light with a shorter wavelength than red light, which is generated by wavelength conversion by the phosphor in the covering member 752. Therefore, it becomes easier to extract light with a shorter wavelength than red light emitted from the covering member 752. From the viewpoint of obtaining higher brightness, when multiple light-emitting elements are disposed inside the recess 11 of the resin package 10, it is advantageous to selectively dispose a covering member containing a phosphor on the upper surface of some of the multiple light-emitting elements as in the example of FIG. 8.

被覆部材751および被覆部材752は、未硬化の状態の材料をポッティング法等により第1発光素子41の上面および第2発光素子42の上面に付与した後、付与された材料を硬化させることにより、形成できる。被覆部材751は、第1発光素子41の側面を覆っていてもよい。同様に、被覆部材752は、第2発光素子42の側面を覆っていてもよい。母材とは屈折率の異なる材料を分散させることにより、被覆部材751および/または被覆部材752に光拡散の機能を付与してもよい。 The covering member 751 and the covering member 752 can be formed by applying an uncured material to the upper surface of the first light-emitting element 41 and the upper surface of the second light-emitting element 42 by a potting method or the like, and then curing the applied material. The covering member 751 may cover the side surface of the first light-emitting element 41. Similarly, the covering member 752 may cover the side surface of the second light-emitting element 42. The covering member 751 and/or the covering member 752 may be given a light diffusion function by dispersing a material with a refractive index different from that of the base material.

[発光装置の例示的な製造方法]
以下、本開示の実施形態による発光装置の例示的な製造方法を簡単に説明する。概略的には、発光装置の製造方法は、リードフレームをその一部に含む集合基板を準備する工程と、集合基板を個片化し、複数の発光装置を得る工程とを含む。
[Exemplary Method for Manufacturing a Light Emitting Device]
An exemplary method for manufacturing a light emitting device according to an embodiment of the present disclosure will be briefly described below. In general, the method for manufacturing a light emitting device includes a step of preparing an aggregate substrate including a lead frame as a part thereof, and a step of singulating the aggregate substrate to obtain a plurality of light emitting devices.

図10および図11は、集合基板のうちリードフレームの一部を取り出して示す。図10は、リードフレームの表側(発光素子が配置される側)を示し、図11は、図10に示すリードフレーム202を裏返したときの外観を示す。図10および図11は、リードフレーム202のうち、集合基板の個片化後にそれぞれが発光装置となる4つの発光構造を含む範囲を取り出して示しており、図10中の二点鎖線の矩形は、これら発光構造100Lのうち1つに対応する部分を示す。リードフレーム202は、銅等の基材と、基材を被覆する金属層とを有し得る。 Figures 10 and 11 show a portion of the lead frame of the collective substrate. Figure 10 shows the front side of the lead frame (the side on which the light emitting elements are arranged), and Figure 11 shows the appearance of the lead frame 202 shown in Figure 10 when turned over. Figures 10 and 11 show an area of the lead frame 202 that includes four light emitting structures that will each become a light emitting device after the collective substrate is singulated, and the double-dashed line rectangle in Figure 10 shows a portion that corresponds to one of these light emitting structures 100L. The lead frame 202 can have a base material such as copper and a metal layer that covers the base material.

図10および図11に示すように、リードフレーム202は、それぞれが第1リード相当領域21Aおよび第2リード相当領域22Aを含む複数の組を有する。第1リード相当領域21Aおよび第2リード相当領域22Aは、リードフレーム202のうち集合基板の個片化後にそれぞれ上述の第1リード21および第2リード22となる部分である。図10では、第1リード相当領域21A中の素子載置領域21Rのおおよその位置を点線によって示している。それぞれが第1リード相当領域21Aおよび第2リード相当領域22Aを含むこれら複数の組は、連結部24によって互いに連結され、全体としてリードフレーム202を構成する。これらの連結部24は、集合基板の個片化後に上述の延伸部21sおよび22hとなる(図1および図2参照)。 As shown in Figures 10 and 11, the lead frame 202 has multiple sets, each of which includes a first lead corresponding region 21A and a second lead corresponding region 22A. The first lead corresponding region 21A and the second lead corresponding region 22A are portions of the lead frame 202 that will become the first lead 21 and the second lead 22, respectively, after the collective substrate is singulated. In Figure 10, the approximate position of the element mounting region 21R in the first lead corresponding region 21A is indicated by a dotted line. These multiple sets, each of which includes the first lead corresponding region 21A and the second lead corresponding region 22A, are connected to each other by connecting portions 24, and together form the lead frame 202. These connecting portions 24 become the extension portions 21s and 22h described above after the collective substrate is singulated (see Figures 1 and 2).

第1リード相当領域21A、第2リード相当領域22Aおよび連結部24の形状は、例えば、型を用いて板状の部材を所定の形状に打ち抜くことにより得ることができる。第1リード相当領域21Aを例えば部分的にエッチングすることにより、その上面21aに、素子載置領域21Rの周囲の一部を囲む溝部21gを形成してもよい。この例では、各第1リード相当領域21Aの上面21aに溝部21hも形成している。また、各第2リード相当領域22Aの上面22aに弧状の溝部22gを形成している。溝部21g、21hおよび22gの全部または一部をプレス加工によって形成してもよい。 The shapes of the first lead corresponding region 21A, the second lead corresponding region 22A and the connecting portion 24 can be obtained, for example, by punching out a plate-like member into a predetermined shape using a die. The first lead corresponding region 21A may be partially etched, for example, to form a groove portion 21g surrounding part of the periphery of the element mounting region 21R on its upper surface 21a. In this example, a groove portion 21h is also formed on the upper surface 21a of each first lead corresponding region 21A. An arc-shaped groove portion 22g is also formed on the upper surface 22a of each second lead corresponding region 22A. All or part of the groove portions 21g, 21h and 22g may be formed by press processing.

図11に例示する構成において、第1リード相当領域21Aの下面21bは、長方形状の3辺に沿って形成された側縁溝部21kを有する。側縁溝部21kは、第1リード相当領域21Aの下面21bから上面21a側に窪んでいる。同様に、図11に例示する構成において、第2リード相当領域22Aの下面22bには、長方形状の3辺に沿って側縁溝部22kが設けられている。側縁溝部22kは、第2リード相当領域22Aの下面22bから上面22a側に窪んでいる。側縁溝部21kおよび22kは、エッチング加工、プレス加工等によって形成することができる。 In the configuration illustrated in FIG. 11, the lower surface 21b of the first lead corresponding region 21A has a side edge groove 21k formed along three sides of the rectangle. The side edge groove 21k is recessed from the lower surface 21b of the first lead corresponding region 21A toward the upper surface 21a. Similarly, in the configuration illustrated in FIG. 11, the lower surface 22b of the second lead corresponding region 22A has a side edge groove 22k formed along three sides of the rectangle. The side edge groove 22k is recessed from the lower surface 22b of the second lead corresponding region 22A toward the upper surface 22a. The side edge grooves 21k and 22k can be formed by etching, pressing, or the like.

上述の集合基板は、例えば、リードフレーム202に樹脂体30が形成された樹脂成形体付リードフレームを得た後、樹脂成形体付リードフレームに第1発光素子41、第2発光素子42、ワイヤ43等を配置し、光反射性部材50、波長変換部材85および封止部材75をさらに形成することによって得ることができる。樹脂成形体付リードフレームは、例えば、上金型と下金型とを備える金型でリードフレーム202を挟み込み、金型内の空間に樹脂材料を流し込むことによって形成できる。例えば、トランスファモールド法により、上金型とリードフレーム202の上面との間に形成されるキャビティの形状に応じた形状を有する樹脂体30を得ることができる。 The above-mentioned assembly substrate can be obtained, for example, by obtaining a lead frame with a resin molded body in which a resin body 30 is formed on a lead frame 202, arranging a first light emitting element 41, a second light emitting element 42, a wire 43, etc. on the lead frame with a resin molded body, and further forming a light reflective member 50, a wavelength conversion member 85, and a sealing member 75. The lead frame with a resin molded body can be formed, for example, by sandwiching the lead frame 202 in a mold having an upper mold and a lower mold, and pouring a resin material into the space within the mold. For example, a resin body 30 having a shape corresponding to the shape of a cavity formed between the upper mold and the upper surface of the lead frame 202 can be obtained by a transfer molding method.

樹脂体30の母材としては、熱硬化性樹脂、熱可塑性樹脂等を用いることができる。樹脂体30の母材の例は、エポキシ樹脂、シリコーン樹脂、シリコーン変性エポキシ樹脂等の変性エポキシ樹脂、エポキシ変性シリコーン樹脂等の変性シリコーン樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリイミド樹脂、変性ポリイミド樹脂、ポリフタルアミド(PPA)、ポリカーボネート樹脂、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ABS樹脂、フェノール樹脂、アクリル樹脂、PBT樹脂等の樹脂である。特に、エポキシ樹脂および変性シリコーン樹脂等の熱硬化性樹脂を用いると、同じ樹脂材料によって第1樹脂部31、第2樹脂部32、第3樹脂部33および第4樹脂部34を一体に形成しやすく有利である。樹脂体30の母材に酸化チタンの粒子等の光反射性のフィラーを分散させてもよい。 The base material of the resin body 30 may be a thermosetting resin, a thermoplastic resin, or the like. Examples of the base material of the resin body 30 include epoxy resin, silicone resin, modified epoxy resin such as silicone modified epoxy resin, modified silicone resin such as epoxy modified silicone resin, unsaturated polyester resin, saturated polyester resin, polyimide resin, modified polyimide resin, polyphthalamide (PPA), polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, phenol resin, acrylic resin, PBT resin, or other resin. In particular, the use of thermosetting resins such as epoxy resin and modified silicone resin is advantageous in that the first resin portion 31, the second resin portion 32, the third resin portion 33, and the fourth resin portion 34 can be integrally formed from the same resin material. A light-reflective filler such as titanium oxide particles may be dispersed in the base material of the resin body 30.

樹脂体30の材料の金型内への充填後、樹脂体30の材料を仮硬化させる。その後、仮硬化がなされた樹脂材料が取り付けられたリードフレーム202を金型から抜き、仮硬化よりも高い温度のもとで樹脂材料の本硬化を行う。これにより、リードフレーム202に樹脂体30が形成された樹脂成形体付リードフレームが得られる。 After the resin body 30 material is filled into the mold, the resin body 30 material is temporarily cured. The lead frame 202 with the temporarily cured resin material attached is then removed from the mold, and the resin material is permanently cured at a temperature higher than that of the temporary curing. This results in a lead frame with a resin molded body in which the resin body 30 is formed on the lead frame 202.

図12は、樹脂成形体付リードフレームのうち、図10に示す4つの発光構造100Lに相当する部分を取り出して示す。図12に模式的に示すように、第1リード相当領域21Aの上面21aに設けられた溝部21gおよび第2リード相当領域22Aの上面22aに設けられた溝部22gは、樹脂体30の材料で充填される。この例では、樹脂体30の材料がリードフレーム202の上面側および下面側の両方に位置し、かつ、第1樹脂部31、第2樹脂部32、第3樹脂部33および第4樹脂部34が共通の材料から一体的に形成される。そのため、リードフレーム202と樹脂体30との間の剥離が生じにくい。 Figure 12 shows the portions of the lead frame with the resin molded body that correspond to the four light emitting structures 100L shown in Figure 10. As shown in Figure 12, the grooves 21g provided on the upper surface 21a of the first lead corresponding region 21A and the grooves 22g provided on the upper surface 22a of the second lead corresponding region 22A are filled with the material of the resin body 30. In this example, the material of the resin body 30 is located on both the upper and lower surfaces of the lead frame 202, and the first resin part 31, the second resin part 32, the third resin part 33 and the fourth resin part 34 are integrally formed from a common material. Therefore, peeling between the lead frame 202 and the resin body 30 is unlikely to occur.

次に、接合部材44により、素子載置領域21Rに第1発光素子41および第2発光素子42を配置する。さらに、ワイヤ43により、第1発光素子41および第2発光素子42の正極および負極の一方を第1リード相当領域21Aに電気的に接続し、正極および負極の他方を第2リード相当領域22Aのワイヤ接続領域22Rに電気的に接続する(図3参照)。必要に応じて、保護素子60を凹部11内に配置する。 Next, the first light-emitting element 41 and the second light-emitting element 42 are placed in the element placement area 21R using the bonding member 44. Furthermore, one of the positive and negative electrodes of the first light-emitting element 41 and the second light-emitting element 42 is electrically connected to the first lead corresponding area 21A using the wire 43, and the other of the positive and negative electrodes is electrically connected to the wire connection area 22R of the second lead corresponding area 22A (see FIG. 3). If necessary, a protective element 60 is placed in the recess 11.

上述したように、素子載置領域21Rに1つの発光素子を配置してもよい。この場合、図13に例示するように、例えば第1発光素子41は、第1リード相当領域21Aの上面21aに設けられた2つの溝部21hの間に配置され得る。 As described above, one light-emitting element may be disposed in the element mounting region 21R. In this case, as illustrated in FIG. 13, for example, the first light-emitting element 41 may be disposed between two grooves 21h provided on the upper surface 21a of the first lead corresponding region 21A.

次に、樹脂成形体付リードフレームに形成された複数の凹部11のそれぞれの内部に光反射性部材50を形成する。例えば、まず、未硬化の材料をポッティング等によって各凹部11の内側壁面と第3樹脂部33との間に付与する。本実施形態では、第3樹脂部33を素子載置領域21Rの周囲に環状に配置しているので、未硬化の樹脂材料を凹部11内で移動させても、素子載置領域21Rの中心への樹脂材料の流れを第3樹脂部33によって堰き止めることができる。したがって、未硬化の樹脂材料の内縁の位置を第3樹脂部33によって画定でき、光反射性部材50を形成するための未硬化の樹脂材料を凹部11の底面11bに適切に配置可能である。その後、凹部11内の所定の領域に付与された未硬化の樹脂材料を熱、光等により硬化させる。 Next, a light-reflecting member 50 is formed inside each of the multiple recesses 11 formed in the lead frame with the resin molded body. For example, first, an uncured material is applied between the inner wall surface of each recess 11 and the third resin part 33 by potting or the like. In this embodiment, the third resin part 33 is arranged in a ring shape around the element mounting area 21R, so that even if the uncured resin material moves within the recess 11, the flow of the resin material toward the center of the element mounting area 21R can be blocked by the third resin part 33. Therefore, the position of the inner edge of the uncured resin material can be defined by the third resin part 33, and the uncured resin material for forming the light-reflecting member 50 can be appropriately arranged on the bottom surface 11b of the recess 11. After that, the uncured resin material applied to a predetermined area in the recess 11 is cured by heat, light, or the like.

図4等を参照しながら説明したように、光反射性部材50は、基本的には、凹部11の内側壁面と第3樹脂部33との間に位置する。光反射性部材50は、樹脂体30の第3樹脂部33の少なくとも一部を覆い得る。光反射性部材50は、図14に示すように、第3樹脂部33のうち凹部11の底面11bから最も離れた部分(すなわち、頂部)を覆っていてもよい。光反射性部材50が第3樹脂部33の頂部を覆うことにより、樹脂パッケージ10の一部である樹脂体30に対して光反射性部材50の接する領域が増大する結果、これらの部材間の接合をより強固とし得る。 As described with reference to FIG. 4 etc., the light reflective member 50 is basically located between the inner wall surface of the recess 11 and the third resin part 33. The light reflective member 50 may cover at least a part of the third resin part 33 of the resin body 30. As shown in FIG. 14, the light reflective member 50 may cover the part of the third resin part 33 that is the farthest from the bottom surface 11b of the recess 11 (i.e., the top). By having the light reflective member 50 cover the top of the third resin part 33, the area in contact with the resin body 30, which is part of the resin package 10, is increased, and the bond between these parts can be made stronger.

第1発光素子41、第2発光素子42の側面が直接覆われない限りにおいて、光反射性部材50の一部が素子載置領域21R内に位置することは、許容され得る。なお、この場合において、光反射性部材50が発光素子の側面の少なくても一部から離れていることが好ましく、光反射性部材50が発光素子の側面の全体から離れていることがより好ましい。発光素子の側面の少なくても一部が発光素子の側面から離れていることにより、第1発光素子41の側面から出た光または第2発光素子42の側面から出た光が光反射性部材50によって反射されて第1発光素子41または第2発光素子42によって吸収されることを抑制できる。 As long as the side surfaces of the first light-emitting element 41 and the second light-emitting element 42 are not directly covered, it is acceptable for a part of the light-reflective member 50 to be located within the element mounting region 21R. In this case, it is preferable that the light-reflective member 50 is separated from at least a part of the side surface of the light-emitting element, and it is more preferable that the light-reflective member 50 is separated from the entire side surface of the light-emitting element. By separating at least a part of the side surface of the light-emitting element from the side surface of the light-emitting element, it is possible to prevent the light emitted from the side surface of the first light-emitting element 41 or the light emitted from the side surface of the second light-emitting element 42 from being reflected by the light-reflective member 50 and absorbed by the first light-emitting element 41 or the second light-emitting element 42.

図15は、凹部11内に位置する光反射性部材の形状の他の例を示す。図15に示す例では、素子載置領域21Rには、図13に示す例と同様に1つの第1発光素子41が配置されている。図15に例示する構成において、凹部11内に位置する光反射性部材50Aは、樹脂体30の第3樹脂部33を越えて素子載置領域21Rに位置する部分を含んでいる。この例では、光反射性部材50Aの一部は、第1発光素子41の近くにまで達している。ただし、第1発光素子41の側面は、光反射性部材50Aに覆われてはいない。 Figure 15 shows another example of the shape of the light reflective member located in the recess 11. In the example shown in Figure 15, one first light emitting element 41 is arranged in the element mounting area 21R, similar to the example shown in Figure 13. In the configuration shown in Figure 15, the light reflective member 50A located in the recess 11 includes a portion that is located in the element mounting area 21R beyond the third resin portion 33 of the resin body 30. In this example, a portion of the light reflective member 50A reaches close to the first light emitting element 41. However, the side surface of the first light emitting element 41 is not covered by the light reflective member 50A.

図15に示す例のように、凹部11の底面11bのうち素子載置領域21Rの少なくとも一部を被覆するように光反射性部材50Aを形成することにより、第1発光素子41の近傍にまで光反射性部材50Aを設けることができる。このとき、発光素子(ここでは第1発光素子41)の側面が直接覆われないように光反射性部材50Aを形成することにより、発光素子の側方に出る光が光反射性部材50Aに反射されて発光素子に吸収されることを抑制できる。特に、第1リード相当領域21Aに複数の溝部21hを設けてこれらの溝部21hの間に単一の発光素子を配置する構成によれば、光反射性部材50Aの内縁の位置を複数の溝部21hによって画定し得る。換言すれば、凹部11の底面11bに溝部21hを設けることにより、光反射性部材50Aの一部を素子載置領域21R内に位置させながら、第1発光素子41の側面が光反射性部材50Aに直接覆われることを回避し得る。この例のように、光反射性部材50Aの一部を素子載置領域21R内に位置させることにより、凹部11のうち光反射性部材50で覆われる領域を拡大でき、輝度をさらに向上させる効果が得られることもあり得る。 15, the light reflective member 50A can be provided up to the vicinity of the first light emitting element 41 by forming the light reflective member 50A so as to cover at least a part of the element mounting region 21R of the bottom surface 11b of the recess 11. At this time, by forming the light reflective member 50A so as not to directly cover the side surface of the light emitting element (here, the first light emitting element 41), it is possible to suppress the light emitted to the side of the light emitting element from being reflected by the light reflective member 50A and being absorbed by the light emitting element. In particular, according to a configuration in which a plurality of grooves 21h are provided in the first lead corresponding region 21A and a single light emitting element is disposed between these grooves 21h, the position of the inner edge of the light reflective member 50A can be defined by the plurality of grooves 21h. In other words, by providing the grooves 21h on the bottom surface 11b of the recess 11, it is possible to avoid the side surface of the first light emitting element 41 being directly covered by the light reflective member 50A while positioning a part of the light reflective member 50A within the element mounting region 21R. In this example, by positioning a portion of the light-reflective member 50A within the element mounting region 21R, the area of the recess 11 that is covered by the light-reflective member 50 can be expanded, which may result in further improved brightness.

発光素子(第1発光素子41または第2発光素子42)から出射される光に対する、光反射性部材50の反射率が樹脂体30の反射率よりも高いと有益である。例えば、光反射性部材50中に分散された酸化チタン等の光反射性のフィラーの含有量は、樹脂体30中に分散された光反射性のフィラーの含有量よりも多い。光反射性部材50中の反射部材の含有量は、樹脂体30中の光反射性物質の含有量の1.5倍以上であることが好ましく、2倍以上であることがより好ましく、2.5倍以上であることがさらに好ましい。例えば、樹脂体30を形成するための未硬化の状態の樹脂材料に占める酸化チタンの割合は、15重量%以上20重量%以下であり得る。このとき、光反射性部材50を形成するための未硬化の状態の樹脂材料に占める酸化チタンの割合は、30重量%以上60重量%以下であり得る。 It is beneficial if the reflectance of the light-reflective member 50 for the light emitted from the light-emitting element (the first light-emitting element 41 or the second light-emitting element 42) is higher than the reflectance of the resin body 30. For example, the content of the light-reflective filler, such as titanium oxide, dispersed in the light-reflective member 50 is greater than the content of the light-reflective filler dispersed in the resin body 30. The content of the reflective material in the light-reflective member 50 is preferably 1.5 times or more, more preferably 2 times or more, and even more preferably 2.5 times or more, of the content of the light-reflective substance in the resin body 30. For example, the proportion of titanium oxide in the uncured resin material for forming the resin body 30 may be 15% by weight or more and 20% by weight or less. In this case, the proportion of titanium oxide in the uncured resin material for forming the light-reflective member 50 may be 30% by weight or more and 60% by weight or less.

図16は、積層構造を有する光反射性部材の例を示す。図16に例示する構成において、凹部11内に位置する光反射性部材50Bは、第1光反射性部材51と、第1光反射性部材51上に位置する第2光反射性部材52とを含む。この例のように、光反射性部材は、2以上の光反射層を含む積層構造を有していてもよい。 Figure 16 shows an example of a light-reflective member having a layered structure. In the configuration illustrated in Figure 16, the light-reflective member 50B located in the recess 11 includes a first light-reflective member 51 and a second light-reflective member 52 located on the first light-reflective member 51. As in this example, the light-reflective member may have a layered structure including two or more light-reflective layers.

凹部11の底面11bの所定の領域に第1光反射性部材51を形成した後、第1光反射性部材51上に第2光反射性部材52を形成することは、光反射性部材50Bの表面の形状すなわち傾斜面50sの形状の制御を容易にする。第1光反射性部材51は、第2光反射性部材52によってその全体が覆われていてもよく、第2光反射性部材52から露出する部分を有していてもよい。 Forming the first light-reflective member 51 in a predetermined area of the bottom surface 11b of the recess 11 and then forming the second light-reflective member 52 on the first light-reflective member 51 makes it easier to control the surface shape of the light-reflective member 50B, i.e., the shape of the inclined surface 50s. The first light-reflective member 51 may be entirely covered by the second light-reflective member 52, or may have a portion exposed from the second light-reflective member 52.

第1光反射性部材51の材料と、第2光反射性部材52の材料とは、同一であってもよいし、異なっていてもよい。例えば、第1光反射性部材51の材料と、第2光反射性部材52の材料との間で、光反射性のフィラーの濃度を異ならせてもよい。この場合、第2光反射性部材52と比較して、第1光反射性部材51中の光反射性のフィラーの濃度が低くされていると、第1光反射性部材51の材料の未硬化の状態での粘度が低くなるために第1光反射性部材51の形成が容易になり、有利である。また、第2光反射性部材52中の光反射性のフィラーの濃度が相対的に高いことにより、第2光反射性部材52の反射率が向上し、光取り出し効率を高めることができる。 The material of the first light-reflective member 51 and the material of the second light-reflective member 52 may be the same or different. For example, the concentration of the light-reflective filler may be different between the material of the first light-reflective member 51 and the material of the second light-reflective member 52. In this case, if the concentration of the light-reflective filler in the first light-reflective member 51 is lower than that of the second light-reflective member 52, the viscosity of the material of the first light-reflective member 51 in an uncured state is lower, which is advantageous because it makes it easier to form the first light-reflective member 51. In addition, since the concentration of the light-reflective filler in the second light-reflective member 52 is relatively high, the reflectance of the second light-reflective member 52 is improved, and the light extraction efficiency can be increased.

第1光反射性部材51中の光反射性のフィラーの濃度は、第2光反射性部材52中の光反射性のフィラーの濃度と比較して、重量比で3%以上低いことが好ましく、5%以上低いことがより好ましい。第1光反射性部材51と第2光反射性部材52との間のフィラーの濃度差は、重量比で30%以内であることが好ましく、10%以内であることがより好ましい。フィラーの濃度差を30%以内とすることにより、第1光反射性部材51の反射率が極端に低くなることを抑制できる。 The concentration of the light-reflective filler in the first light-reflective member 51 is preferably at least 3% lower by weight, and more preferably at least 5% lower, than the concentration of the light-reflective filler in the second light-reflective member 52. The difference in filler concentration between the first light-reflective member 51 and the second light-reflective member 52 is preferably within 30% by weight, and more preferably within 10%. By keeping the difference in filler concentration within 30%, it is possible to prevent the reflectance of the first light-reflective member 51 from becoming extremely low.

なお、図3、図14、図16等に示す例では、第1リード相当領域21Aの溝部21hが、第1発光素子41または第2発光素子42と重なる位置に形成されている。しかしながら、溝部21hの配置は、この例に限定されず、例えば、第1発光素子41または第2発光素子42と、第3樹脂部33との間であってもよい。このような構成によると、溝部21hは、光反射性部材50を形成するための未硬化の樹脂材料が第3樹脂部33を乗り越えて素子載置領域21Rに進入した場合に、樹脂材料が第1発光素子41または第2発光素子42にさらに近づくことを防止する機能を発揮し得る。また、これらの例では、溝部21hは、第1リード相当領域21Aおよび第2リード相当領域22Aが交互に配置された第1方向(図12中のY方向)に概ね平行に延びているが、1以上の溝部21hが、図17に例示するように第1方向と交差する方向に延びるように形成されてもよい。このような溝部21hの配置によっても、未硬化の樹脂材料が第3樹脂部33を乗り越えた場合に、未硬化の樹脂材料が第1発光素子41または第2発光素子42にさらに近づくことを防止する機能を溝部21hに発揮させ得る。 3, 14, 16, etc., the groove 21h of the first lead corresponding region 21A is formed at a position overlapping the first light emitting element 41 or the second light emitting element 42. However, the arrangement of the groove 21h is not limited to this example, and may be, for example, between the first light emitting element 41 or the second light emitting element 42 and the third resin part 33. According to such a configuration, the groove 21h can function to prevent the resin material from approaching the first light emitting element 41 or the second light emitting element 42 further when the uncured resin material for forming the light reflective member 50 overcomes the third resin part 33 and enters the element mounting region 21R. Also, in these examples, the groove 21h extends approximately parallel to the first direction (Y direction in FIG. 12) in which the first lead corresponding region 21A and the second lead corresponding region 22A are alternately arranged, but one or more grooves 21h may be formed to extend in a direction intersecting the first direction as exemplified in FIG. 17. Even with this arrangement of the groove portion 21h, if the uncured resin material overcomes the third resin portion 33, the groove portion 21h can function to prevent the uncured resin material from approaching further toward the first light-emitting element 41 or the second light-emitting element 42.

光反射性部材50の形成後、第1母材と、第1蛍光体を含む1種以上の蛍光体とを含有する未硬化の材料をポッティング等により光反射性部材50の表面に付与する。その後、光反射性部材50の表面に付与された材料を硬化させることにより、波長変換部材85を形成することができる。 After the light-reflective member 50 is formed, an uncured material containing a first base material and one or more phosphors including a first phosphor is applied to the surface of the light-reflective member 50 by potting or the like. The material applied to the surface of the light-reflective member 50 is then cured to form the wavelength conversion member 85.

波長変換部材85の形成後、凹部11内に位置する封止部材75を形成する。ここでは、ポッティング等により、第2母材を含有する未硬化の状態の材料で凹部11内を充填し、充填された材料を硬化させる。上述したように、封止部材75の材料は、第2母材に加えて、少なくとも第2蛍光体を含む1種以上の蛍光体を含有していてもよい。凹部11内に充填された材料の硬化により、少なくとも第1発光素子41および第2発光素子42ならびに第3樹脂部33を被覆する封止部材75を形成することができる。封止部材75の形成により、複数の発光構造100Lを有する集合基板が得られる。必要に応じ、素子載置領域21Rへの発光素子の配置後、封止部材75の形成までの間に、被覆部材751、752等の形成を実行してもよい。 After the wavelength conversion member 85 is formed, the sealing member 75 located in the recess 11 is formed. Here, the recess 11 is filled with an uncured material containing the second base material by potting or the like, and the filled material is cured. As described above, the material of the sealing member 75 may contain one or more phosphors including at least the second phosphor in addition to the second base material. By curing the material filled in the recess 11, the sealing member 75 that covers at least the first light-emitting element 41 and the second light-emitting element 42 and the third resin part 33 can be formed. By forming the sealing member 75, an aggregate substrate having a plurality of light-emitting structures 100L is obtained. If necessary, after the light-emitting elements are placed in the element mounting region 21R, the formation of the covering members 751, 752, etc. may be performed before the sealing member 75 is formed.

次に、リードカット金型、ダイシングソー、レーザー光等を用い、互いに隣接する2つの発光構造100Lの間の位置で集合基板を切断することにより、集合基板を個片化する。典型的には、集合基板の個片化の工程において、リードフレーム202と樹脂体30とが一括して切断される。以上の工程により、図1に示す発光装置100が得られる。 Next, the collective substrate is cut at a position between two adjacent light emitting structures 100L using a lead cut mold, a dicing saw, laser light, or the like, to separate the collective substrate. Typically, in the process of separating the collective substrate, the lead frame 202 and the resin body 30 are cut together. Through the above process, the light emitting device 100 shown in FIG. 1 is obtained.

以下の工程に従い、複数の発光装置を実施例1のサンプルとして作製し、また、複数の発光装置を参考例1のサンプルとして作製して、実施例1と参考例1との間でスペクトルおよび全光束の比較を行った。 Following the steps below, multiple light-emitting devices were fabricated as samples of Example 1, and multiple light-emitting devices were fabricated as samples of Reference Example 1, and a comparison of the spectrum and total luminous flux was made between Example 1 and Reference Example 1.

(実施例1)
上述した工程に従い、それぞれが、図8に示す発光装置100Aと概ね同様の構造を有する複数の発光装置を製作した。ただし、ここでは、図10および図11に示すリードフレーム202と同様の構造を有するリードフレームを準備し、各素子載置領域21Rであって2つの溝部21hの間の位置に1つの発光素子を配置した。それら発光素子のそれぞれの上面上には、被覆部材を形成した。樹脂成形体付リードフレームの樹脂体を形成するための材料としては、シリコーン樹脂中に酸化チタンの粒子が分散された樹脂材料を用いた。
Example 1
According to the above-mentioned process, a plurality of light emitting devices each having a structure generally similar to that of the light emitting device 100A shown in Fig. 8 were manufactured. However, in this case, a lead frame having a structure similar to that of the lead frame 202 shown in Fig. 10 and Fig. 11 was prepared, and one light emitting element was placed in each element mounting region 21R at a position between two grooves 21h. A covering member was formed on the upper surface of each of the light emitting elements. A resin material in which titanium oxide particles are dispersed in silicone resin was used as the material for forming the resin body of the lead frame with resin molding.

樹脂成形体付リードフレームの各凹部の底面への発光素子、ワイヤ等の配置後、上述の手順に従って光反射性部材および波長変換部材を順次形成した。光反射性部材の材料には、母材としてのジメチルシリコーン樹脂と、光反射性のフィラーとしての酸化チタンの粒子とを含有する樹脂材料を用いた。 After arranging the light emitting element, wires, etc. on the bottom surface of each recess of the lead frame with the resin molded body, the light reflective member and the wavelength conversion member were formed in sequence according to the procedure described above. The light reflective member was made of a resin material containing dimethyl silicone resin as a base material and titanium oxide particles as a light reflective filler.

また、ここでは、波長変換部材を形成するための第1母材としてフェニルシリコーン樹脂を用いた。第1母材には、第1蛍光体としてのG-YAGの粒子とフィラーとしての二酸化ケイ素の粒子とを分散させた。ここで、第1母材の質量を100としたときの第1蛍光体の質量が100、フィラーの質量が0.8となるようにして波長変換部材の材料を調製した。このとき、波長変換部材の材料の全体に対する第1蛍光体の質量比は、100/(100+100+0.8)*100=50(%)と計算される(式中、「*」は、乗算を表す。)。以下では、説明の便宜のために、母材としての樹脂の含有量を100として換算した、蛍光体全体の質量比を「蛍光体の濃度」と表記する。 Here, phenyl silicone resin was used as the first base material for forming the wavelength conversion member. G-YAG particles as the first phosphor and silicon dioxide particles as the filler were dispersed in the first base material. Here, the material of the wavelength conversion member was prepared so that the mass of the first phosphor was 100 and the mass of the filler was 0.8 when the mass of the first base material was 100. In this case, the mass ratio of the first phosphor to the entire material of the wavelength conversion member was calculated as 100/(100+100+0.8)*100=50(%) (where "*" represents multiplication). In the following, for convenience of explanation, the mass ratio of the entire phosphor, calculated by assuming the content of the resin as the base material to be 100, is referred to as the "concentration of the phosphor".

ここでは、各LEDチップの上面を覆う被覆部材の材料として、第3母材と、第3蛍光体と、フィラーとしての二酸化ケイ素の粒子とを含有する樹脂材料を使用した。第3母材には、フェニルシリコーン樹脂を用い、第3蛍光体としてのSCASNの粒子を第3母材中に分散させた。このとき、第3母材の質量を100としたときの第3蛍光体の質量が67.2、フィラーの質量が15.4となるようにして被覆部材の材料を調製した。したがって、実施例1の各サンプルの被覆部材に関する蛍光体の濃度は、およそ37%である。 Here, a resin material containing a third base material, a third phosphor, and silicon dioxide particles as a filler was used as the material for the covering member covering the top surface of each LED chip. Phenyl silicone resin was used for the third base material, and SCASN particles as the third phosphor were dispersed in the third base material. At this time, the material for the covering member was prepared so that the mass of the third phosphor was 67.2 and the mass of the filler was 15.4 when the mass of the third base material was taken as 100. Therefore, the concentration of the phosphor in the covering member of each sample of Example 1 was approximately 37%.

LEDチップおよび被覆部材を覆う封止部材の材料としては、第2母材としてのフェニルシリコーン樹脂、第2蛍光体としてのLAGの粒子、および、フィラーを含有する樹脂材料を用いた。ここでは、第2蛍光体としてのLAGの粒子に加えて、付加的にG-YAGの粒子も第2母材中に分散させた。このとき、第2母材の質量を100としたときの全ての蛍光体(G-YAGおよび第2蛍光体としてのLAG)の質量が13.8、フィラーの質量が15.4となるようにして封止部材の材料を調製した。したがって、実施例1の各サンプルの封止部材に関する蛍光体の濃度は、およそ11%である。以上の手順により、実施例1のサンプルとして合計で28個の発光装置を準備した。 The material of the sealing member that covers the LED chip and the covering member was a resin material containing phenyl silicone resin as the second base material, LAG particles as the second phosphor, and a filler. Here, in addition to the LAG particles as the second phosphor, G-YAG particles were also dispersed in the second base material. At this time, the material of the sealing member was prepared so that the mass of all the phosphors (G-YAG and LAG as the second phosphor) was 13.8 and the mass of the filler was 15.4 when the mass of the second base material was taken as 100. Therefore, the concentration of the phosphor in the sealing member of each sample of Example 1 was approximately 11%. By the above procedure, a total of 28 light-emitting devices were prepared as samples of Example 1.

(参考例1)
実施例1のサンプルとほぼ同様の手順により、複数の発光装置を作製した。ただし、ここでは、光反射性部材上への波長変換部材の形成は行わなかった。なお、被覆部材の形成において、第3母材の質量を100としたときの第3蛍光体の質量は、68.0であった。ただし、参考例1の各サンプルの被覆部材に関する蛍光体の濃度は、およそ37%であり、実施例1の各サンプルの被覆部材に関する蛍光体の濃度と実質的な差異はないといえる。封止部材の形成においては、第2母材の質量を100としたときの、G-YAGおよび第2蛍光体としてのLAGの全体としての質量が26.8、フィラーの質量が15.4となるようにして封止部材の材料を調製した。したがって、参考例1の各サンプルの封止部材に関する蛍光体の濃度は、およそ27%である。以上の手順により、参考例1のサンプルとして合計で20個の発光装置を準備した。
(Reference Example 1)
A plurality of light emitting devices were prepared by a procedure similar to that of the sample of Example 1. However, here, the wavelength conversion member was not formed on the light reflective member. In the formation of the covering member, the mass of the third phosphor was 68.0 when the mass of the third base material was 100. However, the concentration of the phosphor in the covering member of each sample of Reference Example 1 was approximately 37%, and it can be said that there is no substantial difference from the concentration of the phosphor in the covering member of each sample of Example 1. In the formation of the sealing member, the material of the sealing member was prepared so that the total mass of G-YAG and LAG as the second phosphor was 26.8 and the mass of the filler was 15.4 when the mass of the second base material was 100. Therefore, the concentration of the phosphor in the sealing member of each sample of Reference Example 1 was approximately 27%. Through the above procedure, a total of 20 light emitting devices were prepared as samples of Reference Example 1.

(スペクトルの比較)
実施例1のサンプルおよび参考例1のサンプルのそれぞれについて、点灯時のスペクトルを測定し、得られたスペクトルを比較した。図18は、実施例1のサンプルに関するスペクトルの測定結果を示し、図19は、参考例1のサンプルに関するスペクトルの測定結果を示す。図18は、28個の発光装置から19個の発光装置を無作為に抽出して、19個の発光装置のそれぞれについて全光束を測定し、波長ごとの測定値の平均値をプロットしたグラフである。図18中の横軸および縦軸は、それぞれ、波長および規格化された全光束を表す。ここでは、JIS-C-8152:2014に準じた方法で、積分球を使った全光束測定により発光スペクトルを測定した。図19も同様に、参考例1の20個の発光装置置のそれぞれについて全光束を測定し、波長ごとの測定値の平均値をプロットしたグラフである。
(Spectral comparison)
The spectra of the sample of Example 1 and the sample of Reference Example 1 when lit were measured, and the obtained spectra were compared. FIG. 18 shows the measurement results of the spectrum of the sample of Example 1, and FIG. 19 shows the measurement results of the spectrum of the sample of Reference Example 1. FIG. 18 is a graph in which 19 light-emitting devices were randomly selected from 28 light-emitting devices, the total luminous flux of each of the 19 light-emitting devices was measured, and the average value of the measured values for each wavelength was plotted. The horizontal and vertical axes in FIG. 18 respectively represent the wavelength and the normalized total luminous flux. Here, the emission spectrum was measured by total luminous flux measurement using an integrating sphere according to a method conforming to JIS-C-8152:2014. FIG. 19 is also a graph in which the total luminous flux of each of the 20 light-emitting devices of Reference Example 1 was measured, and the average value of the measured values for each wavelength was plotted.

図20は、実施例1のサンプルに関するスペクトルの測定結果と、参考例1のサンプルに関するスペクトルの測定結果とをあわせて1つに描いた図である。図20中、黒丸のプロットは、実施例1のサンプルに関するスペクトルの測定結果を示す。他方、参考例1のサンプルに関するスペクトルの測定結果は、実線の曲線のグラフとして図20中に示されている。図20からわかるように、実施例1のサンプルと参考例1のサンプルとの間に顕著な差異は確認されなかった。つまり、実施例1のサンプルと参考例1のサンプルとの間で、スペクトルは、実質的に同じであるといってよいことがわかった。つまり、第1発光素子を覆う封止部材中の蛍光体の含有量を低下させたとしても、第1発光素子を取り囲む光反射性部材上に波長変換部材を配置することによって同様のスペクトルを再現可能であることがわかった。 Figure 20 is a diagram that shows the spectrum measurement results for the sample of Example 1 and the spectrum measurement results for the sample of Reference Example 1 in one diagram. In Figure 20, the black circle plot indicates the spectrum measurement results for the sample of Example 1. On the other hand, the spectrum measurement results for the sample of Reference Example 1 are shown in Figure 20 as a solid curved graph. As can be seen from Figure 20, no significant difference was confirmed between the sample of Example 1 and the sample of Reference Example 1. In other words, it was found that the spectrum can be said to be substantially the same between the sample of Example 1 and the sample of Reference Example 1. In other words, it was found that even if the content of the phosphor in the sealing member covering the first light-emitting element is reduced, a similar spectrum can be reproduced by arranging a wavelength conversion member on the light-reflective member surrounding the first light-emitting element.

(全光束の比較)
次に、JIS C 8152-1:2014に準じた方法で実施例1の各サンプルおよび参考例1の各サンプルの全光束を測定した。実施例1の各サンプルについて全光束を測定し、得られた結果の平均値を求めると36.7lmであった。なお、全光束の測定に際しての各サンプルへの入力電流および入力電圧は、それぞれ、およそ65mAおよび2.86Vであった。
(Comparison of total luminous flux)
Next, the total luminous flux of each sample of Example 1 and each sample of Reference Example 1 was measured according to a method in accordance with JIS C 8152-1:2014. The total luminous flux of each sample of Example 1 was measured, and the average value of the results was found to be 36.7 lm. The input current and input voltage to each sample when measuring the total luminous flux were approximately 65 mA and 2.86 V, respectively.

次に、実施例1の各サンプルと同様にして、参考例1の各サンプルについて全光束を測定した。全光束の測定結果の平均値を求めると36.9lmであった。図21は、実施例1に関する全光束の測定結果と、参考例1に関する全光束の測定結果とをあわせて1つの図に示す。参考例1と比較して、実施例1ではより大きな全光束が得られていることがわかった。 Next, the total luminous flux was measured for each sample of Reference Example 1 in the same manner as for each sample of Example 1. The average value of the total luminous flux measurement results was 36.9 lm. Figure 21 shows the total luminous flux measurement results for Example 1 and Reference Example 1 together in a single figure. It was found that a greater total luminous flux was obtained in Example 1 compared to Reference Example 1.

本開示の実施形態によれば、素子載置領域に位置する1以上の発光素子を取り囲む光反射性部材上に波長変換部材を配置している。これにより、光反射性部材上に波長変換部材を有しない構成と比較してスペクトルに実質的な差異を生じさせることなく、封止部材中の蛍光体の濃度を低下させることが可能になる。そのため、発光素子の側面付近への蛍光体の堆積を回避することができ、光反射性部材上に波長変換部材を有しない構成と比較して全光束を増大させることが可能になる。 According to an embodiment of the present disclosure, a wavelength conversion member is disposed on a light reflective member that surrounds one or more light emitting elements located in the element mounting region. This makes it possible to reduce the concentration of phosphor in the sealing member without causing a substantial difference in the spectrum compared to a configuration that does not have a wavelength conversion member on the light reflective member. This makes it possible to avoid deposition of phosphor near the side surface of the light emitting element, and makes it possible to increase the total luminous flux compared to a configuration that does not have a wavelength conversion member on the light reflective member.

本開示の実施形態による発光装置は、各種照明器具用光源、液晶ディスプレイ等のバックライト用光源、広告もしくは行き先案内等の各種表示装置用光源、プロジェクタ用光源に有用である。本開示の実施形態は、ファクシミリ、コピー機等のスキャナにも有利に適用できる。 The light-emitting device according to the embodiment of the present disclosure is useful as a light source for various lighting fixtures, a light source for backlights of liquid crystal displays and the like, a light source for various display devices such as advertising or destination guidance, and a light source for projectors. The embodiment of the present disclosure can also be advantageously applied to scanners of facsimiles, copy machines, and the like.

10 樹脂パッケージ
11 樹脂パッケージの凹部
21 第1リード
21R 素子載置領域
22 第2リード
22A 第2リード相当領域
30 樹脂体
31 樹脂体の第1樹脂部
32 樹脂体の第2樹脂部
33 樹脂体の第3樹脂部
41 第1発光素子
42 第2発光素子
50、50A、50B 光反射性部材
51 第1光反射性部材
52 第2光反射性部材
75、76 封止部材
85 波長変換部材
100、100A、100B 発光装置
202 リードフレーム
751、752 被覆部材
REFERENCE SIGNS LIST 10 Resin package 11 Recess of resin package 21 First lead 21R Element mounting area 22 Second lead 22A Area corresponding to second lead 30 Resin body 31 First resin portion of resin body 32 Second resin portion of resin body 33 Third resin portion of resin body 41 First light emitting element 42 Second light emitting element 50, 50A, 50B Light reflective member 51 First light reflective member 52 Second light reflective member 75, 76 Sealing member 85 Wavelength conversion member 100, 100A, 100B Light emitting device 202 Lead frame 751, 752 Covering member

Claims (15)

第1リードおよび第2リードを含む複数のリード、ならびに、第1樹脂部、第2樹脂部および第3樹脂部を含む樹脂体を有する樹脂パッケージであって、前記複数のリード、前記第1樹脂部および前記第2樹脂部により形成される凹部を有する樹脂パッケージと、
少なくとも1つの発光素子と、
光反射性部材と、
第1母材および第1蛍光体を含有する波長変換部材と、
第2母材を含有する封止部材と
を備え、
前記第1樹脂部は、前記樹脂パッケージの外側面を構成し、
前記第2樹脂部は、前記第1リードと前記第2リードとの間に位置し、
前記複数のリードの上面の一部は、前記凹部の底面に位置し、
前記第1リードは、前記凹部の前記底面に位置する素子載置領域を有し、
前記第3樹脂部は、前記凹部の前記底面より上側の位置にあって前記素子載置領域を環状に取り囲んでおり、
前記少なくとも1つの発光素子は、前記素子載置領域に配置されており、
前記光反射性部材は、前記樹脂パッケージの前記凹部内において前記凹部の内側壁面と前記第3樹脂部との間に位置し、前記第3樹脂部のうち、前記凹部の前記底面から前記底面に対して垂直な方向に最も離れた部分を覆い、
前記波長変換部材は、前記光反射性部材上に位置し、
前記封止部材は、前記樹脂パッケージの前記凹部内において前記少なくとも1つの発光素子および前記波長変換部材を覆っている、発光装置。
a resin package having a plurality of leads including a first lead and a second lead, and a resin body including a first resin portion, a second resin portion and a third resin portion, the resin package having a recess formed by the plurality of leads, the first resin portion and the second resin portion;
At least one light emitting element;
A light reflective member;
a wavelength conversion member containing a first base material and a first phosphor;
a sealing member containing a second base material;
the first resin portion constitutes an outer surface of the resin package,
the second resin portion is located between the first lead and the second lead,
a portion of an upper surface of the plurality of leads is located on a bottom surface of the recess;
the first lead has an element mounting region located on the bottom surface of the recess,
the third resin portion is located above the bottom surface of the recess and surrounds the element mounting region in an annular shape;
the at least one light emitting element is disposed in the element mounting region,
the light reflective member is located within the recess of the resin package between an inner wall surface of the recess and the third resin portion, and covers a portion of the third resin portion that is farthest from the bottom surface of the recess in a direction perpendicular to the bottom surface,
the wavelength conversion member is located on the light reflective member,
The light emitting device, wherein the sealing member covers the at least one light emitting element and the wavelength conversion member in the recess of the resin package.
前記封止部材は、少なくとも第2蛍光体を含有する、請求項に記載の発光装置。 The light emitting device according to claim 1 , wherein the sealing member contains at least a second phosphor. 前記第2蛍光体の発光ピーク波長は、前記第1蛍光体の発光ピーク波長よりも長い、請求項に記載の発光装置。 The light emitting device according to claim 2 , wherein the emission peak wavelength of the second phosphor is longer than the emission peak wavelength of the first phosphor. 前記封止部材中の全ての蛍光体の濃度は、前記波長変換部材中の全ての蛍光体の濃度よりも低い、求項またはに記載の発光装置。 The light emitting device according to claim 2 , wherein the concentration of all phosphors in the sealing member is lower than the concentration of all phosphors in the wavelength conversion member. 前記封止部材中の全ての蛍光体の濃度は、前記波長変換部材中の全ての蛍光体の濃度の0.1倍以上0.5倍未満である、請求項に記載の発光装置。 The light emitting device according to claim 4 , wherein the concentration of all phosphors in the sealing member is 0.1 to less than 0.5 times the concentration of all phosphors in the wavelength conversion member. 前記少なくとも1つの発光素子は、上面および下面を有する第1発光素子を含み、
前記第1発光素子は、支持基板と、前記支持基板上かつ前記支持基板に関して前記第1リードとは反対側に位置する半導体層とを有し、
前記第1発光素子の前記上面の高さにおける前記第2蛍光体の濃度は、前記第1発光素子の前記下面の高さにおける前記第2蛍光体の濃度よりも小さい、請求項からのいずれかに記載の発光装置。
The at least one light emitting element includes a first light emitting element having an upper surface and a lower surface;
the first light emitting element has a support substrate and a semiconductor layer located on the support substrate and on an opposite side of the support substrate from the first lead;
The light emitting device according to claim 2 , wherein a concentration of the second phosphor at the height of the upper surface of the first light emitting element is smaller than a concentration of the second phosphor at the height of the lower surface of the first light emitting element.
前記第1発光素子の前記上面上に位置する被覆部材をさらに備え、
前記封止部材は、前記樹脂パッケージの前記凹部内において前記被覆部材を覆っており、
前記被覆部材は、第3母材および第3蛍光体を含有し、
前記第3蛍光体の発光ピーク波長は、前記第1蛍光体の発光ピーク波長よりも長い、請求項に記載の発光装置。
a covering member located on the upper surface of the first light emitting element,
the sealing member covers the covering member in the recess of the resin package,
The coating member contains a third base material and a third phosphor,
The light emitting device according to claim 6 , wherein the third phosphor has a peak emission wavelength longer than a peak emission wavelength of the first phosphor.
前記第2母材および前記第3母材は、前記第2母材の屈折率をn、前記第3母材の屈折率をnとしたとき、|n-n|≦0.05の関係を満たす、請求項に記載の発光装置。 8. The light emitting device according to claim 7, wherein the second base material and the third base material satisfy a relationship of |n 2 -n 3 |≦0.05, where n 2 is a refractive index of the second base material and n 3 is a refractive index of the third base material. 前記第1母材および前記第2母材は、前記第1母材の屈折率をn、前記第2母材の屈折率をnとしたとき、|n-n|≦0.05の関係を満たす、請求項1からのいずれかに記載の発光装置。 The light emitting device according to any one of claims 1 to 8, wherein the first base material and the second base material satisfy a relationship of |n 1 -n 2 |≦ 0.05 , where n 1 is a refractive index of the first base material and n 2 is a refractive index of the second base material. 前記光反射性部材は、前記第1母材よりも小さな屈折率を有する第4母材を含有する、請求項1からのいずれかに記載の発光装置。 The light emitting device according to claim 1 , wherein the light reflective member contains a fourth base material having a refractive index smaller than that of the first base material. 前記波長変換部材は、前記発光素子から離れている、請求項1から10のいずれかに記載の発光装置。 The light emitting device according to claim 1 , wherein the wavelength converting member is spaced apart from the light emitting element. 前記波長変換部材は、前記複数のリードから離れている、請求項1から11のいずれかに記載の発光装置。 The light emitting device according to claim 1 , wherein the wavelength converting member is spaced apart from the leads. 前記波長変換部材は、平面視において前記発光素子を連続的に取り囲む形状を有する、請求項1から12のいずれかに記載の発光装置。 The light emitting device according to claim 1 , wherein the wavelength conversion member has a shape that continuously surrounds the light emitting element in a plan view. 前記波長変換部材は、前記樹脂体の前記第3樹脂部の少なくとも一部を覆う、請求項1から13のいずれかに記載の発光装置。 The light emitting device according to claim 1 , wherein the wavelength conversion member covers at least a portion of the third resin portion of the resin body. 前記光反射性部材の表面は、前記樹脂体の前記第1樹脂部に向かって窪んだ凹面形状を有する、請求項1から14のいずれかに記載の発光装置。 The light emitting device according to claim 1 , wherein a surface of the light reflective member has a concave shape recessed toward the first resin portion of the resin body.
JP2019235905A 2019-12-26 2019-12-26 Light-emitting device Active JP7481610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019235905A JP7481610B2 (en) 2019-12-26 2019-12-26 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019235905A JP7481610B2 (en) 2019-12-26 2019-12-26 Light-emitting device

Publications (2)

Publication Number Publication Date
JP2021106184A JP2021106184A (en) 2021-07-26
JP7481610B2 true JP7481610B2 (en) 2024-05-13

Family

ID=76918944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019235905A Active JP7481610B2 (en) 2019-12-26 2019-12-26 Light-emitting device

Country Status (1)

Country Link
JP (1) JP7481610B2 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066657A (en) 2004-08-27 2006-03-09 Kyocera Corp Light emitting device and lighting device
JP2006245020A (en) 2005-02-28 2006-09-14 Sharp Corp Light emitting diode element and manufacturing method thereof
JP2007134656A (en) 2005-11-14 2007-05-31 Toyoda Gosei Co Ltd Fluorescent board and light emitting device having it
JP2007221044A (en) 2006-02-20 2007-08-30 Kyocera Corp Light emitting device
JP2007273562A (en) 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
JP2010050404A (en) 2008-08-25 2010-03-04 Citizen Electronics Co Ltd Light-emitting device
JP2011222743A (en) 2010-04-09 2011-11-04 Nichia Chem Ind Ltd Light-emitting device
US20110317100A1 (en) 2010-06-28 2011-12-29 Dong Hyun Yu Light emitting diode and backlight unit and liquid crystal display device with the same
JP2012238830A (en) 2011-05-09 2012-12-06 Lumirich Co Ltd Light emitting diode element
JP2014183269A (en) 2013-03-21 2014-09-29 Stanley Electric Co Ltd Wavelength converter
US20140300267A1 (en) 2011-11-08 2014-10-09 Lg Innotek Co., Ltd. Light emitting device
JP2014195046A (en) 2013-02-28 2014-10-09 Nichia Chem Ind Ltd Light emitting device and lighting device including the same
JP2015002182A (en) 2013-06-13 2015-01-05 日立アプライアンス株式会社 Illumination apparatus
JP2015012195A (en) 2013-06-28 2015-01-19 日亜化学工業株式会社 Light emitting device
JP2015015371A (en) 2013-07-05 2015-01-22 日亜化学工業株式会社 Light emitting device
JP2016081939A (en) 2014-10-09 2016-05-16 積水化学工業株式会社 Optical semiconductor device
JP2017034148A (en) 2015-08-04 2017-02-09 日亜化学工業株式会社 Light-emitting device and backlight including light-emitting device
JP2018125509A (en) 2017-02-03 2018-08-09 日亜化学工業株式会社 Light emitting device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066657A (en) 2004-08-27 2006-03-09 Kyocera Corp Light emitting device and lighting device
JP2006245020A (en) 2005-02-28 2006-09-14 Sharp Corp Light emitting diode element and manufacturing method thereof
JP2007134656A (en) 2005-11-14 2007-05-31 Toyoda Gosei Co Ltd Fluorescent board and light emitting device having it
JP2007221044A (en) 2006-02-20 2007-08-30 Kyocera Corp Light emitting device
JP2007273562A (en) 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
JP2010050404A (en) 2008-08-25 2010-03-04 Citizen Electronics Co Ltd Light-emitting device
JP2011222743A (en) 2010-04-09 2011-11-04 Nichia Chem Ind Ltd Light-emitting device
US20110317100A1 (en) 2010-06-28 2011-12-29 Dong Hyun Yu Light emitting diode and backlight unit and liquid crystal display device with the same
JP2012238830A (en) 2011-05-09 2012-12-06 Lumirich Co Ltd Light emitting diode element
US20140300267A1 (en) 2011-11-08 2014-10-09 Lg Innotek Co., Ltd. Light emitting device
JP2014195046A (en) 2013-02-28 2014-10-09 Nichia Chem Ind Ltd Light emitting device and lighting device including the same
JP2014183269A (en) 2013-03-21 2014-09-29 Stanley Electric Co Ltd Wavelength converter
JP2015002182A (en) 2013-06-13 2015-01-05 日立アプライアンス株式会社 Illumination apparatus
JP2015012195A (en) 2013-06-28 2015-01-19 日亜化学工業株式会社 Light emitting device
JP2015015371A (en) 2013-07-05 2015-01-22 日亜化学工業株式会社 Light emitting device
JP2016081939A (en) 2014-10-09 2016-05-16 積水化学工業株式会社 Optical semiconductor device
JP2017034148A (en) 2015-08-04 2017-02-09 日亜化学工業株式会社 Light-emitting device and backlight including light-emitting device
JP2018125509A (en) 2017-02-03 2018-08-09 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2021106184A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
JP6274271B2 (en) Light emitting device and manufacturing method thereof
KR102393760B1 (en) Light emitting device and method for manufacturing the same
US10490704B2 (en) Light emitting device and method of producing the same
JP6107415B2 (en) Light emitting device
US20220102592A1 (en) Light emitting device package having lead electrode with varying height
US11043615B2 (en) Light-emitting device having a dielectric multilayer film arranged on the side surface of the light-emitting element
US11233184B2 (en) Light-emitting device and method for manufacturing the same
US10418526B2 (en) Lead frame including connecting portions and coupling portions
JP5849694B2 (en) Light emitting device and manufacturing method thereof
JP6326830B2 (en) Light emitting device and lighting device including the same
JP7481610B2 (en) Light-emitting device
JP7227478B2 (en) Resin package and light emitting device
US11735697B2 (en) Light-emitting device and method of manufacturing the same
JP2020107629A (en) Resin package and light-emitting device
JP7436828B2 (en) light emitting device
JP7057513B2 (en) Light emitting device
JP7181489B2 (en) Light emitting device and manufacturing method thereof
US20240379916A1 (en) Light-emitting device
JP7208490B2 (en) Resin package and light emitting device
US20200295242A1 (en) Light-emitting device and production method therefor
JP2019080028A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7481610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150