Nothing Special   »   [go: up one dir, main page]

JP2000117270A - Treatment of metal-containing waste water and method for recovering valuable metal - Google Patents

Treatment of metal-containing waste water and method for recovering valuable metal

Info

Publication number
JP2000117270A
JP2000117270A JP28839798A JP28839798A JP2000117270A JP 2000117270 A JP2000117270 A JP 2000117270A JP 28839798 A JP28839798 A JP 28839798A JP 28839798 A JP28839798 A JP 28839798A JP 2000117270 A JP2000117270 A JP 2000117270A
Authority
JP
Japan
Prior art keywords
metal
iron
water
wastewater
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28839798A
Other languages
Japanese (ja)
Other versions
JP3842907B2 (en
Inventor
Osamu Miki
理 三木
Toshiro Kato
敏朗 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28839798A priority Critical patent/JP3842907B2/en
Publication of JP2000117270A publication Critical patent/JP2000117270A/en
Application granted granted Critical
Publication of JP3842907B2 publication Critical patent/JP3842907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To purify metal-contg. waste water and to recover valuable metals simultaneously when the waste water is treated and to remarkably reduce the generation of sludge. SOLUTION: The pH of metal-contg. waste water is adjusted by an alkali agent to form a metal hydroxide, the waste water is passed through a membrane separator 2 having 1-10 μm pore diameter, the water and the metal hydroxide are efficiently separated, and the valuable metals are recovered and reutilized. The metal can be selectively separated by previously adjusting the pH of metal- contg. waste water to 3-4, separating and recovering chromium and iron hydroxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メッキ工場などか
ら発生する金属含有排水を効率的にかつ安定して処理す
るとともに、排水から有価金属を回収・再利用すること
により、スラッジの発生量を削減する方法に関するもの
である。
The present invention relates to a method for efficiently and stably treating metal-containing wastewater generated from a plating plant and the like, and reducing the amount of sludge generated by recovering and reusing valuable metals from the wastewater. It is about how to reduce.

【0002】[0002]

【従来の技術】金属含有排水には、鉱山排水、化学工場
排水、製錬所排水、製鉄所排水、メッキ工場排水などが
ある。中でも、メッキ工場排水はpHが2〜3と低く、
メッキの種類によるが、2価鉄の他に、ニッケル、亜
鉛、錫、クロム、銅などの有価金属イオンを含有してい
る場合が多い。これらの重金属イオンは、有害金属とし
て排水規制の適用を受けるため、排水中から規制値まで
除去する必要がある。
2. Description of the Related Art Metal-containing wastewater includes mine wastewater, chemical factory wastewater, smelter wastewater, steelworks wastewater, and plating factory wastewater. Above all, the plating factory wastewater has a low pH of 2-3,
Depending on the type of plating, it often contains valuable metal ions such as nickel, zinc, tin, chromium, and copper in addition to divalent iron. Since these heavy metal ions are subject to wastewater regulations as harmful metals, it is necessary to remove them from wastewater to the regulated value.

【0003】従来から広く用いられている金属含有排水
の処理法は、中和凝集沈殿法である。この方法は、排水
のpHを水酸化カルシウム等により上昇させ、金属イオ
ンを水酸化物とした後、沈殿池等で金属水酸化物を沈殿
させて水中から金属を除去するものである。
A method of treating metal-containing wastewater which has been widely used in the past is a neutralization coagulation sedimentation method. In this method, after increasing the pH of waste water with calcium hydroxide or the like to convert metal ions to hydroxide, the metal hydroxide is precipitated in a sedimentation basin or the like to remove metal from water.

【0004】この他、金属含有排水の処理方法として
は、硫化物沈殿法、イオン交換樹脂法、キレート樹脂
法、膜分離法、溶媒抽出法、生物濃縮法、活性炭吸着法
などがある。以下に簡単にその特徴を述べる。
Other methods of treating metal-containing wastewater include sulfide precipitation, ion exchange resin, chelate resin, membrane separation, solvent extraction, bioconcentration, and activated carbon adsorption. The features are briefly described below.

【0005】排水に硫化ソーダ(Na2S)を注入し、
重金属を硫化物として沈殿させる方法が硫化物沈殿法で
ある。水酸化物と硫化物の溶解度積を比較すると、硫化
物の方が非常に低く、より低濃度の金属を得ることがで
きる。
[0005] Sodium sulfide (Na 2 S) is injected into the wastewater,
The method of precipitating heavy metals as sulfide is the sulfide precipitation method. Comparing the solubility products of hydroxide and sulfide, sulfide is much lower and a lower concentration of metal can be obtained.

【0006】イオン交換樹脂法は、純水の製造に広く用
いられている。排水処理に適用する場合、陽イオン交換
樹脂および/または陰イオン交換樹脂に金属イオンを吸
着させることになる。
[0006] The ion exchange resin method is widely used for producing pure water. When applied to wastewater treatment, metal ions are adsorbed on the cation exchange resin and / or the anion exchange resin.

【0007】キレート樹脂法は、特定の金属に特に選択
性の強い樹脂(架橋構造を有する高分子に金属イオンと
錯体を形成するキレート形成基を導入した樹脂)を用い
るもので、排水中から特定の重金属イオンを極めて低濃
度まで除去できる。ごみ焼却場排水中の水銀の除去など
に用いられている。
The chelate resin method uses a resin having particularly high selectivity for a specific metal (a resin having a polymer having a cross-linked structure and a chelate-forming group which forms a complex with a metal ion introduced therein). Heavy metal ions can be removed to an extremely low concentration. It is used to remove mercury from waste incineration plant effluent.

【0008】膜分離法は、逆浸透膜(RO:Rever
se Osomosis)が海水の淡水化や工場排水の
再利用などで広く用いられている。浸透圧を利用し、溶
媒のみを膜を介して移動させ、清澄な処理水を得ること
ができる。
The membrane separation method uses a reverse osmosis membrane (RO: Reverse).
se Osomosis) is widely used for desalination of seawater and reuse of industrial wastewater. Utilizing the osmotic pressure, only the solvent is moved through the membrane, and clear treated water can be obtained.

【0009】生物濃縮法は、特定の重金属イオンを微生
物に摂取させ、微生物の体内に特定の重金属を濃縮させ
る方法であるが、研究段階であり、実用化された例は無
いと思われる。
[0009] The bioconcentration method is a method in which a specific heavy metal ion is ingested by a microorganism and the specific heavy metal is concentrated in the body of the microorganism. However, it is in a research stage, and it is considered that there is no practical example.

【0010】これらの方法以外にも、重金属を含有した
スラッジから重金属イオンを回収する方法として、バク
テリアリーチングや溶媒抽出法がある。
In addition to these methods, methods for recovering heavy metal ions from sludge containing heavy metals include bacterial leaching and solvent extraction.

【0011】いずれの方法も課題があり、金属含有排水
処理には、排水処理の安定性やコストの観点から中和凝
集沈殿法が最も広く用いられている。
All of these methods have problems, and the neutralization coagulation sedimentation method is most widely used for treating metal-containing wastewater from the viewpoint of the stability and cost of the wastewater treatment.

【0012】[0012]

【発明が解決しようとする課題】現在までに知見されて
いる金属含有排水の処理方法は、以下のような課題を有
している。
The method for treating metal-containing wastewater which has been found to date has the following problems.

【0013】まず、中和凝集沈殿法は以下のような課題
がある。
First, the neutralization aggregation precipitation method has the following problems.

【0014】1)金属水酸化物は、微細であり、沈殿池
での沈殿分離が安定しない。これを防ぐために、pH調
整に加え、高分子凝集剤を投入し、フロックを大型化し
沈降速度を増加させる必要がある。
1) The metal hydroxide is fine, and the sedimentation and separation in the sedimentation basin is not stable. In order to prevent this, in addition to pH adjustment, it is necessary to add a polymer flocculant to increase the size of flocs and increase the sedimentation speed.

【0015】2)金属水酸化物の沈殿し始めるpHは、
原則的に金属の溶解度積によって決定される。しかし、
実際には、共存するイオンによって影響される。すなわ
ち、溶解度積の大きな金属でも比較的低いpHで共沈す
ることが知られている。例えば3価鉄は、比較的低いp
Hで水酸化第二鉄として除去されるが、このとき、カド
ミウム(Cd2+)、ひ素(As)、クロム(Cr3+)が
共沈する現象が知見されている。また、金属含有排水中
にハロゲン、シアンイオン、アンモニアイオンなどが共
存する場合には、水酸化物が形成しにくい課題がある。
2) The pH at which metal hydroxide begins to precipitate is
In principle, it is determined by the solubility product of the metal. But,
In effect, it is affected by coexisting ions. That is, it is known that even a metal having a large solubility product co-precipitates at a relatively low pH. For example, ferrous iron has a relatively low p
H is removed as ferric hydroxide. At this time, a phenomenon in which cadmium (Cd 2+ ), arsenic (As), and chromium (Cr 3+ ) co-precipitate has been found. In addition, when halogen, cyan ion, ammonia ion, and the like coexist in the metal-containing wastewater, there is a problem in that hydroxide is hardly formed.

【0016】この結果、中和凝集沈殿法で生成した沈殿
物は、各種金属の混合物であるため、再利用が極めて困
難であり、大半が埋め立てなどに廃棄処分されている。
As a result, since the precipitate formed by the neutralization coagulation precipitation method is a mixture of various metals, it is extremely difficult to reuse the precipitate, and most of the precipitate is disposed of in a landfill or the like.

【0017】3)メッキ排水の中和剤としては、通常、
消石灰(Ca(OH)2)が用いられている。これは、
消石灰は、水酸化ナトリウムよりもかなり安価で、比較
的水に対する溶解度も大きく、反応性に富むためであ
る。しかし、沈殿物は含水率が99%と高く、脱水機処
理をおこなっても70〜80%にしか低下しない。この
ため、沈殿物の容積が大きく、保管・運搬・廃棄処分費
が増加する。
3) As a neutralizing agent for the plating wastewater,
Slaked lime (Ca (OH) 2 ) is used. this is,
Slaked lime is considerably cheaper than sodium hydroxide, has relatively high solubility in water, and is highly reactive. However, the sediment has a high water content of 99%, and is reduced to only 70 to 80% even when subjected to a dehydrator treatment. For this reason, the volume of the sediment is large, and storage, transportation, and disposal costs increase.

【0018】次に、硫化物沈殿法は、生成沈殿物の分離
の困難性(コロイド化しやすい)や安全性(酸性物質と
の接触により硫化水素ガスが発生)の観点から実際の使
用実績が少ない。また、沈殿物が各種金属の混合物であ
ることは、中和凝集沈殿法と同様であり、再利用が極め
て困難であり、埋め立てなどに廃棄処分せざるを得な
い。
Next, the sulfide precipitation method has little actual use in terms of difficulty in separating the formed precipitate (it is easy to form a colloid) and safety (generating hydrogen sulfide gas upon contact with an acidic substance). . Further, the fact that the precipitate is a mixture of various metals is the same as in the neutralization coagulation sedimentation method, and it is extremely difficult to reuse it, and it has to be disposed of by landfilling.

【0019】次に、イオン交換樹脂法は、従来から火力
発電用のボイラー給水や半導体用の超純水製造等に広く
用いられている。処理対象とする原水は、イオン濃度が
1000mg/l以下のものである。同法は、排水処理
のように排水中のイオン濃度が高い場合、樹脂に金属イ
オン以外の無機イオンが吸着するため、吸着・再生が繁
雑に必要となる課題がある。樹脂の汚染を防ぐ前処理も
必要である。このように操作が繁雑であるため、排水処
理用に用いる場合コストが高くなる。また、長時間使用
すると、イオン交換樹脂が金属水酸化物、有機物、バク
テリア等で汚染され、通常の樹脂の再生操作では回復が
困難となる。また、原理上、陽イオン、陰イオン以外の
金属の選択的分離は困難であるため、イオン交換樹脂の
再生液は各種金属イオンの混合物であり、再利用が困難
である。したがって、イオン濃度が高い排水処理への適
用は困難と考えられる。
Next, the ion exchange resin method has been widely used for boiler water supply for thermal power generation and ultrapure water production for semiconductors. The raw water to be treated has an ion concentration of 1000 mg / l or less. This method has a problem that when the ion concentration in the wastewater is high as in wastewater treatment, inorganic ions other than metal ions are adsorbed to the resin, so that adsorption / regeneration becomes complicated. Pretreatment is also required to prevent resin contamination. Since the operation is complicated as described above, the cost increases when used for wastewater treatment. In addition, when used for a long time, the ion exchange resin is contaminated with metal hydroxides, organic substances, bacteria, and the like, and it is difficult to recover the resin by a normal operation for regenerating the resin. In addition, since it is difficult in principle to selectively separate metals other than cations and anions, the regenerating solution of the ion exchange resin is a mixture of various metal ions, and is difficult to reuse. Therefore, application to wastewater treatment with a high ion concentration is considered difficult.

【0020】各種重キレート樹脂法もイオン交換樹脂法
と同様の課題を有しており、有価金属の回収を目的とし
た排水処理への適用は困難である。
Various heavy chelate resin methods have the same problems as the ion exchange resin method, and it is difficult to apply them to wastewater treatment for the purpose of recovering valuable metals.

【0021】さらに、膜分離法であるが、逆浸透膜(R
O膜)が、海水の淡水化等、塩類濃度が1000〜10
000mg/l程度の原水を対象に広く用いられてい
る。また、メッキ排水の再利用に適用された例がある
(例えば、逆浸透法によるメッキ排水の再利用、和田洋
六、PPM、16−27、1986)。排水処理にRO
を用いると、重金属ばかりでなく無機イオンも原水から
除去できるため、膜透過水を工業用水として再利用でき
る利点がある。しかし、RO膜法にも以下の課題があ
る。まず、少量の濃縮液が発生するが、この濃縮液に
は、重金属イオンばかりでなく、各種の無機イオンも濃
縮されているため、濃縮液の再利用が困難である。ま
た、RO膜は膜径が極めて小さく、高圧力(10〜60
kg/cm2)が必要であり、排水処理のランニングコ
ストが増大する課題がある。また、メッキ排水処理に関
して、 RO膜より膜径の大きな限外ろか膜(UF:U
ltra Filtration)、精密ろか膜(M
F:Micron Filtration)は、ほとん
ど用いられていない(例えば、排水処理における限外ろ
か膜・精密ろ過膜の利用 排水処理への適用事例−メッ
キ排水、光上義道、水質汚濁研究、10、3、153−
154、1987)。高分子凝集剤とUF膜を組み合わ
せた検討報告例が米国であるが、実用化には至っていな
い(Polymer Filtration,Proc
AESF Annu Tech Conf,VOl.
82,607−616,1995)。これは、膜径が小
さく、UF膜の透過水量が極めて小さいため、膜設備が
巨大化することが要因と考えられる。
Further, as for the membrane separation method, a reverse osmosis membrane (R
O film) has a salt concentration of 1000 to 10 such as desalination of seawater.
It is widely used for raw water of about 000 mg / l. Further, there is an example applied to reuse of plating wastewater (for example, reuse of plating wastewater by the reverse osmosis method, Yoroku Wada, PPM, 16-27, 1986). RO for wastewater treatment
By using, since not only heavy metals but also inorganic ions can be removed from raw water, there is an advantage that membrane permeated water can be reused as industrial water. However, the RO film method also has the following problems. First, a small amount of concentrated liquid is generated. However, since not only heavy metal ions but also various inorganic ions are concentrated in this concentrated liquid, it is difficult to reuse the concentrated liquid. The RO film has an extremely small film diameter and a high pressure (10 to 60).
kg / cm 2 ), and there is a problem that the running cost of wastewater treatment increases. Regarding the plating wastewater treatment, an ultrafiltration membrane (UF: U
ltra Filtration), precision filtration membrane (M
F: Micron Filtration) is rarely used (for example, use of ultrafiltration membrane / microfiltration membrane in wastewater treatment. Application example to wastewater treatment-plating wastewater, Yoshimichi Kogami, water pollution research, 10, 3, 153-
154, 1987). An example of a study report combining a polymer flocculant and a UF membrane is in the United States, but has not been put to practical use (Polymer Filtration, Proc)
AESF Annu Tech Conf, VOL.
82, 607-616, 1995). This is probably because the membrane diameter is small and the amount of permeated water of the UF membrane is extremely small, and the membrane equipment is enlarged.

【0022】最後に生物濃縮法であるが、生物による重
金属取り込み速度がまだ小さく不安定であり、現段階で
は実用化は困難である。さらに、生物体内に濃縮された
重金属を分離・回収する方法に関する課題がある。
Finally, regarding the bioconcentration method, the rate of heavy metal uptake by living organisms is still small and unstable, and practical use is difficult at this stage. Further, there is a problem regarding a method for separating and recovering heavy metals concentrated in living organisms.

【0023】このように、現在知見されている方法は、
金属含有排水から規制値以下まで金属を水中から除去す
るか、あるいは、処理水を有効利用するかの視点から構
築されており、排水から有価金属資源を回収して再利用
することにより、発生スラッジを削減しようとする視点
が全く欠けている。
Thus, currently known methods are:
It is built from the viewpoint of removing metals from water containing metals to below the regulation value from the water or using treated water effectively. By collecting valuable metal resources from wastewater and reusing it, sludge generated There is no point of view to try to reduce.

【0024】従って、本発明は、金属含有排水を処理す
るに際し、水を浄化するとともに、排水中の有価金属を
回収し、スラッジの発生量を従来と比較して格段に削減
する方法を提供する。
Therefore, the present invention provides a method for purifying water and recovering valuable metals in wastewater when treating metal-containing wastewater, thereby significantly reducing the amount of sludge generated as compared with the conventional method. .

【0025】[0025]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、次の(1)〜(8)である。
Means for Solving the Problems The gist of the present invention is the following (1) to (8).

【0026】(1)金属含有排水のpHを調整して金属
水酸化物を形成させた後、1μm〜10μmの孔径を有
する膜分離装置に通水することにより、水と金属水酸化
物とを分離することを特徴とする金属含有排水の処理お
よび有価金属の回収方法。
(1) After adjusting the pH of the metal-containing wastewater to form a metal hydroxide, water is passed through a membrane separation device having a pore size of 1 μm to 10 μm, whereby water and the metal hydroxide are separated. A method for treating metal-containing wastewater and recovering valuable metals, comprising separating the wastewater.

【0027】(2)金属含有排水のpHを調整して金属
水酸化物を形成させるとともに、高分子凝集剤または液
体キレート剤を併用して投入して金属水酸化物のフロッ
クを形成させた後、50μm〜200μmの孔径を有す
る膜分離装置に通水することにより、水と金属水酸化物
のフロックとを分離することを特徴とする金属含有排水
の処理および有価金属の回収方法。
(2) After adjusting the pH of the metal-containing waste water to form a metal hydroxide, and also using a polymer coagulant or a liquid chelating agent in combination to form metal hydroxide flocs, A method for treating metal-containing wastewater and recovering valuable metals, comprising separating water and flocs of metal hydroxide by passing water through a membrane separation device having a pore size of 50 μm to 200 μm.

【0028】(3)3価クロム、2価鉄のイオンを含有
する金属含有排水から、第1段階で、pHを3〜4に調
整して2価鉄を3価鉄に酸化することによりクロムと鉄
の水酸化物を形成させた後、1μm〜10μmの孔径を
有する膜分離装置に通水することにより水と鉄およびク
ロムの水酸化物とを分離し、次に、当該処理水から、第
2段階で、前記(1)または(2)の方法により残部金
属を分離回収することを特徴とする金属含有排水の処理
および有価金属の回収方法。
(3) Trivalent chromium From the metal-containing wastewater containing iron (II) ions, in a first step, the pH is adjusted to 3 to 4 to oxidize the iron (II) to ferric iron. After forming a hydroxide of iron and iron, water and iron and chromium hydroxide are separated by passing water through a membrane separation device having a pore size of 1 μm to 10 μm, and then, from the treated water, In the second stage, a method for treating metal-containing wastewater and recovering valuable metals, wherein the remaining metal is separated and recovered by the method (1) or (2).

【0029】(4)2価鉄を3価鉄に酸化する際に、鉄
酸化細菌を用いることを特徴とする前記(3)の金属含
有排水の処理および有価金属の回収方法。
(4) The method for treating metal-containing wastewater and recovering valuable metals according to (3), wherein iron oxidizing bacteria are used to oxidize ferrous iron to ferric iron.

【0030】(5)ニッケル、亜鉛、3価クロム、2価
鉄のイオンを含有する金属含有排水から、前記(3)ま
たは(4)の方法により金属を分離回収する際、前記第
2段階において、pHを8〜10に調整してニッケルお
よび亜鉛の水酸化物を形成させ、水とニッケルおよび亜
鉛の水酸化物とを分離することを特徴とする金属含有排
水の処理および有価金属の回収方法。
(5) When the metal is separated and recovered from the metal-containing wastewater containing ions of nickel, zinc, trivalent chromium, and ferric iron by the method of (3) or (4), Adjusting the pH to 8 to 10 to form hydroxides of nickel and zinc, and separating water and hydroxides of nickel and zinc, and treating the metal-containing wastewater and recovering valuable metals. .

【0031】(6)膜分離装置として、セラミックスを
素材とした膜を用いることを特徴とする前記(1)〜
(5)のいずれかの金属含有排水の処理および有価金属
の回収方法。
(6) The above (1) to (1), wherein a membrane made of ceramics is used as the membrane separation device.
(5) The method for treating metal-containing wastewater and recovering valuable metals according to any of (5).

【0032】(7)分離回収した金属水酸化物の濃縮物
を、硫酸によりpHを0.5〜3に調整して金属を再溶
解させ、金属の濃縮液を回収し再利用することを特徴と
する前記(1)〜(6)のいずれかの金属含有排水の処
理および有価金属の回収方法。
(7) The metal hydroxide concentrate separated and recovered is adjusted to pH 0.5 to 3 with sulfuric acid to redissolve the metal, and the concentrated metal solution is recovered and reused. The method for treating metal-containing wastewater and recovering valuable metals according to any one of the above (1) to (6).

【0033】(8)金属水酸化物を分離回収した後の処
理水を逆浸透膜に通水して処理水を再利用することを特
徴とする前記(1)〜(7)のいずれかの金属含有排水
の処理方法および有価金属の回収方法。
(8) Any one of the above (1) to (7), wherein the treated water after separating and recovering the metal hydroxide is passed through a reverse osmosis membrane to reuse the treated water. A method for treating metal-containing wastewater and a method for collecting valuable metals.

【0034】[0034]

【発明の実施の形態】以下、本発明の作用を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention will be described below in detail.

【0035】本発明者は、メッキ工場から発生する金属
含有排水から、有価金属を回収・再利用するとともに、
処理水を排水規制値以下まで処理する、あるいは、工場
で再利用する検討の中から、従来と比較して孔径が格段
に大きな膜を用いて上記目的を達成することを見いだ
し、この膜を用いた金属含有排水の処理および有価金属
の回収方法の開発に成功した。さらに、本法に生物学的
方法を組み合わせることにより、多くの金属イオンを含
む排水から有価金属を選択的に回収できる方法の開発に
成功した。
The present inventor recovers and reuses valuable metals from metal-containing wastewater generated from a plating plant,
From studies of treating treated water to below the effluent regulation value or reusing it in factories, it was found that the above purpose was achieved by using a membrane with a pore size much larger than before, and this membrane was used. We have succeeded in treating wastewater containing metals and developing a method for collecting valuable metals. Furthermore, by combining this method with a biological method, we succeeded in developing a method that can selectively recover valuable metals from wastewater containing many metal ions.

【0036】まず、最初に膜分離について説明する。First, the membrane separation will be described.

【0037】本発明者は、ニッケル、亜鉛を主成分とす
るメッキ洗浄排水を、NaOHを用いてpHを8〜10
に調整し、一定時間の攪拌の後、発生した金属水酸化物
のフロックの大きさを測定したところ、0.1μm〜5
0μm程度であることがわかった。この水酸化物は、沈
降速度が非常に小さいため、沈殿池による沈降分離操作
で除去するのは困難であった。沈降分離操作で除去する
ためには、高分子凝集剤等を投入し、フロックを大型化
する必要があると考えられた。高分子凝集剤を投入する
と、フロックの孔径は50μm以上に増大するととも
に、比重が大きくなった。
The inventor of the present invention has proposed a method of cleaning plating wastewater containing nickel and zinc as main components by using NaOH to adjust the pH to 8 to 10.
After stirring for a certain period of time, the size of the generated metal hydroxide flocs was measured.
It was found that it was about 0 μm. Since this hydroxide has a very low sedimentation speed, it has been difficult to remove the hydroxide by sedimentation and separation operation using a sedimentation tank. In order to remove the floc by the sedimentation separation operation, it was considered necessary to add a polymer flocculant and the like to increase the size of the floc. When the polymer flocculant was added, the pore size of the floc increased to 50 μm or more, and the specific gravity increased.

【0038】ところで、RO膜の孔径は、通常、1Å〜
100Å(0.01μm )、UF膜の孔径は、20Å
(0.002μm )〜2000Å(0.2μm ) 程
度、MF膜の孔径は、0.1μm〜10μm程度であ
る。これらの膜を排水処理に適用する場合、以下の1)
〜5)の点が重要であると考えられる。
By the way, the pore size of the RO membrane is usually from 1 mm to
100 ° (0.01 μm), the pore size of the UF membrane is 20 °
(0.002 μm) to about 2000 ° (0.2 μm), and the pore size of the MF membrane is about 0.1 μm to 10 μm. When these membranes are applied to wastewater treatment, the following 1)
Points 5) are considered to be important.

【0039】1)膜が金属水酸化物に対して所定の分離
性能を継続して有すること
1) The membrane has a predetermined separation performance with respect to the metal hydroxide continuously.

【0040】2)膜の透過水量が大きく、経年劣化が小
さいこと
2) The amount of permeated water of the membrane is large and the deterioration over time is small.

【0041】3)膜の運転圧力が小さく、経年劣化が小
さいこと
3) The operating pressure of the membrane is small and the deterioration over time is small.

【0042】4)膜が目詰まりしにくく、再生が容易な
こと
4) The film is not easily clogged and the regeneration is easy.

【0043】5)膜の使用pH範囲が広く、高水温の使
用が可能であること
5) The use pH range of the membrane is wide, and high water temperature can be used.

【0044】これらのことから、排水処理に用いる膜と
しては、所定の分離性能が得られる範囲で、排水量を確
保するため、孔径の大きな膜を使用する必要がある。し
かし、RO膜やUF膜は透過水量が小さく、このことが
排水処理への適用を遅らせてきた。
From these facts, it is necessary to use a membrane having a large pore diameter as a membrane used for wastewater treatment in order to secure a sufficient amount of wastewater within a range where a predetermined separation performance can be obtained. However, RO membranes and UF membranes have a small amount of permeated water, which has delayed their application to wastewater treatment.

【0045】本発明者は、pH調整後の金属水酸化物の
大きさの測定結果から、金属水酸化物の分離はMF膜で
も可能ではないかと推定した。さらに、膜の孔径が小さ
くなっていくと、細孔内壁を通過しようとする金属水酸
化物粒子の距離が近接し、この相互作用によっても金属
水酸化物が除去されることを知見した。これらの結果か
ら、膜により金属水酸化物を除去するためには、1μm
以上の孔径で十分であることに到達した。さらに、より
厳密には、金属水酸化物が膜からリークするのを防止す
るためには、最大孔径を10μm以下とすればよいこと
がわかった。このことにより、透過水量を格段に増加さ
せることが可能になる。
The inventor of the present invention has estimated from the results of the measurement of the size of the metal hydroxide after the pH adjustment that separation of the metal hydroxide was possible with the MF membrane. Furthermore, it has been found that as the pore diameter of the membrane becomes smaller, the distance of the metal hydroxide particles that are going to pass through the inner wall of the pore becomes shorter, and the metal hydroxide is also removed by this interaction. From these results, in order to remove metal hydroxide by the film, 1 μm
It has been found that the above pore size is sufficient. Further, more strictly, it has been found that the maximum pore diameter should be 10 μm or less in order to prevent the metal hydroxide from leaking from the film. This makes it possible to significantly increase the amount of permeated water.

【0046】pH調整を行った金属含有排水をMF膜に
透過させることにより、膜透過液と金属水酸化物の濃縮
液とが得られる。例えば、ニッケル、亜鉛を主とするメ
ッキ排水の場合、濃縮液には、ニッケルと亜鉛の水酸化
物が濃縮されている。この濃縮液のpHを硫酸等により
0〜3程度に調整すると、金属水酸化物が再溶解し、ニ
ッケルイオンと亜鉛イオンの濃縮液が得られる。濃縮率
が高い場合、この濃縮液は、メッキ液として再利用が可
能となる。一方、透過液にはニッケルイオン、亜鉛イオ
ンがほとんど含まれていないため、このまま公共水域へ
の放流が可能である。さらに、透過液を工場用水等に再
利用する場合には、工業用水に適した水質にするため、
陰イオン、陽イオンを除去する必要があるが、通常のR
O膜で処理することにより対応できる。
By permeating the metal-containing wastewater whose pH has been adjusted through the MF membrane, a membrane permeate and a concentrate of metal hydroxide can be obtained. For example, in the case of plating wastewater mainly containing nickel and zinc, the concentrated solution contains nickel and zinc hydroxide concentrated. When the pH of this concentrated solution is adjusted to about 0 to 3 with sulfuric acid or the like, the metal hydroxide is redissolved, and a concentrated solution of nickel ions and zinc ions is obtained. When the concentration ratio is high, this concentrated solution can be reused as a plating solution. On the other hand, since the permeated liquid contains almost no nickel ions or zinc ions, it can be discharged into public water bodies as it is. Furthermore, when the permeate is reused for factory water, etc., in order to make the water quality suitable for industrial water,
It is necessary to remove anions and cations.
This can be handled by treating with an O film.

【0047】次に、高分子凝集剤によるニッケルイオ
ン、亜鉛イオン等のフロック形成について述べる。高分
子凝集剤としては、水中の重金属イオンと選択的に反応
し、水に不溶性の金属フロックを形成するものが望まし
い。重金属選択捕集用の高分子凝集剤としては、例え
ば、ポリアクリル酸、ポリビニルアルコール、ポリエチ
ルエネミンなどがある。形成するフロックの大きさは5
0μm以上であるため、使用する膜はMF膜で十分であ
り、しかも、50μm以上の孔径があれば十分である。
高分子凝集剤の選定がよく、フロック形成が十分におこ
なわれれば、200μm程度の孔径でもかまわない。ま
た、高分子凝集剤の代わりに、ある程度、重金属の選択
除去能力のある液体キレート剤を用いてもよい。液体キ
レート剤を用いても、金属の選択的吸着・凝集が困難な
場合には、液体キレート剤から硫酸等を用いて金属を脱
着させる時、脱着時のpHを変えることで重金属イオン
の選択的な回収がある程度可能となる場合がある。
Next, formation of flocs of nickel ions, zinc ions and the like by the polymer flocculant will be described. The polymer flocculant desirably reacts selectively with heavy metal ions in water to form a water-insoluble metal floc. Examples of the polymer flocculant for selective collection of heavy metals include polyacrylic acid, polyvinyl alcohol, and polyethylenemine. The size of the flock to be formed is 5
Since it is 0 μm or more, an MF film is sufficient for the film to be used, and it is sufficient if the pore size is 50 μm or more.
If the polymer flocculant is well selected and floc formation is sufficiently performed, a pore diameter of about 200 μm may be used. Further, instead of the polymer flocculant, a liquid chelating agent having a certain ability to selectively remove heavy metals may be used. If it is difficult to selectively adsorb and coagulate metals even when using a liquid chelating agent, when the metal is desorbed from the liquid chelating agent using sulfuric acid, etc., the pH at the time of desorption is changed to selectively select heavy metal ions. Recovery may be possible to some extent.

【0048】本発明に用いる膜の材質であるが、排水の
pHが1〜3程度であるため、耐酸性のあることが必須
条件である。また、排水の水温が20℃〜40℃である
ため耐熱性があることや、さらに、生成する金属水酸化
物に対する耐磨耗性があることも要求される。膜の材質
として、メタル系としてステンレス繊維、無機系として
セラミックス、ガラス繊維、有機高分子系としてポリス
ルホン、ポリオレフィン、ポリプロピレン、ポリビニル
アルコール、ポリアクリロニトリルなどがある。このう
ち、セラミックスは、耐酸性、耐磨耗性、耐熱性の点で
優れており、メッキ排水等に用いる膜の材質として最適
であると考えられる。セラミックスの材料としては、シ
リカ−アルミナ系の粘土が主体であることが望ましい
が、これに発電所の副産物であるフライアッシュや製鉄
所の副産物である高炉スラグ、転炉スラグを混合しても
かまわない。このことにより、セラミックスのコスト低
減が可能となる。
As the material of the membrane used in the present invention, since the pH of the wastewater is about 1 to 3, it is essential that the membrane has acid resistance. Further, since the water temperature of the waste water is 20 ° C. to 40 ° C., it is required to have heat resistance, and further, to have abrasion resistance to the generated metal hydroxide. Examples of the material of the film include stainless steel fiber as a metal material, ceramics and glass fiber as an inorganic material, and polysulfone, polyolefin, polypropylene, polyvinyl alcohol, and polyacrylonitrile as an organic polymer material. Among them, ceramics are excellent in acid resistance, abrasion resistance, and heat resistance, and are considered to be optimal as a material of a film used for plating drainage and the like. It is desirable that the ceramic material is mainly silica-alumina clay, but it is also possible to mix fly ash, which is a by-product of a power plant, and blast furnace slag and converter slag, which are by-products of a steel mill. Absent. This makes it possible to reduce the cost of ceramics.

【0049】次に、本発明の実施方法を図1を用いて述
べる。
Next, an embodiment of the present invention will be described with reference to FIG.

【0050】本発明を実施する装置は、pH調整槽1、
セラミックス膜等を充填したMF膜分離装置2、ポンプ
3、再pH調整槽4、RO膜分離装置5、再溶解槽6か
ら構成されている。膜分離装置2は、 独立して設置し
ても、pH調整槽1内部に設置してもかまわない。
The apparatus for carrying out the present invention comprises a pH adjusting tank 1,
It comprises an MF membrane separation device 2 filled with a ceramic membrane or the like, a pump 3, a re-pH adjustment tank 4, an RO membrane separation device 5, and a re-dissolution tank 6. The membrane separation device 2 may be installed independently or may be installed inside the pH adjustment tank 1.

【0051】重金属を含有する排水の連続処理は以下の
通り実施する。
The continuous treatment of wastewater containing heavy metals is carried out as follows.

【0052】まず、重金属を含有する排水をpH調整槽
1の滞留時間(HRT)が30分になるように供給す
る。続いて、MF膜分離装置2に接続したポンプ3を稼
働させる。処理水のポンプ3は、pH調整槽1に設置し
た液面スイッチと連動しており、pH調整槽1の水位に
よって制御される。pH調整槽1内で生成した金属水酸
化物は、MF膜分離装置2内の膜によって濃縮される。
濃縮水酸化金属は、再溶解槽6で溶解され、高濃度のニ
ッケル、亜鉛溶液となり、工場のメッキ浴等で再利用さ
れる。
First, waste water containing heavy metals is supplied so that the residence time (HRT) in the pH adjusting tank 1 becomes 30 minutes. Subsequently, the pump 3 connected to the MF membrane separation device 2 is operated. The pump 3 for the treated water is linked with a liquid level switch installed in the pH adjusting tank 1 and is controlled by the water level in the pH adjusting tank 1. The metal hydroxide generated in the pH adjustment tank 1 is concentrated by the membrane in the MF membrane separation device 2.
The concentrated metal hydroxide is dissolved in the re-dissolution tank 6 to form a high-concentration nickel or zinc solution, which is reused in a plating bath or the like in a factory.

【0053】MF膜透過液は、再pH調整槽4でpH=
7〜8とし、RO膜分離装置5により処理して工業用水
として再利用する。
The MF membrane-permeated liquid was adjusted to pH =
7 to 8 and treated by the RO membrane separation device 5 to reuse as industrial water.

【0054】この結果、少量のRO膜濃縮液が発生する
が、無機イオンが主体であるのでこのまま公共水域に放
流できる。
As a result, a small amount of the RO membrane concentrate is generated, but can be discharged into a public water area as it is because inorganic ions are mainly contained.

【0055】次に、MF膜分離装置2の洗浄方法につい
て述べる。膜を長期間運転していると、膜面に濁質が付
着してくるので透過水量が徐々に低下する。この現象を
防ぐため、定期的に膜面を洗浄し、濁質を除去する必要
がある。膜面を洗浄する方法としては、大きく分けて物
理的洗浄法と薬品を用いた化学的洗浄法がある。物理的
洗浄法としては、空気による膜の内部からのフラッシン
グ法が有効である。空気による膜内部からの洗浄とし
て、ブロアを利用する膜面洗浄方法がある。逆洗用ブロ
アは、タイマーにより、1時間毎に30秒〜1分稼働
し、高圧空気によって、膜内部から膜面を連続的に洗浄
する。物理的洗浄法のみによって透過水量の低下を防げ
ないときは、定期的に酸等によって、膜外部および内部
からフラッシングを行う。本発明の場合、膜に付着する
成分は、金属水酸化物であると考えられるので、酸によ
って、容易に付着物を溶解させることができる。溶解し
た排水は、pH調整槽1に戻し、再処理を行う。
Next, a method of cleaning the MF membrane separation device 2 will be described. If the membrane is operated for a long period of time, the amount of permeated water gradually decreases because turbidity adheres to the membrane surface. In order to prevent this phenomenon, it is necessary to periodically clean the membrane surface to remove turbidity. Methods for cleaning the film surface are roughly classified into a physical cleaning method and a chemical cleaning method using a chemical. As a physical cleaning method, a flushing method from the inside of the film with air is effective. As a method for cleaning the inside of the membrane with air, there is a membrane surface cleaning method using a blower. The backwashing blower is operated for 30 seconds to 1 minute every hour by a timer, and continuously cleans the membrane surface from the inside of the membrane with high-pressure air. When the decrease in the amount of permeated water cannot be prevented only by the physical cleaning method, flushing is performed periodically from the outside and inside of the membrane with an acid or the like. In the case of the present invention, since the component adhering to the film is considered to be a metal hydroxide, the adhering matter can be easily dissolved by the acid. The dissolved wastewater is returned to the pH adjustment tank 1 and reprocessed.

【0056】このように、本発明により、金属含有排水
のほぼ完全なクローズドシステム化が可能となる。
As described above, according to the present invention, almost complete closed system of the metal-containing wastewater can be realized.

【0057】次に、ニッケル、亜鉛、2価鉄、クロムな
ど多くの金属イオンを含有する排水から、鉄およびクロ
ムを事前に選択的に除去した後、ニッケル、亜鉛を回収
する方法について説明する。
Next, a method of recovering nickel and zinc after selectively removing iron and chromium in advance from wastewater containing many metal ions such as nickel, zinc, ferrous iron and chromium will be described.

【0058】通常の中和凝集沈殿法では、pHを8〜1
0にすると、ニッケル、亜鉛、2価鉄、クロムの水酸化
物が混在するスラッジが発生する。このため、スラッジ
の再利用が困難である。また、このような排水の場合、
膜法のみでは分離回収が困難である。
In the ordinary neutralization coagulation sedimentation method, the pH is adjusted to 8 to 1
When it is set to 0, sludge containing a mixture of nickel, zinc, ferrous iron and chromium hydroxide is generated. For this reason, it is difficult to reuse sludge. In the case of such drainage,
Separation and recovery are difficult using only the membrane method.

【0059】そこで、本発明者は以下のような方法で有
価金属を2つのグループに分け、回収・再利用する方法
を見いだした。この処理フローを図2に示す。
Therefore, the present inventor has found a method of dividing and collecting valuable metals into two groups by the following method. FIG. 2 shows this processing flow.

【0060】まず、排水中の鉄とクロムを除去する方法
について述べる。本発明者は、3価鉄がpHが3〜4の
領域で水酸化物として沈降する場合、クロムも鉄との共
沈現象によって除去される現象を見いだした。このpH
領域ではニッケル、亜鉛は水酸化物を生成せず、また、
共沈現象も生じない。このため、鉄、クロムとニッケ
ル、亜鉛を分離できるのである。
First, a method for removing iron and chromium in wastewater will be described. The present inventor has found that when trivalent iron precipitates as hydroxide in the pH range of 3 to 4, chromium is also removed by coprecipitation with iron. This pH
Nickel and zinc do not produce hydroxides in the area,
No coprecipitation phenomenon occurs. Therefore, iron, chromium and nickel, and zinc can be separated.

【0061】メッキ工場排水等の金属含有排水は、通
常、pHが1〜2と低く、排水に含まれるのは2価鉄で
ある。3価鉄はpHがかなり低くても沈殿するが、2価
鉄はpHが低いと溶解している。したがって、分離回収
のためには、まず、低pH領域で2価鉄を3価鉄まで酸
化する必要がある。
[0061] Metal-containing wastewater such as plating factory wastewater usually has a low pH of 1-2, and the wastewater contains ferrous iron. Ferric iron precipitates at very low pH, whereas ferrous iron dissolves at low pH. Therefore, for separation and recovery, it is first necessary to oxidize ferrous iron to trivalent iron in a low pH region.

【0062】重金属含有排水に含まれている2価鉄を3
価鉄まで酸化する方法として、次亜塩素酸ナトリウムや
過酸化水素などの薬剤やオゾンなどを用いて酸化する方
法が広く知られている。ただし、2価鉄を次亜塩素酸ナ
トリウムや過酸化水素などの薬剤で酸化する方法は、酸
化剤の添加量の制御が難しい。また、排水中の2価鉄の
濃度が高い場合、酸化剤の処理コストが極めて高くなる
欠点がある。
The ferrous iron contained in the heavy metal-containing wastewater
As a method of oxidizing to valent iron, a method of oxidizing using agents such as sodium hypochlorite and hydrogen peroxide, ozone, and the like is widely known. However, in the method of oxidizing ferrous iron with a chemical such as sodium hypochlorite or hydrogen peroxide, it is difficult to control the amount of the oxidizing agent. Further, when the concentration of divalent iron in the wastewater is high, there is a disadvantage that the treatment cost of the oxidizing agent becomes extremely high.

【0063】これらの方法のほかに、鉄酸化細菌を用い
る2価鉄の生物学的酸化方法がある。鉄酸化細菌として
は、中性・糸状細菌と酸性・非糸状細菌に大別される
が、ここで用いる細菌は、後者の酸性・非糸状細菌であ
る。化学合成独立細菌であるThiobachillus ferrooxida
nsが代表的な細菌として知られている。廃水中の2価鉄
を3価鉄まで酸化するこのような生物学的方法、いわゆ
る鉄酸化細菌によって酸化する方法は、特公昭47−3
8981号、特公昭55−18559号、特公昭55−
22345号、特公昭57−44393号の各公報など
で知られている。鉄酸化細菌により2価鉄を含む排水を
処理する場合、pHが低い段階で、2価鉄を3価鉄ま
で、迅速に酸化することができ、コストも化学的酸化方
法より安価である。ただし、鉄酸化細菌は、有機物を分
解するような従属栄養細菌と比較すると、増殖速度が極
めて小さく、また、フロックを形成する能力が小さい。
したがって、生物反応槽で鉄酸化細菌を高濃度に維持す
る方策が必要である。しかし、通常の生物反応槽−沈殿
池からなるプロセスは、生物反応槽での鉄酸化細菌の濃
度が鉄酸化細菌の沈殿池での沈降性に支配されており、
生物反応槽での鉄酸化細菌の高濃度化に限界がある。ま
た、生物反応槽のエアレーション量が過大であると、鉄
酸化細菌のフロックが破壊され沈殿池から処理水に流出
してしまいやすい。この結果、沈殿池から生物反応槽に
鉄酸化細菌が返送されないため、生物反応槽での鉄酸化
細菌の濃度が急速に低下する場合がある。
In addition to these methods, there is a biological oxidation method of ferrous iron using iron oxidizing bacteria. Iron-oxidizing bacteria are roughly classified into neutral / filamentous bacteria and acidic / non-filamentous bacteria, and the bacteria used here are the latter acidic / non-filamentous bacteria. Thiobachillus ferrooxida, a chemically synthesized independent bacterium
NS is known as a representative bacterium. Such a biological method of oxidizing ferrous iron in wastewater to trivalent iron, that is, a method of oxidizing iron by a so-called iron oxidizing bacterium, is disclosed in Japanese Patent Publication No. 47-3 / 1973.
No. 8981, No. 55-18559, No. 55-
Nos. 22345 and 57-43393. When treating wastewater containing iron (II) with iron-oxidizing bacteria, iron (II) can be rapidly oxidized to iron (III) at a low pH, and the cost is lower than that of the chemical oxidation method. However, the iron oxidizing bacteria have a very low growth rate and a small ability to form flocs as compared with heterotrophic bacteria that degrade organic matter.
Therefore, measures are needed to maintain high concentrations of iron oxidizing bacteria in biological reactors. However, in a process comprising a normal biological reactor-sedimentation basin, the concentration of iron oxidizing bacteria in the biological reactor is governed by the sedimentation of the iron oxidizing bacteria in the sedimentation basin.
There is a limit to increasing the concentration of iron-oxidizing bacteria in biological reactors. Also, if the amount of aeration in the biological reaction tank is excessive, the flocs of iron oxidizing bacteria are destroyed and easily flow out of the sedimentation pond into the treated water. As a result, since the iron-oxidizing bacteria are not returned from the sedimentation tank to the biological reaction tank, the concentration of the iron-oxidizing bacteria in the biological reaction tank may decrease rapidly.

【0064】したがって、鉄酸化細菌を用いるために
は、通常の生物反応槽−沈殿池からなるプロセスより
も、鉄酸化細菌反応槽8の内部または外部に鉄酸化細菌
回収用MF膜分離装置9を設置し、鉄酸化細菌と処理水
を分離するのが望ましい。鉄酸化細菌の大きさは1μm
程度であるので、膜としては、孔径が1μm以上のMF
膜でよい。実際には、鉄酸化細菌は鉄水酸化物に付着・
増殖したり、フロックをある程度形成するので、10μ
m程度の孔径でもかまわない。膜径を大きくできれば、
透過水量が大きくなり、設備を小型化できる利点があ
る。また、逆洗も容易となる。鉄酸化細菌のフロック形
成を促すため、鉄酸化細菌反応槽8に鉄酸化細菌の活性
を阻害しない程度に高分子凝集剤を投入してもかまわな
い。この場合は、鉄酸化細菌回収用MF膜分離装置9に
200μm程度の孔径の膜を用いてもかまわない。
Therefore, in order to use the iron-oxidizing bacteria, the MF membrane separation device 9 for collecting the iron-oxidizing bacteria is installed inside or outside the iron-oxidizing bacteria reaction tank 8 in comparison with the ordinary biological reaction tank-sedimentation tank process. It is desirable to install and separate iron oxidizing bacteria and treated water. Size of iron oxidizing bacteria is 1μm
MF, the pore size of the MF is 1 μm or more.
A membrane is sufficient. In fact, iron oxidizing bacteria adhere to iron hydroxide
Proliferates and forms floc to some extent;
A hole diameter of about m may be used. If the membrane diameter can be increased,
There is an advantage that the amount of permeated water increases and the equipment can be downsized. Also, backwashing becomes easy. In order to promote the formation of iron-oxidizing bacterial flocs, a polymer flocculant may be added to the iron-oxidizing bacteria reaction tank 8 to such an extent that the activity of the iron-oxidizing bacteria is not inhibited. In this case, a membrane having a pore size of about 200 μm may be used for the MF membrane separator 9 for collecting iron-oxidizing bacteria.

【0065】また、膜の材質は、酸化鉄が膜に付着しや
すいので、膜洗浄が容易なセラミックスが望ましい。
Further, the material of the film is preferably a ceramic which is easy to clean because iron oxide easily adheres to the film.

【0066】本例では、沈殿池にかえて、鉄酸化細菌回
収用MF膜分離装置9を設置しているので、鉄酸化細菌
反応槽8の鉄酸化細菌の濃度調整が鉄酸化細菌の沈降性
と無関係になり、鉄酸化細菌反応槽8の鉄酸化細菌の高
濃度化が容易となる。この結果、本例では、鉄酸化細菌
反応槽8の鉄酸化細菌の濃度を従来と比較して、2〜3
倍に維持することが可能となる。このため、鉄酸化細菌
反応槽8の容積は、従来と比較して、1/2〜1/3に
小型化できる。
In this example, since the MF membrane separation device 9 for collecting iron oxidizing bacteria is installed in place of the sedimentation basin, the concentration of iron oxidizing bacteria in the iron oxidizing bacterium reaction tank 8 is controlled by the precipitation of iron oxidizing bacteria. And the concentration of iron-oxidizing bacteria in the iron-oxidizing bacteria reaction tank 8 can be easily increased. As a result, in this example, the concentration of the iron-oxidizing bacteria in the iron-oxidizing bacteria reaction tank 8 was 2-3
It can be maintained twice. For this reason, the volume of the iron oxidizing bacteria reaction tank 8 can be reduced to 1/2 to 1/3 as compared with the conventional case.

【0067】生物学的酸化方法により、pH=3〜4の
領域で、2価鉄イオンは3価鉄イオンとなり、さらに鉄
酸化細菌反応槽8内で水酸化物となる。このとき、3価
クロムも同時に共沈により沈殿する。このようにして生
成した鉄−クロム系スラッジは、乾燥−造粒後、ステン
レス原料として再利用可能である。なお、排水中にクロ
ムが含まれない場合には、再利用がさらに容易であり、
鉄系スラッジとして製鉄所の高炉で再利用が可能とな
る。
According to the biological oxidation method, in the range of pH = 3-4, ferrous ions turn into trivalent iron ions and further turn into hydroxides in the iron oxidizing bacteria reaction tank 8. At this time, trivalent chromium is simultaneously precipitated by coprecipitation. The iron-chromium-based sludge thus produced can be reused as a raw material for stainless steel after drying-granulation. If chromium is not contained in the wastewater, it is easier to reuse,
It can be reused as iron sludge in the blast furnace of a steel mill.

【0068】さらに、処理水中には、ニッケルイオン、
亜鉛イオンが残留している。この処理については、pH
調整槽1においてpHを8〜10とし、ニッケル、亜鉛
の水酸化物を形成させた後、MF膜分離装置2によっ
て、ニッケル、亜鉛の水酸化物を回収すればよい。回収
されたニッケル、亜鉛の水酸化物は、再溶解槽6にて溶
解され、工場のメッキ浴で再利用される。
Further, nickel ions,
Zinc ions remain. For this treatment, the pH
After adjusting the pH to 8 to 10 in the adjustment tank 1 and forming nickel and zinc hydroxides, the MF membrane separator 2 may be used to recover the nickel and zinc hydroxides. The recovered nickel and zinc hydroxides are dissolved in the re-dissolution tank 6 and reused in the plating bath at the factory.

【0069】MF膜透過液は、再pH調整槽4でpH=
7〜8とし、RO膜分離装置5により処理して工業用水
として再利用する。少量のRO膜濃縮液が発生するが、
無機イオンが主体であるのでこのまま公共水域に放流で
きる。
The MF membrane permeated liquid is adjusted to pH =
7 to 8 and treated by the RO membrane separation device 5 to reuse as industrial water. A small amount of RO membrane concentrate is generated,
Since it is mainly composed of inorganic ions, it can be discharged into public water bodies as it is.

【0070】[0070]

【実施例1】本発明の方法を、製鉄所から発生するメッ
キ工場リンス排水へ適用した。適用した排水は、Ni2+
を平均50mg/l、また、Zn2+を150mg/l含
有しており、Fe2+はほとんど含まれていなかった。排
水の水温は、10℃〜35℃程度であった。従来、中和
凝集沈殿法により処理されており、発生するスラッジは
廃棄処分されていた。このような製鉄所から発生するメ
ッキ排水の処理に、本法を適用した例を図1に基づいて
説明する。
EXAMPLE 1 The method of the present invention was applied to a plating plant rinse drainage generated from a steel mill. The applied wastewater is Ni 2+
Was contained at an average of 50 mg / l, Zn 2+ was contained at 150 mg / l, and almost no Fe 2+ was contained. The water temperature of the waste water was about 10 ° C to 35 ° C. Conventionally, it has been treated by the neutralization coagulation sedimentation method, and the generated sludge has been disposed of. An example in which the present method is applied to the treatment of plating wastewater generated from such a steelworks will be described with reference to FIG.

【0071】まず、pH調整槽1において、1molの
NaOH溶液によって、排水のpHを10に調整した。
5分間急速攪拌、20分間緩速攪拌し、水酸化物を生成
させ、ポンプ3によりMF膜分離装置2に通水した。な
お、MF膜分離装置2は、pH調整槽1内部の出口付近
に沈積させた。
First, in the pH adjusting tank 1, the pH of the waste water was adjusted to 10 with a 1 mol NaOH solution.
The mixture was rapidly stirred for 5 minutes and slowly stirred for 20 minutes to generate a hydroxide, and the water was passed through the MF membrane separation device 2 by the pump 3. The MF membrane separation device 2 was deposited near the outlet inside the pH adjustment tank 1.

【0072】MF膜分離装置2の膜としては、孔径が1
μmのシリカ−アルミナ系セラミックス膜を用いた。膜
の逆洗は、逆洗用ブロアにより1時間毎に30秒稼働
し、1〜5kg/cm2の空気によって、セラミックス
内部から膜面を連続的に洗浄した。
The membrane of the MF membrane separator 2 has a pore size of 1
A μm silica-alumina ceramic film was used. Backwashing of the membrane was performed by a backwashing blower for 30 seconds every hour, and the membrane surface was continuously washed from the inside of the ceramic with 1 to 5 kg / cm 2 of air.

【0073】連続処理の処理水は、表1に示すように、
Ni2+が平均0.04mg/l、Zn2+も平均0.33
mg/l以下と良好であった。さらに、水酸化物濃縮液
に10%硫酸を投入しpH=1に調整したところ、N
i、Znの高濃度液が得られ、再利用が可能となった。
Ni、Znとも76〜77倍に濃縮できた。
As shown in Table 1, the treated water of the continuous treatment is as follows:
Ni 2+ averages 0.04 mg / l, Zn 2+ averages 0.33
mg / l or less was good. Furthermore, when 10% sulfuric acid was added to the hydroxide concentrate to adjust the pH to 1, N
A high concentration solution of i and Zn was obtained, and reuse became possible.
Both Ni and Zn could be concentrated 76 to 77 times.

【0074】本発明により、規制値を遵守する処理水が
得られるとともに、従来は不可能であった有価金属を回
収でき、スラッジ廃棄処分費を削減できた。
According to the present invention, it is possible to obtain treated water that complies with the regulation value, to recover valuable metals that were impossible in the past, and to reduce sludge disposal costs.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【実施例2】本発明の方法を、製鉄所から発生し多くの
金属イオンを含有するメッキ工場排水へ適用した。
Example 2 The method of the present invention was applied to a plating plant effluent generated from an ironworks and containing many metal ions.

【0077】排水は、pHが2〜3、Fe2+が平均50
0mg/l、Ni2+ が平均500mg/l、Zn2+
平均300mg/l、Cr3+が平均100mg/lであ
った。排水の水温は、10℃〜35℃程度であった。こ
のような製鉄所から発生するメッキ排水の処理に、本方
法を適用した例を図2を用い説明する。
The effluent has a pH of 2 to 3 and an average of 50% of Fe 2+.
0 mg / l, Ni 2+ averaged 500 mg / l, Zn 2+ averaged 300 mg / l, and Cr 3+ averaged 100 mg / l. The water temperature of the waste water was about 10 ° C to 35 ° C. An example in which the present method is applied to the treatment of plating wastewater generated from such a steelworks will be described with reference to FIG.

【0078】まず、鉄酸化細菌反応槽8に、都市下水の
処理を行っている下水処理場の活性汚泥(活性汚泥濃
度:1000mg/l)を投入し、沈殿させ、上澄液を
投棄した後、排水を投入し、エアレーションを行い、鉄
酸化細菌の増殖を図った。エアレーションは、鉄酸化細
菌反応槽8のDO(溶存酸素)を3mg/lと設定し
て、DOによって制御した。鉄酸化細菌反応槽8のpH
は、10%硫酸および10%NaOH水溶液によって、
3に制御した。窒素、リンは、それぞれ10mg/lず
つ鉄酸化細菌反応槽8に添加した。鉄酸化細菌反応槽8
に排水を供給してから約2週間後に、鉄酸化細菌反応槽
8のORP(酸化還元電位)が+550mV以上とな
り、処理水のFe2+が10mg/l以下となった。この
段階で、鉄酸化細菌反応槽8の汚泥を沈殿させ、上澄液
をすて、同じ排水を供給した。この操作を繰り返し、鉄
酸化細菌が増殖し、24時間以内に、処理水のFe2+
10mg/l以下となった段階で、バッチ処理から連続
運転(HRT=3時間)に移行した。
First, activated sludge (active sludge concentration: 1000 mg / l) from a sewage treatment plant that is treating municipal sewage is put into the iron oxidizing bacteria reaction tank 8, settled, and the supernatant is discarded. Then, wastewater was charged, aeration was performed, and the growth of iron-oxidizing bacteria was attempted. The aeration was controlled by DO with the DO (dissolved oxygen) in the iron oxidizing bacteria reaction tank 8 set to 3 mg / l. PH of iron oxidizing bacteria reaction tank 8
With 10% sulfuric acid and 10% aqueous NaOH,
Controlled at 3. Nitrogen and phosphorus were added to the iron oxidizing bacteria reaction tank 8 at 10 mg / l each. Iron oxidizing bacteria reaction tank 8
About two weeks after supplying the wastewater, the ORP (redox potential) of the iron oxidizing bacteria reaction tank 8 became +550 mV or more, and the Fe 2+ of the treated water became 10 mg / l or less. At this stage, the sludge in the iron oxidizing bacteria reaction tank 8 was settled, the supernatant was removed, and the same wastewater was supplied. This operation was repeated, and the iron-oxidizing bacteria multiplied, and within 24 hours, when the Fe 2+ of the treated water became 10 mg / l or less, the process was shifted from batch processing to continuous operation (HRT = 3 hours).

【0079】鉄酸化細菌反応槽8の内部に設置した鉄酸
化細菌回収用MF膜分離装置9の膜としては、シリカ−
アルミナ系のセラミックスで孔径が10μmのMF膜を
用いた。MF膜の逆洗用ブロアは、タイマーにより、1
時間毎に1分稼働し、5kg/cm2の空気によって、
セラミックス膜内部から膜面を連続的に洗浄した。ま
た、連続運転においては、エアレーション量を、鉄酸化
細菌反応槽8のORPを+550mV(Ag/AgCl
基準)と設定して、ORPによってブロアを制御した。
The membrane of the MF membrane separation device 9 for collecting iron oxidizing bacteria installed inside the iron oxidizing bacterium reaction tank 8 was silica-based.
An MF film made of alumina ceramics and having a pore diameter of 10 μm was used. The blower for backwashing the MF membrane is set to 1
It runs for 1 minute every hour, with 5 kg / cm 2 of air,
The film surface was continuously cleaned from the inside of the ceramic film. In the continuous operation, the aeration amount was set to +550 mV (Ag / AgCl
And the blower was controlled by the ORP.

【0080】この結果、連続処理の処理水は、Fe2+
0.5mg/l以下と良好であった。MF膜で生成した
水酸化鉄、水酸化クロムおよび鉄酸化細菌の濃縮液は、
一部が鉄酸化細菌反応槽8に返送され、一部は引き抜
き、乾燥・造粒後、再利用した。鉄酸化細菌反応槽8内
には、水酸化鉄、水酸化クロムおよび鉄酸化細菌が蓄積
し、MLSS(Mixed liquor suspended solids)濃度と
して、100〜200g/lで管理した。
As a result, the treated water in the continuous treatment had a good Fe 2+ of 0.5 mg / l or less. The concentrated solution of iron hydroxide, chromium hydroxide and iron oxidizing bacteria generated by the MF membrane
A part was returned to the iron oxidizing bacteria reaction tank 8, and a part was withdrawn, dried, granulated, and reused. Iron hydroxide, chromium hydroxide, and iron oxidizing bacteria were accumulated in the iron oxidizing bacteria reaction tank 8, and the MLSS (Mixed liquor suspended solids) concentration was controlled at 100 to 200 g / l.

【0081】さらに、鉄酸化細菌処理水を1molのN
aOH溶液によって、pH調整槽1においてpHを9に
調整した。5分間急速攪拌、20分間緩速攪拌し、ニッ
ケルと亜鉛の水酸化物を生成させた。この後、ポンプ3
により、pH調整槽1外部に設置したMF膜分離装置2
に通水した。 MF膜分離装置2の膜としては、孔径が
1μmのシリカ−アルミナ系セラミックス製MF膜を用
いた。MF膜の逆洗は、逆洗用ブロアにより1時間毎に
30秒稼働し、1〜5kg/cm2の空気によって、セ
ラミックス内部から膜面を連続的に洗浄した。
Further, 1 mol of N-treated water
The pH was adjusted to 9 in the pH adjusting tank 1 with the aOH solution. The mixture was rapidly stirred for 5 minutes and slowly stirred for 20 minutes to produce a nickel and zinc hydroxide. After this, pump 3
MF membrane separation device 2 installed outside pH adjustment tank 1
Water. As the membrane of the MF membrane separation device 2, a silica-alumina-based ceramics MF membrane having a pore diameter of 1 μm was used. The backwashing of the MF film was performed by a backwashing blower for 30 seconds every hour, and the film surface was continuously washed from the inside of the ceramic with 1 to 5 kg / cm 2 of air.

【0082】連続処理の処理水は、表2に示すように、
Ni2+が平均0.04mg/l、Zn2+も平均0.33
mg/l以下と良好であった。また、再溶解槽6におい
て、MF膜分離後の30倍濃縮のNi、Zn水酸化物に
30%硫酸を投入し、pH=0.7に調整した。この結
果、Ni、Znとも約27倍に濃縮でき、メッキ液とし
て再利用できた。膜透過水はRO膜分離装置5で処理
し、工業用水として再利用した。
As shown in Table 2, the treated water of the continuous treatment is as follows:
Ni 2+ averages 0.04 mg / l, Zn 2+ averages 0.33
mg / l or less was good. In the re-dissolution tank 6, 30% sulfuric acid was added to 30-fold concentrated Ni and Zn hydroxides after the MF membrane separation, and the pH was adjusted to 0.7. As a result, both Ni and Zn could be concentrated about 27 times, and could be reused as a plating solution. The membrane permeated water was treated by the RO membrane separation device 5 and reused as industrial water.

【0083】[0083]

【表2】 [Table 2]

【0084】[0084]

【発明の効果】本発明により、メッキ工場などから発生
する金属含有排水を効率的にかつ安定して処理するとと
もに、排水から有価金属を回収・再利用することによ
り、スラッジの発生量を削減できる。
According to the present invention, the amount of sludge generated can be reduced by efficiently and stably treating metal-containing wastewater generated from plating plants and the like, and by collecting and reusing valuable metals from the wastewater. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理フローの一例を示す図である。FIG. 1 is a diagram showing an example of a processing flow of the present invention.

【図2】本発明の処理フローの一例を示す図である。FIG. 2 is a diagram showing an example of a processing flow of the present invention.

【符号の説明】[Explanation of symbols]

1 pH調整槽 2 MF膜分離装置 3 ポンプ 4 再pH調整槽 5 RO膜分離装置 6 再溶解槽 7 ポンプ 8 鉄酸化細菌反応槽 9 鉄酸化細菌回収用MF膜分離装置 10 ポンプ DESCRIPTION OF SYMBOLS 1 pH adjustment tank 2 MF membrane separation apparatus 3 Pump 4 Re-pH adjustment tank 5 RO membrane separation apparatus 6 Re-dissolution tank 7 Pump 8 Iron oxidizing bacteria reaction tank 9 MF membrane separation apparatus for iron oxidizing bacteria recovery 10 Pump

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/56 C02F 1/56 K 1/64 1/64 3/34 3/34 Z Fターム(参考) 4D006 GA03 GA07 HA95 KA01 KA43 KA46 KB22 KC03 KC14 KD08 KD11 KD17 KE15P KE15Q KE15R MA22 MB12 MB15 MB16 MC03 MC03X PA04 PA05 PB08 PB27 PB70 PC22 4D038 AA08 AB65 AB66 AB67 AB69 BA04 BA06 BB09 BB13 BB16 BB19 4D040 DD05 DD20 4D062 BA05 BA06 BA19 BA22 BB06 CA17 DB02 DB12 DB18 DB23 EA07 EA13 EA15 EA16 EA37 FA03 FA17 FA30 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/56 C02F 1/56 K 1/64 1/64 3/34 3/34 Z F term (reference) 4D006 GA03 GA07 HA95 KA01 KA43 KA46 KB22 KC03 KC14 KD08 KD11 KD17 KE15P KE15Q KE15R MA22 MB12 MB15 MB16 MC03 MC03X PA04 PA05 PB08 PB27 PB70 PC22 4D038 AA08 AB65 AB66 AB67 AB69 BA04 BA06 BB09 BA19 BB13 4DB06 BB13 4DB06 BB13 BB06 DB23 EA07 EA13 EA15 EA16 EA37 FA03 FA17 FA30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金属含有排水のpHを調整して金属水酸
化物を形成させた後、1μm〜10μmの孔径を有する
膜分離装置に通水することにより、水と金属水酸化物と
を分離することを特徴とする金属含有排水の処理および
有価金属の回収方法。
After the pH of a metal-containing wastewater is adjusted to form a metal hydroxide, water is passed through a membrane separation device having a pore size of 1 μm to 10 μm to separate water and the metal hydroxide. A method for treating metal-containing wastewater and recovering valuable metals.
【請求項2】 金属含有排水のpHを調整して金属水酸
化物を形成させるとともに、高分子凝集剤または液体キ
レート剤を併用して投入して金属水酸化物のフロックを
形成させた後、50μm〜200μmの孔径を有する膜
分離装置に通水することにより、水と金属水酸化物のフ
ロックとを分離することを特徴とする金属含有排水の処
理および有価金属の回収方法。
2. After adjusting the pH of the metal-containing wastewater to form a metal hydroxide, and also using a polymer coagulant or a liquid chelating agent in combination to form a metal hydroxide floc, A method for treating metal-containing wastewater and recovering valuable metals, wherein water and flocs of metal hydroxide are separated by passing water through a membrane separation device having a pore size of 50 μm to 200 μm.
【請求項3】 3価クロム、2価鉄のイオンを含有する
金属含有排水から、第1段階で、pHを3〜4に調整し
て2価鉄を3価鉄に酸化することによりクロムと鉄の水
酸化物を形成させた後、1μm〜10μmの孔径を有す
る膜分離装置に通水することにより水と鉄およびクロム
の水酸化物とを分離し、次に、当該処理水から、第2段
階で、請求項1または2に記載の方法により残部金属を
分離回収することを特徴とする金属含有排水の処理およ
び有価金属の回収方法。
3. In a first step, the pH is adjusted to 3 to 4 from metal-containing wastewater containing ions of trivalent chromium and iron (II) to oxidize iron (II) to iron (III) to form chromium. After the iron hydroxide is formed, water and iron and chromium hydroxide are separated by passing water through a membrane separation device having a pore size of 1 μm to 10 μm. A method for treating metal-containing wastewater and recovering valuable metals, comprising separating and recovering the remaining metal by the method according to claim 1 or 2 in two stages.
【請求項4】 2価鉄を3価鉄に酸化する際に、鉄酸化
細菌を用いることを特徴とする請求項3に記載の金属含
有排水の処理および有価金属の回収方法。
4. The method for treating metal-containing wastewater and recovering valuable metals according to claim 3, wherein iron oxidizing bacteria are used when oxidizing ferrous iron to ferric iron.
【請求項5】 ニッケル、亜鉛、3価クロム、2価鉄の
イオンを含有する金属含有排水から、請求項3または4
に記載の方法により金属を分離回収する際、前記第2段
階において、pHを8〜10に調整してニッケルおよび
亜鉛の水酸化物を形成させ、水とニッケルおよび亜鉛の
水酸化物とを分離することを特徴とする金属含有排水の
処理および有価金属の回収方法。
5. A metal-containing wastewater containing ions of nickel, zinc, trivalent chromium and divalent iron, wherein the wastewater contains metal ions.
In the second step, the pH is adjusted to 8 to 10 to form hydroxides of nickel and zinc, and the water is separated from the hydroxides of nickel and zinc. A method for treating metal-containing wastewater and recovering valuable metals.
【請求項6】 膜分離装置として、セラミックスを素材
とした膜を用いることを特徴とする請求項1〜5のいず
れかに記載の金属含有排水の処理および有価金属の回収
方法。
6. The method for treating metal-containing wastewater and recovering valuable metals according to claim 1, wherein a membrane made of ceramics is used as the membrane separation device.
【請求項7】 分離回収した金属水酸化物の濃縮物を、
硫酸によりpHを0.5〜3に調整して金属を再溶解さ
せ、金属の濃縮液を回収し再利用することを特徴とする
請求項1〜6のいずれかに記載の金属含有排水の処理お
よび有価金属の回収方法。
7. The concentrate of a metal hydroxide separated and recovered,
The treatment of metal-containing wastewater according to any one of claims 1 to 6, wherein the metal is redissolved by adjusting the pH to 0.5 to 3 with sulfuric acid, and a concentrated solution of the metal is collected and reused. And how to collect valuable metals.
【請求項8】 金属水酸化物を分離回収した後の処理水
を逆浸透膜に通水して処理水を再利用することを特徴と
する請求項1〜7のいずれかに記載の金属含有排水の処
理方法および有価金属の回収方法。
8. The metal-containing material according to claim 1, wherein the treated water after separating and recovering the metal hydroxide is passed through a reverse osmosis membrane to reuse the treated water. Wastewater treatment method and valuable metal recovery method.
JP28839798A 1998-10-09 1998-10-09 Treatment of metal-containing wastewater and method for recovering valuable metals Expired - Fee Related JP3842907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28839798A JP3842907B2 (en) 1998-10-09 1998-10-09 Treatment of metal-containing wastewater and method for recovering valuable metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28839798A JP3842907B2 (en) 1998-10-09 1998-10-09 Treatment of metal-containing wastewater and method for recovering valuable metals

Publications (2)

Publication Number Publication Date
JP2000117270A true JP2000117270A (en) 2000-04-25
JP3842907B2 JP3842907B2 (en) 2006-11-08

Family

ID=17729687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28839798A Expired - Fee Related JP3842907B2 (en) 1998-10-09 1998-10-09 Treatment of metal-containing wastewater and method for recovering valuable metals

Country Status (1)

Country Link
JP (1) JP3842907B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210681A (en) * 1999-01-21 2000-08-02 United States Enrichment Corp Method of removing metal from cleaning liquid
JP2002045871A (en) * 2000-07-31 2002-02-12 Ngk Spark Plug Co Ltd Treating method for waste chromate liquid
JP2002177743A (en) * 2000-10-03 2002-06-25 Murata Mfg Co Ltd Method and apparatus for removing coarse metallic particle
JP2002192167A (en) * 2000-12-28 2002-07-10 Mitsui Mining & Smelting Co Ltd METHOD FOR TREATING Se AND As-CONTAINING WASTEWATER
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
JP2003088859A (en) * 2001-09-20 2003-03-25 Kurita Water Ind Ltd Treatment apparatus for gallium-containing waste water
JP2003300070A (en) * 2002-04-09 2003-10-21 Ngk Insulators Ltd Treatment method of metal-based cmp waste water
JP2006064475A (en) * 2004-08-25 2006-03-09 Horiba Ltd Pretreatment method for determinating hexavalent chromium and hexavalent chromium determinating method
JP2006212580A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp Method for treating acid waste liquid containing iron and chromium
JP2006320862A (en) * 2005-05-20 2006-11-30 Japan Organo Co Ltd Inorganic waste water treatment method and apparatus
WO2007027406A1 (en) * 2005-08-31 2007-03-08 General Electric Company Acid mine water demineralization methods
JP2007146221A (en) * 2005-11-28 2007-06-14 Nippon Parkerizing Co Ltd Method for manufacturing material provided with phosphate coating film
JP2007237054A (en) * 2006-03-07 2007-09-20 Astec Irie Co Ltd Method of recycling multicomponent metal plating waste liquid sludge
EP1985590A1 (en) 2007-04-27 2008-10-29 Jihoceska Universita V Ceskych Budejovicich The method of treatment of iron-containing waterworks sludge and a mixture prepared by this method
JP2010502436A (en) * 2006-09-07 2010-01-28 ナルコ カンパニー Method for removing heavy metals from industrial wastewater using submerged ultrafiltration membranes or microfiltration membranes
JP2010046562A (en) * 2008-08-19 2010-03-04 En-Tec Co Ltd Resource recovery type water treatment method and system
JP2010207673A (en) * 2009-03-09 2010-09-24 Takamatsu Mekki:Kk METHOD OF MANUFACTURING LOW-GRADE Ni RECYCLE SLUDGE
WO2010143623A1 (en) * 2009-06-11 2010-12-16 栗田工業株式会社 Method for recovering water and metals from plating wastewater resulting from washing
JP2011240326A (en) * 2010-05-14 2011-12-01 Jiangxi Jdl Environmental Protection Research Ltd Solid-liquid separation system and solid-liquid separation method of heavy metal waste water after chemical precipitation
JP2013155402A (en) * 2012-01-27 2013-08-15 Jfe Engineering Corp Method of recovering zinc from waste galvanizing solution
JP2013233483A (en) * 2012-05-07 2013-11-21 Mitsubishi Rayon Co Ltd Wastewater treatment device and wastewater treatment method
JP2013236983A (en) * 2012-05-11 2013-11-28 Mitsubishi Rayon Co Ltd Device and method for treating waste water
JP2013244455A (en) * 2012-05-25 2013-12-09 Mitsubishi Rayon Co Ltd Wastewater treatment apparatus and wastewater treatment method
CN105016569A (en) * 2014-04-25 2015-11-04 宝山钢铁股份有限公司 Processing system and method for cold rolling reverse osmosis strong brine
US9328003B2 (en) 2006-09-07 2016-05-03 Nalco Company Method of heavy metal removal from water streams
KR101672224B1 (en) * 2015-11-02 2016-11-03 한국지질자원연구원 Desalinatation system of sea water for producing carbonate and removing carbon dioxide
CN111892220A (en) * 2020-07-15 2020-11-06 李喜仁 Equipment and method for treating smelting flue gas waste acid
CN114314909A (en) * 2021-12-20 2022-04-12 安徽铜冠有色金属(池州)有限责任公司 Comprehensive recovery method for surface wastewater and heavy metal rainwater
CN115305355A (en) * 2022-08-12 2022-11-08 北京科技大学 Method for extracting zinc and precipitating iron from steelmaking furnace dust

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201142009A (en) * 2010-05-27 2011-12-01 zong-yu Su Manufacturing method of eco-friendly recycled fuel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390162A (en) * 1977-01-21 1978-08-08 Toyo Soda Mfg Co Ltd Recovering method for heavy metal salt
JPS59173188A (en) * 1983-03-23 1984-10-01 Ishigaki Kiko Kk Pretreatment for thickening of waste zinc water
JPS60166087A (en) * 1984-02-09 1985-08-29 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing high-concentration salts, copper and zinc
JPS62253738A (en) * 1986-02-18 1987-11-05 ジエイムズ エム.フランカ−ド Removal of dangerous metal waste sludge
JPS63294986A (en) * 1987-05-26 1988-12-01 Miyoshi Oil & Fat Co Ltd Treatment of heavy metal-containing waste water
JPH01240192A (en) * 1988-03-23 1989-09-25 Nippon Steel Corp Production of high-purity iron oxide
JPH02157090A (en) * 1988-12-09 1990-06-15 Kurita Water Ind Ltd Treatment of heavy metal-containing waste water
JPH057881A (en) * 1991-07-04 1993-01-19 Kurita Water Ind Ltd Treatment of waste water containing heavy metal
JPH07214073A (en) * 1994-01-28 1995-08-15 Kankyo Eng Kk Treatment of metal-containing waste water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390162A (en) * 1977-01-21 1978-08-08 Toyo Soda Mfg Co Ltd Recovering method for heavy metal salt
JPS59173188A (en) * 1983-03-23 1984-10-01 Ishigaki Kiko Kk Pretreatment for thickening of waste zinc water
JPS60166087A (en) * 1984-02-09 1985-08-29 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing high-concentration salts, copper and zinc
JPS62253738A (en) * 1986-02-18 1987-11-05 ジエイムズ エム.フランカ−ド Removal of dangerous metal waste sludge
JPS63294986A (en) * 1987-05-26 1988-12-01 Miyoshi Oil & Fat Co Ltd Treatment of heavy metal-containing waste water
JPH01240192A (en) * 1988-03-23 1989-09-25 Nippon Steel Corp Production of high-purity iron oxide
JPH02157090A (en) * 1988-12-09 1990-06-15 Kurita Water Ind Ltd Treatment of heavy metal-containing waste water
JPH057881A (en) * 1991-07-04 1993-01-19 Kurita Water Ind Ltd Treatment of waste water containing heavy metal
JPH07214073A (en) * 1994-01-28 1995-08-15 Kankyo Eng Kk Treatment of metal-containing waste water

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000210681A (en) * 1999-01-21 2000-08-02 United States Enrichment Corp Method of removing metal from cleaning liquid
JP4497617B2 (en) * 1999-01-21 2010-07-07 ユナイテッド ステーツ エンリッチメント コーポ レーション Method for removing metal from cleaning liquid
JP2002045871A (en) * 2000-07-31 2002-02-12 Ngk Spark Plug Co Ltd Treating method for waste chromate liquid
JP2002177743A (en) * 2000-10-03 2002-06-25 Murata Mfg Co Ltd Method and apparatus for removing coarse metallic particle
JP4660918B2 (en) * 2000-10-03 2011-03-30 株式会社村田製作所 Removal method of coarse metal particles
JP2002192167A (en) * 2000-12-28 2002-07-10 Mitsui Mining & Smelting Co Ltd METHOD FOR TREATING Se AND As-CONTAINING WASTEWATER
JP4673482B2 (en) * 2000-12-28 2011-04-20 三井金属鉱業株式会社 Se and As-containing wastewater treatment methods
KR100459861B1 (en) * 2001-04-27 2004-12-03 샤프 가부시키가이샤 Metal containing waste water treatment method and metal containing waste water treatment equipment
US7294268B2 (en) 2001-04-27 2007-11-13 Sharp Kabushiki Kaisha Metal containing waste water treatment method and metal containing waste water treatment equipment
US6896800B2 (en) 2001-04-27 2005-05-24 Sharp Kabushiki Kaisha Metal containing waste water treatment method and metal containing waste water treatment equipment
JP2002320979A (en) * 2001-04-27 2002-11-05 Sharp Corp Method and system for treating metal-containing drainage
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2003071201A (en) * 2001-09-05 2003-03-11 Nippon Steel Corp Method for disposing waste liquid containing a plurality of metals
JP2003088859A (en) * 2001-09-20 2003-03-25 Kurita Water Ind Ltd Treatment apparatus for gallium-containing waste water
JP2003300070A (en) * 2002-04-09 2003-10-21 Ngk Insulators Ltd Treatment method of metal-based cmp waste water
JP2006064475A (en) * 2004-08-25 2006-03-09 Horiba Ltd Pretreatment method for determinating hexavalent chromium and hexavalent chromium determinating method
JP4559798B2 (en) * 2004-08-25 2010-10-13 株式会社堀場製作所 Pretreatment method for determination of hexavalent chromium and method for determination of hexavalent chromium
JP2006212580A (en) * 2005-02-04 2006-08-17 Nippon Steel Corp Method for treating acid waste liquid containing iron and chromium
JP4589748B2 (en) * 2005-02-04 2010-12-01 新日本製鐵株式会社 Treatment of acidic waste liquid containing iron and chromium
JP2006320862A (en) * 2005-05-20 2006-11-30 Japan Organo Co Ltd Inorganic waste water treatment method and apparatus
JP4482488B2 (en) * 2005-05-20 2010-06-16 オルガノ株式会社 Method and apparatus for treating inorganic wastewater
WO2007027406A1 (en) * 2005-08-31 2007-03-08 General Electric Company Acid mine water demineralization methods
JP2007146221A (en) * 2005-11-28 2007-06-14 Nippon Parkerizing Co Ltd Method for manufacturing material provided with phosphate coating film
JP2007237054A (en) * 2006-03-07 2007-09-20 Astec Irie Co Ltd Method of recycling multicomponent metal plating waste liquid sludge
JP2010502436A (en) * 2006-09-07 2010-01-28 ナルコ カンパニー Method for removing heavy metals from industrial wastewater using submerged ultrafiltration membranes or microfiltration membranes
US9328003B2 (en) 2006-09-07 2016-05-03 Nalco Company Method of heavy metal removal from water streams
KR101516827B1 (en) * 2006-09-07 2015-04-30 날코 컴퍼니 Method of heavy metal removal from industrial wastewater using submerged ultrafiltration or microfiltration membranes
EP1985590A1 (en) 2007-04-27 2008-10-29 Jihoceska Universita V Ceskych Budejovicich The method of treatment of iron-containing waterworks sludge and a mixture prepared by this method
JP2010046562A (en) * 2008-08-19 2010-03-04 En-Tec Co Ltd Resource recovery type water treatment method and system
JP2010207673A (en) * 2009-03-09 2010-09-24 Takamatsu Mekki:Kk METHOD OF MANUFACTURING LOW-GRADE Ni RECYCLE SLUDGE
JP2010284593A (en) * 2009-06-11 2010-12-24 Kurita Water Ind Ltd Method for recovering water and metal from washing wastewater in electroplating
CN102459096A (en) * 2009-06-11 2012-05-16 栗田工业株式会社 Method for recovering water and metal from plating cleaning waste water
WO2010143623A1 (en) * 2009-06-11 2010-12-16 栗田工業株式会社 Method for recovering water and metals from plating wastewater resulting from washing
JP2011240326A (en) * 2010-05-14 2011-12-01 Jiangxi Jdl Environmental Protection Research Ltd Solid-liquid separation system and solid-liquid separation method of heavy metal waste water after chemical precipitation
JP2013155402A (en) * 2012-01-27 2013-08-15 Jfe Engineering Corp Method of recovering zinc from waste galvanizing solution
JP2013233483A (en) * 2012-05-07 2013-11-21 Mitsubishi Rayon Co Ltd Wastewater treatment device and wastewater treatment method
JP2013236983A (en) * 2012-05-11 2013-11-28 Mitsubishi Rayon Co Ltd Device and method for treating waste water
JP2013244455A (en) * 2012-05-25 2013-12-09 Mitsubishi Rayon Co Ltd Wastewater treatment apparatus and wastewater treatment method
CN105016569A (en) * 2014-04-25 2015-11-04 宝山钢铁股份有限公司 Processing system and method for cold rolling reverse osmosis strong brine
CN105016569B (en) * 2014-04-25 2017-04-26 宝山钢铁股份有限公司 Processing system and method for cold rolling reverse osmosis strong brine
KR101672224B1 (en) * 2015-11-02 2016-11-03 한국지질자원연구원 Desalinatation system of sea water for producing carbonate and removing carbon dioxide
CN111892220A (en) * 2020-07-15 2020-11-06 李喜仁 Equipment and method for treating smelting flue gas waste acid
CN114314909A (en) * 2021-12-20 2022-04-12 安徽铜冠有色金属(池州)有限责任公司 Comprehensive recovery method for surface wastewater and heavy metal rainwater
CN115305355A (en) * 2022-08-12 2022-11-08 北京科技大学 Method for extracting zinc and precipitating iron from steelmaking furnace dust
CN115305355B (en) * 2022-08-12 2023-06-27 北京科技大学 Method for extracting zinc and precipitating iron from steel-making furnace dust

Also Published As

Publication number Publication date
JP3842907B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3842907B2 (en) Treatment of metal-containing wastewater and method for recovering valuable metals
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
JP3883445B2 (en) Sewage treatment equipment
US9056784B2 (en) High efficiency water-softening process
US8603344B2 (en) Method and apparatus for removing metal from waste water
US5378366A (en) Hot lime precipitation of arsenic from wastewater or groundwater
US20020003116A1 (en) System and method for removal of arsenic from aqueous solutions
US6485696B1 (en) Recovery/removal of metallic elements from waste water using ozone
CN113003846B (en) Zero-emission treatment process and system for sewage with high salt content and high COD (chemical oxygen demand)
JP4146078B2 (en) Method for separating and recovering nickel and zinc from wastewater or sludge containing nickel and zinc
JPH08500050A (en) Method and apparatus for the decomposition of free and complex cyanide, AOX, mineral oil, complexing agents, COD, nitrite, chromate, and metal separation in wastewater
JP5267355B2 (en) Method and apparatus for removing and collecting thallium from waste water
JP2002030352A (en) Method for recovering valuable metal from metal- containing waste water
CN113003845B (en) Zero-emission treatment process and system for sewage with high sulfate content and high COD (chemical oxygen demand)
RU2589139C2 (en) Method of cleaning drainage water of solid domestic waste landfills
JP2005238181A (en) Method for treating wastewater to recover valuable metal and plating solution manufacturing method
JP3843052B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JP4164896B2 (en) Landfill leachate treatment method
KR101646590B1 (en) Method for treating recycle water of wastewater treatment
JP4261857B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
KR20060091084A (en) Treatment method for livestock waste water including highly concentrated organic materials
JPH0975910A (en) Recovering and regenerating method of waste water
JP2002018485A (en) Method for treating metal-containing wastewater and method for recovery of valence metal from the metal- containing wastewater
RU2747686C1 (en) Method for water purification from complex compounds of heavy metals

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees