Nothing Special   »   [go: up one dir, main page]

WO2010143623A1 - Method for recovering water and metals from plating wastewater resulting from washing - Google Patents

Method for recovering water and metals from plating wastewater resulting from washing Download PDF

Info

Publication number
WO2010143623A1
WO2010143623A1 PCT/JP2010/059680 JP2010059680W WO2010143623A1 WO 2010143623 A1 WO2010143623 A1 WO 2010143623A1 JP 2010059680 W JP2010059680 W JP 2010059680W WO 2010143623 A1 WO2010143623 A1 WO 2010143623A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
metal
crystallization
plating
iron
Prior art date
Application number
PCT/JP2010/059680
Other languages
French (fr)
Japanese (ja)
Inventor
一郎 住田
勇一 村松
孝之 篠崎
Original Assignee
栗田工業株式会社
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社, 新日本製鐵株式会社 filed Critical 栗田工業株式会社
Priority to CN201080025924.7A priority Critical patent/CN102459096B/en
Publication of WO2010143623A1 publication Critical patent/WO2010143623A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/20Regeneration of process solutions of rinse-solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for efficiently recovering water and valuable metals from plating washing wastewater, and in particular, efficiently recovers both water and valuable metals such as nickel and zinc from washing wastewater in the electroplating process.
  • the present invention relates to a method for reducing the amount of sludge generated by wastewater treatment.
  • the plating washing wastewater discharged from the plating factory generally has a pH of 2 to 3, and in many cases contains valuable metals such as nickel, zinc, chromium and copper in addition to divalent iron. It is desirable to reuse.
  • a neutralization coagulation precipitation method (hydroxide precipitation method) has been adopted as a method for treating plating washing wastewater.
  • the pH of the waste water is made alkaline, and metal ions are precipitated as hydroxides and separated and removed.
  • a method of coagulating and precipitating under different pH conditions is employed. That is, this is a method in which Fe 2+ is oxidized to Fe 3+ in the presence of an oxidizing agent or the like at pH 3 to 6, and then precipitated and removed as a hydroxide, and then nickel and zinc are precipitated and separated at pH 7 to 10.
  • nickel and zinc are precipitated and separated, and then solid-liquid separation such as sand filtration and ultrafiltration, or reverse osmosis (RO) membrane treatment is performed according to the required water quality of the collected water. .
  • RO reverse osmosis
  • treatment methods for metal-containing wastewater include the sulfide precipitation method, ion exchange method, chelate resin method, and membrane separation method.
  • the sulfide precipitation method is a method in which a metal is precipitated as a sulfide by adding sodium sulfide.
  • a metal is precipitated as a sulfide by adding sodium sulfide.
  • metals can be treated at a lower concentration from the viewpoint of wastewater treatment.
  • the ion exchange method is to remove the metal ions in the waste water by adsorbing to the ion exchange resin, and if used within the range of the adsorption capacity of the ion exchange resin, the ion exchange method is reliable. It is possible to remove metal ions.
  • the chelate resin method uses a chelate resin having selectivity for a specific metal to adsorb and remove the metal. As with the ion exchange resin, it is possible to reliably remove metal ions, but the chelate resin has selectivity for the metal, and a metal that can be adsorbed and removed is specified.
  • the membrane separation method uses a RO membrane to remove metal ions, and provides a good treated water quality.
  • each method has the following problems when recovering both water and valuable metals from the metal-containing wastewater.
  • Sulfide precipitation method Sulfide has a low solubility product and can reduce the metal ion concentration. However, since the sulfide precipitate is fine, precipitation separation is poor. Further, since sulfides generate hydrogen sulfide under acidic conditions, there is a safety problem.
  • the object of the present invention is to solve the above-mentioned conventional problems and to provide a method for efficiently recovering water and metal from plating washing waste water.
  • the method for recovering water and metal from the plating cleaning wastewater according to the first aspect is a method of recovering water and metal from the plating cleaning wastewater, adjusting the plating cleaning wastewater to pH 3 to 6 in the presence of an oxidizing agent,
  • the iron insolubilization step of oxidizing the divalent iron ions into trivalent iron ions and precipitating iron hydroxide, and the treated water in the iron insolubilization step are separated into solid and liquid using a microfiltration membrane, ultrafiltration membrane or filter
  • a solid-liquid separation step, a reverse osmosis membrane separation process in which the separated water separated in the solid-liquid separation step is subjected to a reverse osmosis membrane separation process, and the permeate is taken out of the system as treated water
  • the method for recovering water and metal from the plating washing waste water according to the second aspect is the metal recovery according to the first aspect, wherein, in the crystallization step, the metal carbonate precipitated on the seed crystal is dissolved in an acid to obtain a metal salt solution. It has the process.
  • the third aspect of the method for recovering water and metal from the plating washing wastewater is characterized in that the metal salt solution obtained in the metal recovery step is reused as a plating solution.
  • the fourth aspect of the method for recovering water and metal from the plating washing wastewater is characterized in that, in any one of the first to third aspects, the treated water of the crystallization step is returned to the iron insolubilization step for treatment. To do.
  • water and metal can be efficiently recovered from the plating washing waste water.
  • iron is precipitated as iron hydroxide (Fe (OH) 3 ) in the iron insolubilization step, and this is separated and removed in the solid-liquid separation step. Since this solid-liquid separation is performed with a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, or a filter, the solid-liquid separation is excellent. Since the pH is adjusted to 3 to 6 in the iron precipitation step, iron hydroxide is precipitated, but metal ions such as nickel and zinc are dissolved. Therefore, the separated water containing the dissolved metal ions is obtained from the solid-liquid separation step.
  • MF microfiltration
  • UF ultrafiltration
  • this solid-liquid separated water is first concentrated by RO membrane separation treatment.
  • RO membrane permeated water has a water quality as good as pure water, and can be taken out of the system as treated water and reused as plating cleaning water, or used at other points of use.
  • Metal ions such as nickel and zinc concentrated in the RO-concentrated water are precipitated as metal carbonates on the seed crystal by the subsequent crystallization treatment.
  • the metal can be recovered as metal carbonate particles having good dehydration properties.
  • the crystallization method does not require a sedimentation basin or dehydration equipment as in the neutralization precipitation method.
  • Nickel and zinc can also be insolubilized as hydroxides, but hydroxides are not suitable for crystallization because they generate flocs with high moisture content including moisture.
  • the metal carbonate precipitated on the seed crystals can be dissolved in an acid and easily recovered as a metal salt solution.
  • this metal salt solution can be reused as a plating solution, and the recovered seed crystals can be reused in the crystallization step.
  • FIG. 1 is a system diagram showing an embodiment of a method for recovering water and metal from plating washing waste water according to the present invention
  • FIG. 2 is a system diagram showing the structure of a crystallizer
  • FIG. 3 is the structure of an acid contact device.
  • the plating cleaning waste water as raw water is introduced into the agglomeration / oxidation tank 1, and an oxidizing agent (sodium hypochlorite (NaClO) in FIG. 1) and a pH adjusting agent (in FIG. 1, as an alkaline agent).
  • an oxidizing agent sodium hypochlorite (NaClO) in FIG. 1
  • a pH adjusting agent in FIG. 1, as an alkaline agent
  • AgOH sodium hypochlorite
  • FeCl 3 a flocculant
  • divalent iron (Fe 2+ ) in the liquid is converted to trivalent iron (Fe 3+ ) at pH 3-6.
  • the oxidizing agent hydrogen peroxide, potassium permanganate, chlorine, ozone, or the like can be used in addition to NaClO.
  • the addition amount of the oxidizing agent may be equal to or more than the equivalent for oxidizing Fe 2+ in the liquid to Fe 3+ .
  • the plating washing wastewater is usually acidic at a pH of less than 3, for example, about pH 2, it needs to be at least pH 3 for precipitation of Fe (OH) 3 , so that NaOH, Ca (OH) are used as pH adjusters.
  • the pH is adjusted by adding alkali such as 2 .
  • the pH is adjusted to 3 to 7, particularly 5 to 6, since nickel and zinc in the liquid are precipitated when the pH exceeds 7.
  • a flocculant such as FeCl 3 may be added in order to improve the sedimentation of Fe (OH) 3 floc.
  • a flocculant such as FeCl 3
  • the sedimentation property of the insolubilized particles is improved, the sedimentation efficiency in the subsequent sedimentation tank 2 is increased, and the floc diameter is increased so that the downstream UF membrane device 3
  • the filterability of can also be improved.
  • the addition of a flocculant is also preferable in order to agglomerate organic substances in the plating washing waste water to reduce the load on the subsequent RO membrane device 6 and to prevent contamination of the RO membrane.
  • Amount of FeCl 3 is generally 10 ⁇ 200mg / L, preferably about 100 ⁇ 150mg / L.
  • the liquid in which the floc of Fe (OH) 3 is precipitated in the coagulation / oxidation tank 1 is then solid-liquid separated by an MF membrane, a UF membrane or a filter (for example, a sand filter).
  • MF membrane separation device MF membrane separation device
  • the separation liquid pump P A is introduced into the UF membrane device 3, is a membrane filtration.
  • the UF membrane device 3 is regularly backwashed, and the collected Fe (OH) 3 sludge is discharged out of the system together with the backwash drainage.
  • the filtered water of the UF membrane device 3 is introduced into the adjustment tank 5 through the UF treatment water tank 4 and the water quality is adjusted in the adjustment tank 5. That is, prior to processing the filtered water of the UF membrane device 3 by the RO membrane device (RO membrane separation device) 6, sodium bisulfite (NaHSO 3 ) and sodium sulfite (Na 2 ) are added to the UF membrane filtered water to protect the RO membrane. It is necessary to add a reducing agent such as SO 4 ) or contact with activated carbon to remove the remaining oxidizing agent, and to prevent precipitation of metal hydroxides such as nickel and zinc by concentration in the RO membrane device 6. Accordingly, a pH adjusting agent is added to adjust the pH of the water (RO feed water) supplied to the RO membrane device 6 to 4 to 6, preferably 4 to 5.
  • the amount of the reducing agent added to the UF membrane filtered water is usually 5 to 20 mg / L, preferably 10 to 15 mg / L in excess of the equivalent of the remaining oxidizing agent.
  • the water whose water quality has been adjusted in the adjustment tank 5 is introduced into the RO membrane device 6 by the pump P B and subjected to membrane separation treatment into permeated water (RO permeated water) and concentrated water (RO concentrated water). A part of the concentrated water is supplied to the RO concentrated water tank 7, and the remaining part is circulated.
  • the treatment with the RO membrane device 6 is performed at a concentration factor of 5 to 10 times and a water recovery rate of 80 to 90%, so that metal ions can be highly concentrated and the water recovery rate can be increased without causing operational troubles. It is preferable in terms of enhancement.
  • RO permeated water obtained by the RO membrane device 6 has the same good water quality as pure water, it can be reused as plating cleaning water. Moreover, this RO permeated water can also be used at other use points.
  • the metal ions in the RO concentrated water are concentrated to 5 to 10 times the metal ion concentration in the plating washing wastewater.
  • This RO concentrated water is introduced into the crystallizer 8 through the RO concentrated water tank 7 and crystallized. Is done.
  • the crystallization apparatus 8 is not particularly limited as long as it can promote the precipitation of metal carbonate.
  • a seed crystal is packed in the crystallization reaction tower 10 as shown in FIG.
  • a tower reactor in which RO concentrated water is passed from the bottom of the tower to form a fluidized bed of seed crystals in the tower can be suitably used.
  • the raw crystallization water is passed from the lower part of the reaction tower 10 through the pipe 11 by the pump P 1 , and the treated water flows out from the pipe 12 and is introduced into the treated water tank 9. From the tower top part of the treated water is processed is circulated to the bottom of the column by the circulation pipe 14 and a circulation pump P 2.
  • Alkali carbonate such as sodium carbonate (Na 2 CO 3 ) or a mixed solution of sodium bicarbonate (NaHCO 3 ) and caustic soda (NaOH) is injected from the upper part of the crystallization reaction tower 13.
  • a metal carbonate precipitates on the seed crystal flowing in the tower in accordance with a reaction between sodium carbonate and metal ions, for example, according to the following reaction.
  • the metal carbonate needs to be precipitated by raising the pH of the crystallization raw water to 7 to 10, preferably 8 to 9. Therefore, the alkali carbonate injected into the crystallization tower reaction tower 10 is an amount necessary for forming the metal carbonate, and the liquid pH in the crystallization tower is such an amount. When the pH is less than 7, carbonate is not precipitated, and when it exceeds 10, zinc carbonate is easily dissolved again.
  • acid-insoluble particles that are not dissolved by acid treatment in the subsequent metal recovery step are used as seed crystals.
  • acid-insoluble particles sand (silica sand), anthracite and the like can be used as the acid-insoluble particles.
  • the seed crystal grain size is suitably about 0.1 to 1 mm, particularly about 0.2 to 0.4 mm.
  • metal ions in the crystallization raw water are insolubilized as metal carbonates and precipitate on the seed crystal surface.
  • the seed crystal particles grow by precipitation of the metal carbonate and increase to a particle size of 0.3 to 1.5 mm.
  • the increased particles are extracted from the crystallizer and fed to the metal recovery process.
  • the treated water of the crystallizer 8 is introduced into the crystallized water tank 9.
  • the recovery rate of metal ions is often 70 to 90%, generally about 80%. For this reason, it is preferable to return a part of this crystallization treatment water to the iron insolubilization step and to circulate it together with the raw water plating washing waste water. Thereby, the metal ions which could not be recovered by one crystallization process can be repeatedly crystallized, and the overall metal recovery rate can be increased.
  • the ratio of the crystallized water to be circulated is 10 to 80% of the water introduced into the crystallized water tank 9, the total water recovery rate is 70 to 90%, and the metal recovery rate is 80%. It is preferable to perform the treatment under the condition of about 95%.
  • the crystallizer 8 when an acid such as sulfuric acid or hydrochloric acid is brought into contact with particles having a metal carbonate such as nickel or zinc attached using an acid-insoluble seed crystal as a nucleus, the metal carbonate such as nickel or zinc is redissolved. Thus, a highly concentrated solution of metal sulfate or chloride is obtained. In the treatment of the electroplating washing waste water, the high-concentration metal sulfate aqueous solution thus obtained can be reused as it is in the plating bath. In addition, after the recovered particles are brought into contact with an acid to dissolve the metal carbonate, acid-insoluble seed crystal particles remain, but these seed crystal particles should be used again as seed crystals in a crystallizer. Can do. By reusing seed crystal particles in this way, particle size management in the crystallizer becomes easy.
  • the device for bringing the particles extracted from the crystallizer 8 (particles having a metal carbonate deposited on the surface of the seed crystal) into contact with the acid is not particularly limited as long as it can efficiently bring both into contact with each other.
  • an acid contact device as shown in FIG. 3 can be used.
  • This acid contact device has an acid contact tower 20 into which the drawn particles from the crystallizer 8 are charged, and a water collecting plate (porous) through which only water can pass without passing through the particles in the lower part of the tower. Plate or mesh).
  • the valves V 1 and V 2 are opened, the other valves are closed, the extracted particles are put into the acid contact tower 20 from the pipe 21, and moisture is supplied to the pipe 23, Extract from 24. This water is returned to the crystallization water tank 9.
  • the valves V 3 and V 4 are opened, the other valves are closed, and an acid such as sulfuric acid is passed through the pipes 25 and 23 from the lower part of the acid contact tower 20 by the pump P 3 to contact the acid and the particles.
  • a solution containing metal ions in which the metal carbonate is dissolved is taken out via the pipe 26.
  • this metal salt solution since a high concentration solution of about 5 to 15% by weight of metal ions is usually obtained, this metal salt solution can be suitably reused as a plating solution.
  • valves V 2 and V 5 After dissolving the metal carbonate on the surface of the seed crystal, the valves V 2 and V 5 are opened, the other valves are closed, and the water is acidified at a high flow rate through the pipes 24 and 23 by a pump (not shown). and passed through from the bottom of the contact tower 20, the seed crystals through the valve V 5 to return to reuse the crystallizer 8.
  • the acid used for dissolving the metal carbonate on the seed crystal is preferably a high concentration sulfuric acid aqueous solution of about 50 to 98% by weight or a 20 to 35% by weight hydrochloric acid aqueous solution.
  • the amount of waste water and the amount of discharged metal are reduced, the amount of sludge generated in the entire system is greatly reduced, and water and valuable metals are efficiently recovered from the plating washing waste water. can do.
  • Example 1 Water and metal were recovered from the plating washing waste water by the method shown in FIG.
  • the treatment liquid in the flocculation / oxidation tank 1 was introduced into the precipitation tank 2 and most of the generated floc was settled and separated, and then the separation liquid in the precipitation tank 2 was subjected to membrane filtration with the UF membrane device 3. This UF membrane device 3 was regularly backwashed.
  • the filtered water of the UF membrane device 3 is introduced into the adjustment tank 5 through the UF treatment water tank 4, and after adding residual sodium bisulfite 15mg / L to remove residual chlorine, it is supplied to the RO membrane apparatus 6 (RO supply water) ), RO permeated water was recovered, and RO concentrated water was supplied to the crystallizer 8 through the RO concentrated water tank 7 for crystallization treatment.
  • the water recovery rate of this RO membrane device 6 was 80%.
  • the crystallization apparatus 8 is a crystallization reaction tower 10 as shown in FIG. 2 filled with sand having a particle size of about 0.2 mm.
  • RO concentrated water is passed from the lower part of the crystallization reaction tower 10 to sand.
  • the pH in the fluidized bed was adjusted to 9 by adding sodium carbonate (Na 2 CO 3 ) to the fluidized bed. Crystallized water from the crystallizer 8 was received in a crystallized water tank 9.
  • Table 1 shows the water quality for each process in this treatment.
  • Iron was insolubilized by the iron insolubilization treatment, and was removed to a level that was not detected at the stage of RO supply water.
  • Nickel and zinc were hardly insolubilized up to the RO membrane device 6 and were in a dissolved state.
  • About 80% of nickel and zinc concentrated in a dissolved state on the RO concentrated water side were removed by crystallization treatment (metal recovery rate 80%).
  • metal recovery rate 80% nickel and zinc were deposited on the surface of sand introduced as seed crystals, and an increase in seed crystal particle diameter was observed.
  • Example 2 In Example 1, the seed crystal having a particle size increased to about 0.3 to 0.4 mm by the crystallization treatment is guided to the acid contact tower 20 shown in FIG. A weight% aqueous sulfuric acid solution was injected. The water content of the particles after draining was 10% by weight. By injecting sulfuric acid from the lower part of the tower, nickel and zinc adhering to the seed crystal surface were dissolved, and a sulfate solution of nickel and zinc was obtained from the upper part of the tower. The nickel and zinc concentrations of this solution were 1.5 wt% and 17 wt%, respectively. As a result, nickel and zinc in plating washing wastewater in the raw water are concentrated 600 times and 577 times, respectively.
  • Example 3 In Example 1, 90% of the crystallization treated water was returned to the inlet side of the flocculation / oxidation tank 1 and treated in the same manner as in the treatment with the plating washing waste water.
  • the one-pass metal recovery rate in the crystallization treatment is not changed to 80%, but by returning the crystallization treatment water and treating it again, the crystallization treatment is repeated and the entire metal is recovered. The recovery increased to 98%. The water recovery rate was improved to 92%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method for water and metal recovery from a plating wastewater resulting from washing is disclosed with which water and metals are efficiently recovered from the plating wastewater, the method comprising an iron insolubilization step in which the pH of the plating wastewater is regulated to 3-6 in the presence of an oxidizing agent to oxidize divalent iron ions contained in the liquid to trivalent iron ions and precipitate an iron hydroxide, a solid-liquid separation step in which the water treated in the iron insolubilization step is subjected to solid-liquid separation by means of a microfiltration membrane, an ultrafiltration membrane, or a filter, a reverse osmosis membrane separation step in which the water separated in the solid-liquid separation step is treated with a reverse osmosis membrane and the filtrate water is taken as treated water out of the system, and a crystallization step in which an alkali is added to the high-concentration water resulting from the reverse osmosis membrane separation step and the metals contained in the liquid are precipitated as carbonates by a crystallization method in which acid-insoluble particles are used as seed crystals.

Description

メッキ洗浄排水からの水及び金属の回収方法Methods for recovering water and metals from plating cleaning wastewater
 本発明はメッキ洗浄排水から水と有価金属とを効率的に回収する方法に係り、特に、電気メッキ工程の洗浄排水から、水とニッケル、亜鉛等の有価金属との両方を効率的に回収してその再利用を可能とすると共に、排水処理によるスラッジ発生量を削減する方法に関する。 The present invention relates to a method for efficiently recovering water and valuable metals from plating washing wastewater, and in particular, efficiently recovers both water and valuable metals such as nickel and zinc from washing wastewater in the electroplating process. The present invention relates to a method for reducing the amount of sludge generated by wastewater treatment.
 メッキ工場から排出されるメッキ洗浄排水は、一般にpHが2~3であり、2価鉄の他に、ニッケル、亜鉛、クロム、銅などの有価金属を含む場合が多いため、これを回収して再利用することが望まれる。 The plating washing wastewater discharged from the plating factory generally has a pH of 2 to 3, and in many cases contains valuable metals such as nickel, zinc, chromium and copper in addition to divalent iron. It is desirable to reuse.
 特許文献1に記載されているように、従来、メッキ洗浄排水の処理方法としては、一般的には、中和凝集沈殿法(水酸化物沈殿法)が採用されている。この方法は、排水のpHをアルカリ性とし、金属イオンを水酸化物として沈殿させて分離除去するものである。この方法で、ニッケルや亜鉛といった有価金属を回収する場合、これらを鉄と分離して回収するためには、pH条件を変えて凝集沈殿する方法が採られる。すなわち、pH3~6でFe2+を酸化剤等の存在下でFe3+に酸化した後、水酸化物として沈殿除去し、その後、pH7~10でニッケル、亜鉛を沈殿分離する方法である。さらに水を回収する場合には、ニッケル、亜鉛を沈殿分離した後、回収水の要求水質に合わせて、さらに砂濾過、限外濾過等の固液分離、または逆浸透(RO)膜処理を行う。 As described in Patent Document 1, conventionally, a neutralization coagulation precipitation method (hydroxide precipitation method) has been adopted as a method for treating plating washing wastewater. In this method, the pH of the waste water is made alkaline, and metal ions are precipitated as hydroxides and separated and removed. When recovering valuable metals such as nickel and zinc by this method, in order to separate these metals from iron and recover them, a method of coagulating and precipitating under different pH conditions is employed. That is, this is a method in which Fe 2+ is oxidized to Fe 3+ in the presence of an oxidizing agent or the like at pH 3 to 6, and then precipitated and removed as a hydroxide, and then nickel and zinc are precipitated and separated at pH 7 to 10. When water is further collected, nickel and zinc are precipitated and separated, and then solid-liquid separation such as sand filtration and ultrafiltration, or reverse osmosis (RO) membrane treatment is performed according to the required water quality of the collected water. .
 その他、金属含有排水の処理法として、硫化物沈殿法、イオン交換法、キレート樹脂法、膜分離法などがある。 Other treatment methods for metal-containing wastewater include the sulfide precipitation method, ion exchange method, chelate resin method, and membrane separation method.
 硫化物沈殿法は、硫化ソーダ添加により金属を硫化物として沈殿させる方法である。この方法では、水酸化物沈殿法に比べて金属硫化物の溶解度積が低いことから、廃水処理の観点からは、より低濃度に金属類を処理することができる。 The sulfide precipitation method is a method in which a metal is precipitated as a sulfide by adding sodium sulfide. In this method, since the solubility product of the metal sulfide is lower than that of the hydroxide precipitation method, metals can be treated at a lower concentration from the viewpoint of wastewater treatment.
 特許文献2に記載されているように、イオン交換法は、排水中の金属イオンをイオン交換樹脂に吸着させて除去するものであり、イオン交換樹脂の吸着容量の範囲内で使用すれば、確実に金属イオンを除去することが可能である。 As described in Patent Document 2, the ion exchange method is to remove the metal ions in the waste water by adsorbing to the ion exchange resin, and if used within the range of the adsorption capacity of the ion exchange resin, the ion exchange method is reliable. It is possible to remove metal ions.
 キレート樹脂法は特定の金属に対して選択性を有するキレート樹脂を使用して金属を吸着除去するものである。イオン交換樹脂と同様、確実に金属イオンを除去することが可能であるが、キレート樹脂は金属に対して選択性を有し、吸着除去できる金属が特定される。 The chelate resin method uses a chelate resin having selectivity for a specific metal to adsorb and remove the metal. As with the ion exchange resin, it is possible to reliably remove metal ions, but the chelate resin has selectivity for the metal, and a metal that can be adsorbed and removed is specified.
 膜分離法はRO膜を使用して金属イオンを除去するものであり、良好な処理水質が得られる。 The membrane separation method uses a RO membrane to remove metal ions, and provides a good treated water quality.
 しかし、いずれの方法も、金属含有排水から水と有価金属との両方を回収する場合にはそれぞれ以下のような課題がある。 However, each method has the following problems when recovering both water and valuable metals from the metal-containing wastewater.
i)中和凝集沈殿法
 水酸化物は、フロックが微細で、沈殿池での分離性が不安定であるため、安定運転のためには高分子凝集剤などの沈殿補助剤が必要である。また、水酸化物スラッジは含水率70~80%程度であり、発生した大量のスラッジの処理が問題となる。
 また、この方法で、鉄とニッケルや亜鉛とを分離回収するためには、中和時のpHを2段階にする必要があるため、沈殿池を2段階に設けることとなり、大きな設置スペースが必要である。
 更に、水回収のために、後段でRO(逆浸透)膜処理を行う場合、中和処理によりイオンが増加するため、RO膜へのイオン負荷が増加してしまう。
i) Neutralization coagulation sedimentation method Hydroxides have fine flocs and are unstable in the sedimentation basin, so a precipitation aid such as a polymer coagulant is required for stable operation. Further, the hydroxide sludge has a water content of about 70 to 80%, and the treatment of a large amount of generated sludge becomes a problem.
Moreover, in order to separate and recover iron, nickel, and zinc by this method, it is necessary to set the pH at the time of neutralization to two stages, so the sedimentation basin is provided in two stages, and a large installation space is required. It is.
Furthermore, when RO (reverse osmosis) membrane treatment is performed at a later stage for water recovery, ions are increased by the neutralization treatment, which increases the ion load on the RO membrane.
ii)硫化物沈殿法
 硫化物は溶解度積が低く、金属イオン濃度を低下させることができるが、硫化物の沈殿物は微細であるため、沈殿分離性が悪い。また、硫化物は酸性条件で硫化水素を発生するため、安全性の問題がある。
ii) Sulfide precipitation method Sulfide has a low solubility product and can reduce the metal ion concentration. However, since the sulfide precipitate is fine, precipitation separation is poor. Further, since sulfides generate hydrogen sulfide under acidic conditions, there is a safety problem.
iii)イオン交換法
 イオン交換樹脂は殆どすべてのイオンを吸着するため、排水処理では金属イオン以外のイオン吸着量が大きく、金属イオン除去を目的とした場合には効率が悪い。また、その分、再生薬剤を多く必要とし、しかも、再生液中にはこれらのイオンが混合された状態で含まれるため、有価金属の回収が困難である。
iii) Ion exchange method Since the ion exchange resin adsorbs almost all ions, the amount of adsorbed ions other than metal ions is large in the wastewater treatment, and the efficiency is poor for the purpose of removing metal ions. In addition, a large amount of regenerative medicine is required, and the regenerated liquid contains these ions in a mixed state, so that it is difficult to recover valuable metals.
iv)キレート樹脂法
 イオン交換樹脂に比べて金属イオンに対する選択性は高いが、共存イオンの挙動に注意が必要である。また、再生には通常、硫酸や塩酸を使用するが、再生液中に酸が多く残留するとともに、回収液の金属イオン濃度は高々2~3重量%程度と再利用するには濃度が低い。
iv) Chelate resin method Although the selectivity for metal ions is higher than that of ion exchange resins, attention must be paid to the behavior of coexisting ions. In addition, sulfuric acid or hydrochloric acid is usually used for regeneration, but a large amount of acid remains in the regeneration solution, and the concentration of metal ions in the recovered solution is at most about 2 to 3% by weight, and the concentration is low for reuse.
v)膜分離法
 RO膜の使用により良好な処理水質を得ることができるが、RO濃縮水側に濃縮される金属イオンは排水中の10倍程度にしかならないため、RO膜単独では金属回収に適さない。
v) Membrane separation method The use of RO membrane can provide good treated water quality. However, the metal ion concentrated on the RO concentrated water side is only about 10 times that in the wastewater, so RO membrane alone can recover metal. Not suitable.
特開2002-192168号公報JP 2002-192168 A 特開2004-107780号公報JP 2004-107780 A
 本発明は上記従来の問題点を解決し、メッキ洗浄排水から水と金属とを効率的に回収する方法を提供することを目的とする。 The object of the present invention is to solve the above-mentioned conventional problems and to provide a method for efficiently recovering water and metal from plating washing waste water.
 第1態様のメッキ洗浄排水からの水及び金属の回収方法は、メッキ洗浄排水から水及び金属を回収する方法において、メッキ洗浄排水を酸化剤の存在下にpH3~6に調整して、液中の2価鉄イオンを3価鉄イオンに酸化すると共に鉄水酸化物を析出させる鉄不溶化工程と、該鉄不溶化工程の処理水を精密濾過膜、限外濾過膜又は濾過器で固液分離する固液分離工程と、該固液分離工程で分離された分離水を逆浸透膜分離処理し、透過水を処理水として系外へ取り出す逆浸透膜分離工程と、該逆浸透膜分離工程の濃縮水にアルカリを添加して、酸不溶性の粒子を種晶とする晶析法により、液中の金属を炭酸塩として析出させる晶析工程とを有することを特徴とする。 The method for recovering water and metal from the plating cleaning wastewater according to the first aspect is a method of recovering water and metal from the plating cleaning wastewater, adjusting the plating cleaning wastewater to pH 3 to 6 in the presence of an oxidizing agent, The iron insolubilization step of oxidizing the divalent iron ions into trivalent iron ions and precipitating iron hydroxide, and the treated water in the iron insolubilization step are separated into solid and liquid using a microfiltration membrane, ultrafiltration membrane or filter A solid-liquid separation step, a reverse osmosis membrane separation process in which the separated water separated in the solid-liquid separation step is subjected to a reverse osmosis membrane separation process, and the permeate is taken out of the system as treated water; And a crystallization step of depositing a metal in the liquid as a carbonate by a crystallization method in which an alkali is added to water and acid-insoluble particles are used as seed crystals.
 第2態様のメッキ洗浄排水からの水及び金属の回収方法は、第1態様において、前記晶析工程において、種晶上に析出した金属炭酸塩を酸に溶解させて金属塩溶液を得る金属回収工程を有することを特徴とする。 The method for recovering water and metal from the plating washing waste water according to the second aspect is the metal recovery according to the first aspect, wherein, in the crystallization step, the metal carbonate precipitated on the seed crystal is dissolved in an acid to obtain a metal salt solution. It has the process.
 第3態様のメッキ洗浄排水からの水及び金属の回収方法は、第2態様において、前記金属回収工程で得られた金属塩溶液をメッキ液として再利用することを特徴とする。 In the second aspect, the third aspect of the method for recovering water and metal from the plating washing wastewater is characterized in that the metal salt solution obtained in the metal recovery step is reused as a plating solution.
 第4態様のメッキ洗浄排水からの水及び金属の回収方法は、第1ないし3のいずれか1態様において、前記晶析工程の処理水を前記鉄不溶化工程に返送して処理することを特徴とする。 The fourth aspect of the method for recovering water and metal from the plating washing wastewater is characterized in that, in any one of the first to third aspects, the treated water of the crystallization step is returned to the iron insolubilization step for treatment. To do.
 本発明によれば、メッキ洗浄排水から水と金属とを効率的に回収することができる。 According to the present invention, water and metal can be efficiently recovered from the plating washing waste water.
 即ち、まず、鉄不溶化工程で、鉄を鉄水酸化物(Fe(OH))として析出させ、これを固液分離工程において分離除去する。この固液分離は、精密濾過(MF)膜、限外濾過(UF)膜又は濾過器で行うため、固液分離性に優れる。鉄析出工程ではpH3~6に調整することから、鉄水酸化物は析出するが、ニッケル、亜鉛等の金属イオンは溶存している。従って、固液分離工程からは、この溶存金属イオンを含んだ分離水が得られる。 That is, first, iron is precipitated as iron hydroxide (Fe (OH) 3 ) in the iron insolubilization step, and this is separated and removed in the solid-liquid separation step. Since this solid-liquid separation is performed with a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, or a filter, the solid-liquid separation is excellent. Since the pH is adjusted to 3 to 6 in the iron precipitation step, iron hydroxide is precipitated, but metal ions such as nickel and zinc are dissolved. Therefore, the separated water containing the dissolved metal ions is obtained from the solid-liquid separation step.
 本発明においては、この固液分離水をまずRO膜分離処理して濃縮する。RO膜透過水は純水並みの良好な水質を有し、処理水として系外へ取り出してメッキ洗浄用水として再利用するか、或いは他のユースポイントで利用することができる。 In the present invention, this solid-liquid separated water is first concentrated by RO membrane separation treatment. RO membrane permeated water has a water quality as good as pure water, and can be taken out of the system as treated water and reused as plating cleaning water, or used at other points of use.
 RO濃縮水中に濃縮されたニッケル、亜鉛等の金属イオンは、続く晶析処理により、種晶上に金属炭酸塩として析出する。晶析法によれば、金属を脱水性の良い金属炭酸塩粒子として回収することができる。また、晶析法では、中和沈殿法のような沈殿池や脱水設備が不要である。
 なお、ニッケルや亜鉛は、水酸化物として不溶化させることもできるが、水酸化物は水分を包含した含水率の高いフロックを生成するため、晶析法には適さない。
Metal ions such as nickel and zinc concentrated in the RO-concentrated water are precipitated as metal carbonates on the seed crystal by the subsequent crystallization treatment. According to the crystallization method, the metal can be recovered as metal carbonate particles having good dehydration properties. In addition, the crystallization method does not require a sedimentation basin or dehydration equipment as in the neutralization precipitation method.
Nickel and zinc can also be insolubilized as hydroxides, but hydroxides are not suitable for crystallization because they generate flocs with high moisture content including moisture.
 第2態様では、この晶析法の種晶として、酸不溶性の粒子を用いるので、種晶上に析出した金属炭酸塩を酸に溶解させて、容易に金属塩溶液として回収することができる。第3態様によると、この金属塩溶液をメッキ液として再利用することができ、回収した種晶を晶析工程に再利用することができる。 In the second aspect, since acid-insoluble particles are used as seed crystals of this crystallization method, the metal carbonate precipitated on the seed crystals can be dissolved in an acid and easily recovered as a metal salt solution. According to the third aspect, this metal salt solution can be reused as a plating solution, and the recovered seed crystals can be reused in the crystallization step.
 晶析工程の処理水中には、回収目的の金属イオン及び不溶化しても種晶上に捕捉されなかった微細な金属が残留している。第4態様では、この晶析処理水を鉄不溶化工程に返送して再度処理を行うので、金属回収率と水回収率を高めることができる。 In the treated water of the crystallization process, metal ions for recovery purposes and fine metals that have not been captured on the seed crystals even when insolubilized remain. In the fourth aspect, since this crystallization treated water is returned to the iron insolubilization step and treated again, the metal recovery rate and water recovery rate can be increased.
 以上の通り、本発明によれば、メッキ洗浄排水から、水と有価金属とを効率的に回収することができる。また、鉄析出工程、固液分離工程、RO膜分離工程及び晶析工程の一連の組み合わせにより、処理排水量と排出金属量を削減することができることから、最終的なスラッジ発生量を大幅に削減することができる。 As described above, according to the present invention, water and valuable metals can be efficiently recovered from the plating washing waste water. In addition, a series of combinations of iron precipitation process, solid-liquid separation process, RO membrane separation process, and crystallization process can reduce the amount of treated wastewater and the amount of discharged metal, greatly reducing the final sludge generation amount. be able to.
本発明のメッキ洗浄排水からの水及び金属の回収方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the recovery method of the water and metal from the plating washing | cleaning waste_water | drain of this invention. 晶析装置の構成を示す系統図である。It is a systematic diagram which shows the structure of a crystallizer. 酸接触装置の構成を示す系統図である。It is a systematic diagram which shows the structure of an acid contact apparatus.
 以下、図面を参照して本発明のメッキ洗浄排水からの水及び金属の回収方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of a method for recovering water and metal from plating washing wastewater of the present invention will be described in detail with reference to the drawings.
 図1は、本発明のメッキ洗浄排水からの水及び金属の回収方法の実施の形態を示す系統図であり、図2は晶析装置の構成を示す系統図、図3は酸接触装置の構成を示す系統図である。 FIG. 1 is a system diagram showing an embodiment of a method for recovering water and metal from plating washing waste water according to the present invention, FIG. 2 is a system diagram showing the structure of a crystallizer, and FIG. 3 is the structure of an acid contact device. FIG.
 本発明においては、まず、原水であるメッキ洗浄排水を凝集・酸化槽1に導入して、酸化剤(図1では次亜塩素酸ソーダ(NaClO))、pH調整剤(図1ではアルカリ剤としての苛性ソーダ(NaOH))、凝集剤(図1では塩化第二鉄(FeCl))を添加して、pH3~6で、液中の2価鉄(Fe2+)を3価鉄(Fe3+)に酸化して鉄水酸化物(Fe(OH))を析出させる。 In the present invention, first, the plating cleaning waste water as raw water is introduced into the agglomeration / oxidation tank 1, and an oxidizing agent (sodium hypochlorite (NaClO) in FIG. 1) and a pH adjusting agent (in FIG. 1, as an alkaline agent). Caustic soda (NaOH)) and a flocculant (ferric chloride (FeCl 3 ) in FIG. 1) are added, and divalent iron (Fe 2+ ) in the liquid is converted to trivalent iron (Fe 3+ ) at pH 3-6. To precipitate iron hydroxide (Fe (OH) 3 ).
 この鉄不溶化工程において、酸化剤としては、NaClOの他、過酸化水素や過マンガン酸カリウム、塩素、オゾン等を用いることができる。酸化剤の添加量は、液中のFe2+をFe3+に酸化するための当量以上であれば良い。 In this iron insolubilization step, as the oxidizing agent, hydrogen peroxide, potassium permanganate, chlorine, ozone, or the like can be used in addition to NaClO. The addition amount of the oxidizing agent may be equal to or more than the equivalent for oxidizing Fe 2+ in the liquid to Fe 3+ .
 メッキ洗浄排水は通常pH3未満例えばpH2程度の酸性であるが、Fe(OH)の析出のためにはpH3以上であることが必要とされることから、pH調整剤としてNaOH、Ca(OH)等のアルカリを添加してpH調整する。ただし、排水中の濃度によるが、pHが7を超えると液中のニッケルや亜鉛が析出するため、pHは3~7、特に5~6に調整する。 Although the plating washing wastewater is usually acidic at a pH of less than 3, for example, about pH 2, it needs to be at least pH 3 for precipitation of Fe (OH) 3 , so that NaOH, Ca (OH) are used as pH adjusters. The pH is adjusted by adding alkali such as 2 . However, depending on the concentration in the waste water, the pH is adjusted to 3 to 7, particularly 5 to 6, since nickel and zinc in the liquid are precipitated when the pH exceeds 7.
 この鉄不溶化工程において、凝集剤の添加は必須ではないが、Fe(OH)フロックの沈降性を高めるために、FeCl等の凝集剤を添加しても良い。FeCl等の凝集剤の添加で、不溶化した粒子の沈降性を向上させて、後段の沈殿槽2での沈降分離効率を上げると共に、フロック径を大きくすることで、後段のUF膜装置3での濾過性も向上させることができる。また、凝集剤の添加は、メッキ洗浄排水中の有機物を凝集させて、後段のRO膜装置6の負荷を低減すると共に、RO膜の汚染を防止するためにも好ましい。FeClの添加量は通常10~200mg/L、好ましくは100~150mg/L程度とする。 In this iron insolubilization step, addition of a flocculant is not essential, but a flocculant such as FeCl 3 may be added in order to improve the sedimentation of Fe (OH) 3 floc. By adding a flocculant such as FeCl 3, the sedimentation property of the insolubilized particles is improved, the sedimentation efficiency in the subsequent sedimentation tank 2 is increased, and the floc diameter is increased so that the downstream UF membrane device 3 The filterability of can also be improved. The addition of a flocculant is also preferable in order to agglomerate organic substances in the plating washing waste water to reduce the load on the subsequent RO membrane device 6 and to prevent contamination of the RO membrane. Amount of FeCl 3 is generally 10 ~ 200mg / L, preferably about 100 ~ 150mg / L.
 凝集・酸化槽1でFe(OH)のフロックを析出させた液は、次いでMF膜、UF膜又は濾過器(例えば砂濾過器)で固液分離するが、図1の方法では、それに先立ち沈殿槽2で固液分離した後、MF膜装置(MF膜分離装置)3で膜濾過する。この沈殿槽2は必須ではないが、予め沈殿槽2でFe(OH)の粗大フロックを沈降分離することにより、後段のUF膜装置3等の負荷が軽減され、逆洗頻度の低減、高フラックスを図ることができる。 The liquid in which the floc of Fe (OH) 3 is precipitated in the coagulation / oxidation tank 1 is then solid-liquid separated by an MF membrane, a UF membrane or a filter (for example, a sand filter). In the method of FIG. After solid-liquid separation in the precipitation tank 2, membrane filtration is performed with an MF membrane device (MF membrane separation device) 3. Although this sedimentation tank 2 is not essential, by precipitating and separating the coarse floc of Fe (OH) 3 in the sedimentation tank 2 in advance, the load on the UF membrane device 3 in the subsequent stage is reduced, and the frequency of backwashing is reduced. A flux can be aimed at.
 沈殿槽2の分離汚泥は系外へ排出され、分離液はポンプPにより、UF膜装置3に導入され、膜濾過される。このUF膜装置3は定期的に逆洗され、捕集されたFe(OH)スラッジは逆洗排水と共に系外へ排出される。 Separating the sludge settling tank 2 is discharged out of the system, the separation liquid pump P A, is introduced into the UF membrane device 3, is a membrane filtration. The UF membrane device 3 is regularly backwashed, and the collected Fe (OH) 3 sludge is discharged out of the system together with the backwash drainage.
 UF膜装置3の濾過水は、UF処理水槽4を経て調整槽5に導入され、調整槽5内で水質調整される。即ち、UF膜装置3の濾過水をRO膜装置(RO膜分離装置)6で処理するに先立ち、RO膜保護のためにUF膜濾過水に重亜硫酸ソーダ(NaHSO)、亜硫酸ソーダ(NaSO)等の還元剤を添加するか、活性炭と接触させて残留する酸化剤を除去すると共に、RO膜装置6における濃縮でニッケル、亜鉛等の金属の水酸化物が析出しないように、必要に応じてpH調整剤を添加してRO膜装置6に供給される水(RO供給水)のpHが4~6、好ましくは4~5となるように調整する。 The filtered water of the UF membrane device 3 is introduced into the adjustment tank 5 through the UF treatment water tank 4 and the water quality is adjusted in the adjustment tank 5. That is, prior to processing the filtered water of the UF membrane device 3 by the RO membrane device (RO membrane separation device) 6, sodium bisulfite (NaHSO 3 ) and sodium sulfite (Na 2 ) are added to the UF membrane filtered water to protect the RO membrane. It is necessary to add a reducing agent such as SO 4 ) or contact with activated carbon to remove the remaining oxidizing agent, and to prevent precipitation of metal hydroxides such as nickel and zinc by concentration in the RO membrane device 6. Accordingly, a pH adjusting agent is added to adjust the pH of the water (RO feed water) supplied to the RO membrane device 6 to 4 to 6, preferably 4 to 5.
 UF膜濾過水への還元剤の添加量は、通常残留する酸化剤の当量以上、5~20mg/L好ましくは10~15mg/L過剰とする。 The amount of the reducing agent added to the UF membrane filtered water is usually 5 to 20 mg / L, preferably 10 to 15 mg / L in excess of the equivalent of the remaining oxidizing agent.
 調整槽5で水質調整された水は、ポンプPによりRO膜装置6に導入され、透過水(RO透過水)と濃縮水(RO濃縮水)とに膜分離処理される。濃縮水の一部はRO濃縮水槽7に送給され、残部は循環処理される。 The water whose water quality has been adjusted in the adjustment tank 5 is introduced into the RO membrane device 6 by the pump P B and subjected to membrane separation treatment into permeated water (RO permeated water) and concentrated water (RO concentrated water). A part of the concentrated water is supplied to the RO concentrated water tank 7, and the remaining part is circulated.
 このRO膜装置6での処理は、濃縮倍率5~10倍、水回収率80~90%で行うことが、運転上のトラブルを生じることなく、金属イオンを高度に濃縮して水回収率を高める上で好ましい。 The treatment with the RO membrane device 6 is performed at a concentration factor of 5 to 10 times and a water recovery rate of 80 to 90%, so that metal ions can be highly concentrated and the water recovery rate can be increased without causing operational troubles. It is preferable in terms of enhancement.
 RO膜装置6で得られるRO透過水は、純水と同程度の良好な水質を有するものであるため、これをメッキ洗浄用水として再利用することができる。また、このRO透過水は、他のユースポイントで使用することもできる。 Since the RO permeated water obtained by the RO membrane device 6 has the same good water quality as pure water, it can be reused as plating cleaning water. Moreover, this RO permeated water can also be used at other use points.
 RO濃縮水中の金属イオンは、メッキ洗浄排水中の金属イオン濃度の5~10倍に濃縮されており、このRO濃縮水は、RO濃縮水槽7を経て晶析装置8に導入されて晶析処理される。 The metal ions in the RO concentrated water are concentrated to 5 to 10 times the metal ion concentration in the plating washing wastewater. This RO concentrated water is introduced into the crystallizer 8 through the RO concentrated water tank 7 and crystallized. Is done.
 晶析装置8としては、金属炭酸塩の析出を促進することができるものであれば良く、特に制限はないが、例えば、図2に示すような晶析反応塔10内に種晶を充填し、塔下部よりRO濃縮水を通水し、塔内に種晶の流動床を形成させる塔型反応器を好適に用いることができる。 The crystallization apparatus 8 is not particularly limited as long as it can promote the precipitation of metal carbonate. For example, a seed crystal is packed in the crystallization reaction tower 10 as shown in FIG. A tower reactor in which RO concentrated water is passed from the bottom of the tower to form a fluidized bed of seed crystals in the tower can be suitably used.
 図2の装置において、晶析原水は、配管11よりポンプPにより反応塔10の下部から通水され、処理水は配管12より流出して処理水槽9に導入される。塔上部からは処理水の一部が循環配管14及び循環ポンプPにより塔下部に循環されて処理される。 In the apparatus of FIG. 2, the raw crystallization water is passed from the lower part of the reaction tower 10 through the pipe 11 by the pump P 1 , and the treated water flows out from the pipe 12 and is introduced into the treated water tank 9. From the tower top part of the treated water is processed is circulated to the bottom of the column by the circulation pipe 14 and a circulation pump P 2.
 晶析反応塔13の上部からは炭酸ソーダ(NaCO)又は、重炭酸ソーダ(NaHCO)と苛性ソーダ(NaOH)との混合液等の炭酸アルカリが注入される。塔内で流動する種晶上に、炭酸ソーダと金属イオンとの反応、例えば以下の反応に従って、金属の炭酸塩が析出する。
  Ni2++NaCO→NiCO(析出)+2Na
  Zn2++NaCO→ZnCO(析出)+2Na
Alkali carbonate such as sodium carbonate (Na 2 CO 3 ) or a mixed solution of sodium bicarbonate (NaHCO 3 ) and caustic soda (NaOH) is injected from the upper part of the crystallization reaction tower 13. A metal carbonate precipitates on the seed crystal flowing in the tower in accordance with a reaction between sodium carbonate and metal ions, for example, according to the following reaction.
Ni 2+ + Na 2 CO 3 → NiCO 3 (precipitation) + 2Na +
Zn 2+ + Na 2 CO 3 → ZnCO 3 (precipitation) + 2Na +
 なお、この金属炭酸塩の析出は、晶析原水のpHを7~10、好ましくは8~9に上げて行う必要がある。従って、晶析塔反応塔10に注入する炭酸アルカリは、金属炭酸塩の形成に必要な量であって、かつ晶析塔内の液pHがこのようなpHとなる量とする。このpHが7未満では炭酸塩が析出せず、10を超えると炭酸亜鉛が再溶解し易くなる。 The metal carbonate needs to be precipitated by raising the pH of the crystallization raw water to 7 to 10, preferably 8 to 9. Therefore, the alkali carbonate injected into the crystallization tower reaction tower 10 is an amount necessary for forming the metal carbonate, and the liquid pH in the crystallization tower is such an amount. When the pH is less than 7, carbonate is not precipitated, and when it exceeds 10, zinc carbonate is easily dissolved again.
 このように晶析工程では、pHを上げる必要があるが、本発明では、晶析工程に先立ち、RO膜分離処理して濃縮することにより晶析処理対象水量を低減するため、pH調整に必要な薬品量の削減を図ることができる。 Thus, in the crystallization process, it is necessary to increase the pH, but in the present invention, prior to the crystallization process, it is necessary for pH adjustment in order to reduce the amount of water to be crystallized by performing RO membrane separation treatment and concentrating. The amount of chemicals can be reduced.
 本発明において、種晶としては、後段の金属回収工程における酸処理で溶解しない酸不溶性の粒子を使用する。酸不溶性の粒子としては、砂(シリカサンド)、アンスラサイト等が使用できる。種晶の粒径は0.1~1mm、特に0.2~0.4mm程度が適している。 In the present invention, acid-insoluble particles that are not dissolved by acid treatment in the subsequent metal recovery step are used as seed crystals. As the acid-insoluble particles, sand (silica sand), anthracite and the like can be used. The seed crystal grain size is suitably about 0.1 to 1 mm, particularly about 0.2 to 0.4 mm.
 晶析処理によって晶析原水中の金属イオンは金属炭酸塩として不溶化し、種晶表面に析出していく。金属炭酸塩の析出により種晶粒子は成長し、粒径0.3~1.5mmに増大する。増大した粒子は晶析装置から引き抜かれ、金属回収工程に送給される。 Through the crystallization treatment, metal ions in the crystallization raw water are insolubilized as metal carbonates and precipitate on the seed crystal surface. The seed crystal particles grow by precipitation of the metal carbonate and increase to a particle size of 0.3 to 1.5 mm. The increased particles are extracted from the crystallizer and fed to the metal recovery process.
 晶析装置8の処理水は晶析処理水槽9に導入される。 The treated water of the crystallizer 8 is introduced into the crystallized water tank 9.
 晶析法では、操作条件によっても異なるが、金属イオンの回収率が70~90%、一般的には80%程度となることが多い。このため、この晶析処理水の一部を鉄不溶化工程に返送し、原水のメッキ洗浄排水と共に循環処理することが好ましい。これにより、1回の晶析処理で回収できなかった金属イオンを繰り返し晶析処理することができ、全体の金属回収率を上げることができる。 In the crystallization method, although depending on the operating conditions, the recovery rate of metal ions is often 70 to 90%, generally about 80%. For this reason, it is preferable to return a part of this crystallization treatment water to the iron insolubilization step and to circulate it together with the raw water plating washing waste water. Thereby, the metal ions which could not be recovered by one crystallization process can be repeatedly crystallized, and the overall metal recovery rate can be increased.
 本発明においては、この循環処理する晶析処理水の割合を、晶析処理水槽9に導入される水の10~80%とし、全体の水回収率が70~90%となり、金属回収率80~95%程度となる条件で処理を行うことが好ましい。 In the present invention, the ratio of the crystallized water to be circulated is 10 to 80% of the water introduced into the crystallized water tank 9, the total water recovery rate is 70 to 90%, and the metal recovery rate is 80%. It is preferable to perform the treatment under the condition of about 95%.
 晶析装置8において、酸不溶性の種晶を核としてニッケル、亜鉛等の金属炭酸塩が付着した粒子に、硫酸、塩酸等の酸を接触させると、ニッケル、亜鉛等の金属炭酸塩は再溶解し、金属の硫酸塩又は塩化物塩の高濃度溶液が得られる。電気メッキ洗浄排水の処理においては、このようにして得られる高濃度金属硫酸塩水溶液を、そのままメッキ浴で再利用することが可能である。また、このように回収した粒子を酸と接触させて金属炭酸塩を溶解させた後は、酸不溶性の種晶粒子が残るが、この種晶粒子は再度晶析装置で種晶として利用することができる。このように種晶粒子を再利用することにより、晶析装置内の粒径管理が容易となる。 In the crystallizer 8, when an acid such as sulfuric acid or hydrochloric acid is brought into contact with particles having a metal carbonate such as nickel or zinc attached using an acid-insoluble seed crystal as a nucleus, the metal carbonate such as nickel or zinc is redissolved. Thus, a highly concentrated solution of metal sulfate or chloride is obtained. In the treatment of the electroplating washing waste water, the high-concentration metal sulfate aqueous solution thus obtained can be reused as it is in the plating bath. In addition, after the recovered particles are brought into contact with an acid to dissolve the metal carbonate, acid-insoluble seed crystal particles remain, but these seed crystal particles should be used again as seed crystals in a crystallizer. Can do. By reusing seed crystal particles in this way, particle size management in the crystallizer becomes easy.
 従って、晶析装置8からは定期的に、表面に金属炭酸塩が析出した種晶粒子を引き抜いて、酸で処理して金属塩溶液と種晶とをそれぞれ回収するのが好ましい。 Therefore, it is preferable to periodically extract seed crystal particles having a metal carbonate precipitated on the surface from the crystallizer 8 and treat them with an acid to recover the metal salt solution and the seed crystal, respectively.
 晶析装置8から引き抜いた粒子(種晶表面に金属炭酸塩が析出した粒子)と酸を接触させる装置としては、両者を効率的に接触させることができるものであれば良く、特に制限はないが、例えば、図3に示すような酸接触装置を用いることができる。 The device for bringing the particles extracted from the crystallizer 8 (particles having a metal carbonate deposited on the surface of the seed crystal) into contact with the acid is not particularly limited as long as it can efficiently bring both into contact with each other. However, for example, an acid contact device as shown in FIG. 3 can be used.
 この酸接触装置は、晶析装置8からの引き抜き粒子が投入される酸接触塔20を有し、この塔内下部には、粒子は通過せず、水分のみが通過し得る集水板(多孔板またはメッシュ)が設けられている。晶析装置8からの引き抜き粒子の処理に当ってはバルブV、Vを開、その他のバルブを閉として、配管21より引き抜き粒子を酸接触塔20内に投入し、水分を配管23,24より抜き出す。この水分は、晶析処理水槽9に戻される。次いで、バルブV,Vを開、その他のバルブを閉として、ポンプPにより硫酸等の酸を配管25,23を経て酸接触塔20の下部から通水し、酸と粒子とを接触させることにより、種晶表面の金属炭酸塩を溶解させる。金属炭酸塩が溶解した金属イオンを含む溶液は、配管26を経て取り出される。この金属塩溶液としては、通常金属イオンの5~15重量%程度の高濃度溶液が得られることから、この金属塩溶液はメッキ液として好適に再利用することができる。 This acid contact device has an acid contact tower 20 into which the drawn particles from the crystallizer 8 are charged, and a water collecting plate (porous) through which only water can pass without passing through the particles in the lower part of the tower. Plate or mesh). In processing the extracted particles from the crystallizer 8, the valves V 1 and V 2 are opened, the other valves are closed, the extracted particles are put into the acid contact tower 20 from the pipe 21, and moisture is supplied to the pipe 23, Extract from 24. This water is returned to the crystallization water tank 9. Next, the valves V 3 and V 4 are opened, the other valves are closed, and an acid such as sulfuric acid is passed through the pipes 25 and 23 from the lower part of the acid contact tower 20 by the pump P 3 to contact the acid and the particles. To dissolve the metal carbonate on the surface of the seed crystal. A solution containing metal ions in which the metal carbonate is dissolved is taken out via the pipe 26. As this metal salt solution, since a high concentration solution of about 5 to 15% by weight of metal ions is usually obtained, this metal salt solution can be suitably reused as a plating solution.
 種晶表面の金属炭酸塩を溶解させた後は、バルブV,Vを開、他のバルブを閉として、ポンプ(図示せず)により配管24,23を経て、水を高流速で酸接触塔20の下部から通水して、種晶をバルブVを経て晶析装置8に返送して再利用する。 After dissolving the metal carbonate on the surface of the seed crystal, the valves V 2 and V 5 are opened, the other valves are closed, and the water is acidified at a high flow rate through the pipes 24 and 23 by a pump (not shown). and passed through from the bottom of the contact tower 20, the seed crystals through the valve V 5 to return to reuse the crystallizer 8.
 なお、種晶上の金属炭酸塩の溶解に用いる酸としては50~98重量%程度の高濃度硫酸水溶液又は20~35重量%の塩酸水溶液が好ましい。 The acid used for dissolving the metal carbonate on the seed crystal is preferably a high concentration sulfuric acid aqueous solution of about 50 to 98% by weight or a 20 to 35% by weight hydrochloric acid aqueous solution.
 従来の水酸化物沈殿法においても、金属イオンを不溶化し、これを酸で再溶解させて、メッキ浴で再利用することは可能であるが、本発明のように晶析処理を行うことにより、沈殿池や脱水機が不要となる。しかも、比較的粒径の大きい水切り性の良い粒子を得ることができるため、図3のような酸接触装置を使用することが可能となり、容易に水切り、再溶解の操作を行って、高濃度の金属塩溶液を回収することができる。 In the conventional hydroxide precipitation method, it is possible to insolubilize metal ions, re-dissolve them with an acid, and reuse them in a plating bath, but by performing a crystallization treatment as in the present invention. , No sedimentation tank or dehydrator is required. Moreover, since it is possible to obtain particles having a relatively large particle size and good drainage properties, it is possible to use an acid contact device as shown in FIG. The metal salt solution can be recovered.
 以上のようにして、本発明によれば、排水量、排出金属量を削減して、系全体のスラッジ発生量を大幅に削減した上で、メッキ洗浄排水から効率的に水と有価金属とを回収することができる。 As described above, according to the present invention, the amount of waste water and the amount of discharged metal are reduced, the amount of sludge generated in the entire system is greatly reduced, and water and valuable metals are efficiently recovered from the plating washing waste water. can do.
 以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例1]
 図1に示す方法でメッキ洗浄排水からの水と金属の回収を行った。
[Example 1]
Water and metal were recovered from the plating washing waste water by the method shown in FIG.
 まず、メッキ洗浄排水に、凝集・酸化槽1にて次亜塩素酸ソーダ5mg/Lを添加し、廃液中に含まれるFe2+をFe3+に酸化し、また、苛性ソーダを用いてpH5に調整し、Fe3+を鉄水酸化物Fe(OH)として不溶化するとともに、不溶化したFe(OH)の粒子径を大きくするために塩化第二鉄(FeCl)を100mg/L添加して凝集処理した。 First, 5 mg / L of sodium hypochlorite is added to the plating washing wastewater in the coagulation / oxidation tank 1 to oxidize Fe 2+ contained in the waste liquid to Fe 3+ , and the pH is adjusted to 5 using caustic soda. , Fe 3+ is insolubilized as iron hydroxide Fe (OH) 3 and 100 mg / L of ferric chloride (FeCl 3 ) is added to increase the particle size of the insolubilized Fe (OH) 3. did.
 凝集・酸化槽1の処理液は沈殿槽2に導入して、生成したフロックの大半を沈降分離した後、沈殿槽2の分離液をUF膜装置3で膜濾過した。このUF膜装置3は定期的に逆洗した。 The treatment liquid in the flocculation / oxidation tank 1 was introduced into the precipitation tank 2 and most of the generated floc was settled and separated, and then the separation liquid in the precipitation tank 2 was subjected to membrane filtration with the UF membrane device 3. This UF membrane device 3 was regularly backwashed.
 UF膜装置3の濾過水は、UF処理水槽4を経て調整槽5に導入し、重亜硫酸ソーダ15mg/Lを添加して残留塩素を除去した後、RO膜装置6へ供給し(RO供給水)、RO透過水を回収するとともに、RO濃縮水をRO濃縮水槽7を経て晶析装置8に送給して晶析処理した。このRO膜装置6の水回収率は80%とした。 The filtered water of the UF membrane device 3 is introduced into the adjustment tank 5 through the UF treatment water tank 4, and after adding residual sodium bisulfite 15mg / L to remove residual chlorine, it is supplied to the RO membrane apparatus 6 (RO supply water) ), RO permeated water was recovered, and RO concentrated water was supplied to the crystallizer 8 through the RO concentrated water tank 7 for crystallization treatment. The water recovery rate of this RO membrane device 6 was 80%.
 晶析装置8は、図2に示すような晶析反応塔10に粒径0.2mm程度の砂を充填したものであり、晶析反応塔10の下部よりRO濃縮水を通液して砂の流動床を形成させるとともに、流動床内に炭酸ナトリウム(NaCO)を添加して、流動床内のpHを9に調整した。この晶析装置8からの晶析処理水は晶析処理水槽9に受けた。 The crystallization apparatus 8 is a crystallization reaction tower 10 as shown in FIG. 2 filled with sand having a particle size of about 0.2 mm. RO concentrated water is passed from the lower part of the crystallization reaction tower 10 to sand. In addition, the pH in the fluidized bed was adjusted to 9 by adding sodium carbonate (Na 2 CO 3 ) to the fluidized bed. Crystallized water from the crystallizer 8 was received in a crystallized water tank 9.
 この処理における各工程毎の水質を表1に示す。 Table 1 shows the water quality for each process in this treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より次のことが明らかである。 From Table 1, the following is clear.
 鉄不溶化処理により、鉄は不溶化され、RO供給水の段階で検出されないレベルまで除去された。また、ニッケル、亜鉛はRO膜装置6まで殆ど不溶化されることはなく、溶解状態であった。RO濃縮水側へ溶解状態のまま濃縮されたニッケル、亜鉛は、晶析処理によって約80%が除去された(金属回収率80%)。このとき、種晶として投入した砂表面にニッケル、亜鉛が析出し、種晶粒子径の増加が見られた。 Iron was insolubilized by the iron insolubilization treatment, and was removed to a level that was not detected at the stage of RO supply water. Nickel and zinc were hardly insolubilized up to the RO membrane device 6 and were in a dissolved state. About 80% of nickel and zinc concentrated in a dissolved state on the RO concentrated water side were removed by crystallization treatment (metal recovery rate 80%). At this time, nickel and zinc were deposited on the surface of sand introduced as seed crystals, and an increase in seed crystal particle diameter was observed.
 UF逆洗排水、晶析処理水が排水として排出されるため、全体として水回収率は75%となった。 UF backwash wastewater and crystallization treated water are discharged as wastewater, so the overall water recovery rate is 75%.
[実施例2]
 実施例1において、晶析処理により0.3~0.4mm程度に粒径が増大した種晶を、図3に示す酸接触塔20に導き、10分間水切りを行った後、塔下部から50重量%硫酸水溶液を注入した。水切りした段階での粒子の含水率は10重量%であった。塔下部から硫酸を注入することにより、種晶表面に付着したニッケル、亜鉛が溶解し、塔上部よりニッケル、亜鉛の硫酸塩溶液が得られた。この溶液のニッケル、亜鉛濃度はそれぞれ1.5重量%、17重量%であった。この結果は、原水中のメッキ洗浄排水のニッケル、亜鉛がそれぞれ600倍、577倍に濃縮されたことになる。
[Example 2]
In Example 1, the seed crystal having a particle size increased to about 0.3 to 0.4 mm by the crystallization treatment is guided to the acid contact tower 20 shown in FIG. A weight% aqueous sulfuric acid solution was injected. The water content of the particles after draining was 10% by weight. By injecting sulfuric acid from the lower part of the tower, nickel and zinc adhering to the seed crystal surface were dissolved, and a sulfate solution of nickel and zinc was obtained from the upper part of the tower. The nickel and zinc concentrations of this solution were 1.5 wt% and 17 wt%, respectively. As a result, nickel and zinc in plating washing wastewater in the raw water are concentrated 600 times and 577 times, respectively.
[実施例3]
 実施例1において、晶析処理水の90%を凝集・酸化槽1の入口側に返送し、メッキ洗浄排水と共に処理したこと以外は同様に行った。本例において、晶析処理での1パスの金属回収率は80%と変わらないが、晶析処理水を返送して再度処理することで、繰り返し晶析処理されることになり、全体の金属回収率は98%まで上昇した。また、水回収率は92%まで向上した。
[Example 3]
In Example 1, 90% of the crystallization treated water was returned to the inlet side of the flocculation / oxidation tank 1 and treated in the same manner as in the treatment with the plating washing waste water. In this example, the one-pass metal recovery rate in the crystallization treatment is not changed to 80%, but by returning the crystallization treatment water and treating it again, the crystallization treatment is repeated and the entire metal is recovered. The recovery increased to 98%. The water recovery rate was improved to 92%.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2009年6月11日付で出願された日本特許出願(特願2009-140335)に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2009-140335) filed on June 11, 2009, which is incorporated by reference in its entirety.

Claims (6)

  1.  メッキ洗浄排水から水及び金属を回収する方法において、
     メッキ洗浄排水を酸化剤の存在下にpH3~6に調整して、液中の2価鉄イオンを3価鉄イオンに酸化すると共に鉄水酸化物を析出させる鉄不溶化工程と、
     該鉄不溶化工程の処理水を精密濾過膜、限外濾過膜又は濾過器で固液分離する固液分離工程と、
     該固液分離工程で分離された分離水を逆浸透膜分離処理し、透過水を処理水として系外へ取り出す逆浸透膜分離工程と、
     該逆浸透膜分離工程の濃縮水にアルカリを添加して、酸不溶性の粒子を種晶とする晶析法により、液中の金属を炭酸塩として析出させる晶析工程と
    を有することを特徴とするメッキ洗浄排水からの水及び金属の回収方法。
    In the method of recovering water and metal from plating washing wastewater,
    An iron insolubilization step in which the plating washing wastewater is adjusted to pH 3 to 6 in the presence of an oxidizing agent to oxidize divalent iron ions in the solution to trivalent iron ions and precipitate iron hydroxide;
    A solid-liquid separation step of solid-liquid separation of the treated water of the iron insolubilization step with a microfiltration membrane, an ultrafiltration membrane or a filter;
    Reverse osmosis membrane separation treatment of the separated water separated in the solid-liquid separation step, and removing the permeated water out of the system as treated water;
    And a crystallization step of precipitating the metal in the liquid as a carbonate by a crystallization method in which an alkali is added to the concentrated water in the reverse osmosis membrane separation step, and acid-insoluble particles are used as seed crystals. To recover water and metal from plating cleaning wastewater.
  2.  請求項1において、前記晶析工程において、種晶上に析出した金属炭酸塩を酸に溶解させて金属塩溶液を得る金属回収工程を有することを特徴とするメッキ洗浄排水からの水及び金属の回収方法。 In Claim 1, the said crystallization process has a metal collection | recovery process which dissolves the metal carbonate deposited on the seed crystal in an acid, and obtains a metal salt solution. Collection method.
  3.  請求項2において、前記金属回収工程で得られた金属塩溶液をメッキ液として再利用することを特徴とするメッキ洗浄排水からの水及び金属の回収方法。 3. The method for recovering water and metal from plating washing drainage according to claim 2, wherein the metal salt solution obtained in the metal recovery step is reused as a plating solution.
  4.  請求項2において、前記金属回収工程からの種晶を回収して晶析工程で再使用することを特徴とするメッキ洗浄排水からの水及び金属の回収方法。 3. The method for recovering water and metal from plating washing waste water according to claim 2, wherein seed crystals from the metal recovery step are recovered and reused in the crystallization step.
  5.  請求項2において、前記酸は硫酸水溶液又は塩酸水溶液であることを特徴とするメッキ洗浄排水からの水及び金属の回収方法。 3. The method for recovering water and metal from plating cleaning waste water according to claim 2, wherein the acid is a sulfuric acid aqueous solution or a hydrochloric acid aqueous solution.
  6.  請求項1ないし5のいずれか1項において、前記晶析工程の処理水の一部を前記鉄不溶化工程に返送して処理することを特徴とするメッキ洗浄排水からの水及び金属の回収方法。 6. The method for recovering water and metal from plating washing wastewater according to any one of claims 1 to 5, wherein a part of the treated water in the crystallization step is returned to the iron insolubilization step for treatment.
PCT/JP2010/059680 2009-06-11 2010-06-08 Method for recovering water and metals from plating wastewater resulting from washing WO2010143623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080025924.7A CN102459096B (en) 2009-06-11 2010-06-08 Method for recovering water and metals from plating wastewater resulting from washing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-140335 2009-06-11
JP2009140335A JP5471054B2 (en) 2009-06-11 2009-06-11 Methods for recovering water and metals from plating cleaning wastewater

Publications (1)

Publication Number Publication Date
WO2010143623A1 true WO2010143623A1 (en) 2010-12-16

Family

ID=43308878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059680 WO2010143623A1 (en) 2009-06-11 2010-06-08 Method for recovering water and metals from plating wastewater resulting from washing

Country Status (3)

Country Link
JP (1) JP5471054B2 (en)
CN (1) CN102459096B (en)
WO (1) WO2010143623A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539276A (en) * 2013-06-03 2014-01-29 广州凯膜过滤设备有限公司 System and technology for realizing electroplating washing zero discharge and electroplating solution recovery
US8747787B2 (en) 2010-07-28 2014-06-10 Sumitomo Metal Mining Co., Ltd. Method for producing raw material for ferronickel smelting from low grade nickel oxide ore
CN104724857A (en) * 2015-03-27 2015-06-24 天津大学 Method for recycling treatment of rinsing solution during production of bleaching powder concentrate
EP3015160A4 (en) * 2013-12-18 2016-12-21 Mitsubishi Heavy Ind Ltd Scale detection device and method for concentrating device, and water reclamation processing system
EP3156508A1 (en) * 2015-10-16 2017-04-19 Vito NV Recovery process for metal-containing byproducts of metal production and processing
CN106587478A (en) * 2017-01-22 2017-04-26 青岛北方节能环保有限公司 Hot-dip galvanizing waste acid resource treatment method
CN107253775A (en) * 2017-06-22 2017-10-17 广东益诺欧环保股份有限公司 A kind of electroplating wastewater mud decrement device
US20180029907A1 (en) * 2015-12-22 2018-02-01 Sumitomo Electric Industries, Ltd. Water treatment method and water treatment system
CN108147622A (en) * 2018-01-16 2018-06-12 张家港市佰坤物资有限公司 A kind of cathode copper waste water treatment process
CN110963622A (en) * 2019-12-17 2020-04-07 浙江富莱迪环境设备有限责任公司 Secondary water supply deep purification system with coupling quality-dividing function
CN111392923A (en) * 2020-03-04 2020-07-10 首钢京唐钢铁联合有限责任公司 Acid-containing wastewater treatment method, treatment system and application

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098924A1 (en) * 2011-01-20 2012-07-26 三菱レイヨン株式会社 Wastewater treatment apparatus, wastewater treatment method, and wastewater treatment system
JP5719320B2 (en) * 2012-01-27 2015-05-13 Jfeエンジニアリング株式会社 Zinc recovery method from galvanizing waste liquid
WO2015129541A1 (en) * 2014-02-27 2015-09-03 三菱レイヨン株式会社 Treatment method and treatment device for waste water containing heavy metal
JP6709036B2 (en) * 2015-11-12 2020-06-10 岩井ファルマテック株式会社 Hot water recovery system
JP6216856B1 (en) * 2016-10-06 2017-10-18 川村 彰彦 Useful resource recovery apparatus and method for recovering useful resources from an eluate from which useful resources are eluted
JP7237640B2 (en) * 2018-03-26 2023-03-13 三菱ケミカルアクア・ソリューションズ株式会社 Method for treating waste liquid containing acidic flocculate and water treatment apparatus
JP7305090B2 (en) * 2019-01-30 2023-07-10 アサヒプリテック株式会社 Valuable metal powder recovery method from resist waste liquid and valuable metal powder recovery apparatus
CN110734168B (en) * 2019-12-18 2020-04-14 烟台金正环保科技有限公司 Method and system for treating high-concentration brine
CN113477639B (en) * 2021-06-25 2022-06-10 武钢集团昆明钢铁股份有限公司 Method for cleaning ferric trichloride stains
CN114455765B (en) * 2022-02-11 2023-04-14 宜兴市中发水处理环保设备有限公司 Electroplating liquid membrane separation and recovery technical equipment and recovery method thereof
CN115432861A (en) * 2022-10-26 2022-12-06 西安交通大学 Nuclear crystal condensation induction granulation salt separation crystallization water treatment device with seed crystal regeneration system
WO2024162250A1 (en) * 2023-01-31 2024-08-08 東レ株式会社 Method for recovering metal salts, plating method, metal recovery device, and plating device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253738A (en) * 1986-02-18 1987-11-05 ジエイムズ エム.フランカ−ド Removal of dangerous metal waste sludge
JPH0751684A (en) * 1993-08-19 1995-02-28 Kankyo Eng Kk Treatment of waste water containing dissolved iron
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2001321768A (en) * 2000-05-15 2001-11-20 Kawasaki Heavy Ind Ltd Method and device for treating leachate from waste landfill site
JP2002018485A (en) * 2000-07-11 2002-01-22 Nippon Steel Corp Method for treating metal-containing wastewater and method for recovery of valence metal from the metal- containing wastewater
JP2002121626A (en) * 2000-10-18 2002-04-26 National Institute Of Advanced Industrial & Technology Method for recovering valuable metal from plating sludge
JP2002192168A (en) * 2000-12-27 2002-07-10 Nippon Steel Corp Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge
JP2004105923A (en) * 2002-09-20 2004-04-08 Nippon Steel Corp Method of recovering valuable metal in metal-containing waste water and method of utilizing the same
JP2004107780A (en) * 2002-09-20 2004-04-08 Nippon Steel Corp Method for recovering and utilizing valuable metal in waste water containing metal
JP2005015272A (en) * 2003-06-26 2005-01-20 Nippon Steel Corp Recovery method of nickel salt from nickel-containing waste solution sludge
JP2005296866A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Method for making cake containing iron from waste liquid

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537310B2 (en) * 1974-02-18 1980-09-26
JPS5470644A (en) * 1977-11-16 1979-06-06 Hitachi Plant Eng & Constr Co Ltd Purification disposal method of waste water containing zinc
JPS61143527A (en) * 1984-12-14 1986-07-01 Kurita Water Ind Ltd Treatment of metal-containing water
JP2701284B2 (en) * 1988-01-27 1998-01-21 住友金属工業株式会社 Treatment method for metal-containing water
JPH01207185A (en) * 1988-02-12 1989-08-21 Kurita Water Ind Ltd Treatment of plating waste liquid
US6416668B1 (en) * 1999-09-01 2002-07-09 Riad A. Al-Samadi Water treatment process for membranes
JP4842450B2 (en) * 2001-03-30 2011-12-21 オルガノ株式会社 Crystallization reactor equipped with turbidity measuring means and crystallization treatment method using the same
JP4669625B2 (en) * 2001-03-30 2011-04-13 オルガノ株式会社 Crystallization reactor equipped with crystallization reaction component recovery means
JP2002292204A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
CN1282616C (en) * 2004-12-04 2006-11-01 海宁市海整整流器有限公司 Recovering and using technology of water in electroplating
CN101423309B (en) * 2008-05-07 2010-10-13 厦门市闽发实业有限公司 Electroplating waste water and heavy metal double recovery method
JP2010138490A (en) * 2008-11-12 2010-06-24 Mitsubishi Materials Corp Method of recovering zinc

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253738A (en) * 1986-02-18 1987-11-05 ジエイムズ エム.フランカ−ド Removal of dangerous metal waste sludge
JPH0751684A (en) * 1993-08-19 1995-02-28 Kankyo Eng Kk Treatment of waste water containing dissolved iron
JP2000117270A (en) * 1998-10-09 2000-04-25 Nippon Steel Corp Treatment of metal-containing waste water and method for recovering valuable metal
JP2001321768A (en) * 2000-05-15 2001-11-20 Kawasaki Heavy Ind Ltd Method and device for treating leachate from waste landfill site
JP2002018485A (en) * 2000-07-11 2002-01-22 Nippon Steel Corp Method for treating metal-containing wastewater and method for recovery of valence metal from the metal- containing wastewater
JP2002121626A (en) * 2000-10-18 2002-04-26 National Institute Of Advanced Industrial & Technology Method for recovering valuable metal from plating sludge
JP2002192168A (en) * 2000-12-27 2002-07-10 Nippon Steel Corp Method for separating and recovering nickel and zinc from nickel and zinc-containing wastewater or sludge
JP2004105923A (en) * 2002-09-20 2004-04-08 Nippon Steel Corp Method of recovering valuable metal in metal-containing waste water and method of utilizing the same
JP2004107780A (en) * 2002-09-20 2004-04-08 Nippon Steel Corp Method for recovering and utilizing valuable metal in waste water containing metal
JP2005015272A (en) * 2003-06-26 2005-01-20 Nippon Steel Corp Recovery method of nickel salt from nickel-containing waste solution sludge
JP2005296866A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Method for making cake containing iron from waste liquid

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747787B2 (en) 2010-07-28 2014-06-10 Sumitomo Metal Mining Co., Ltd. Method for producing raw material for ferronickel smelting from low grade nickel oxide ore
CN103539276A (en) * 2013-06-03 2014-01-29 广州凯膜过滤设备有限公司 System and technology for realizing electroplating washing zero discharge and electroplating solution recovery
EP3015160A4 (en) * 2013-12-18 2016-12-21 Mitsubishi Heavy Ind Ltd Scale detection device and method for concentrating device, and water reclamation processing system
US10407331B2 (en) 2013-12-18 2019-09-10 Mitsubishi Heavy Industries Engineering, Ltd. Scale detection device and method for concentrating device, and water reclamation processing treatment system
CN104724857A (en) * 2015-03-27 2015-06-24 天津大学 Method for recycling treatment of rinsing solution during production of bleaching powder concentrate
EP3156508A1 (en) * 2015-10-16 2017-04-19 Vito NV Recovery process for metal-containing byproducts of metal production and processing
US20180029907A1 (en) * 2015-12-22 2018-02-01 Sumitomo Electric Industries, Ltd. Water treatment method and water treatment system
CN106587478A (en) * 2017-01-22 2017-04-26 青岛北方节能环保有限公司 Hot-dip galvanizing waste acid resource treatment method
CN107253775A (en) * 2017-06-22 2017-10-17 广东益诺欧环保股份有限公司 A kind of electroplating wastewater mud decrement device
CN108147622A (en) * 2018-01-16 2018-06-12 张家港市佰坤物资有限公司 A kind of cathode copper waste water treatment process
CN110963622A (en) * 2019-12-17 2020-04-07 浙江富莱迪环境设备有限责任公司 Secondary water supply deep purification system with coupling quality-dividing function
CN111392923A (en) * 2020-03-04 2020-07-10 首钢京唐钢铁联合有限责任公司 Acid-containing wastewater treatment method, treatment system and application

Also Published As

Publication number Publication date
CN102459096B (en) 2014-06-18
JP5471054B2 (en) 2014-04-16
JP2010284593A (en) 2010-12-24
CN102459096A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5471054B2 (en) Methods for recovering water and metals from plating cleaning wastewater
JP3842907B2 (en) Treatment of metal-containing wastewater and method for recovering valuable metals
US6582605B2 (en) Method of treating industrial waste waters
US8815096B2 (en) Sulfate removal from water sources
US20120160770A1 (en) Process for Reducing the Sulfate Concentration in a Wastewater Stream
JP5879901B2 (en) Organic wastewater recovery processing apparatus and recovery processing method
CA2891066C (en) Process for reducing the sulfate concentration in a wastewater stream by employing regenerated gibbsite
JP2014198291A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JP5540574B2 (en) Metal recovery method
JP2009226244A (en) Waste water treatment method and waste water treatment system
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
JP3843052B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP4261857B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
US11008240B2 (en) Process for reduction of sulfide from water and wastewater
JP2013141641A (en) Method for treating heavy metal-containing waste water
JP6213044B2 (en) Method and apparatus for treating selenium-containing water
JP2006224023A (en) Method and apparatus for treating heavy metal-containing waste water
CN206069459U (en) A kind of recycle device of industrial acidic wastewater
JP2006263553A (en) Method for treating anionic organic material-containing waste water
JP4482488B2 (en) Method and apparatus for treating inorganic wastewater
JP2008297568A (en) Method of electrolyzing sodium chloride aqueous solution
TWI725782B (en) Method and device for treating molybdenum-containing wastewater
JP2004074146A (en) Method and equipment for treating impurity-containing liquid
JP4122207B2 (en) Method for removing metal from wastewater

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025924.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9008/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786154

Country of ref document: EP

Kind code of ref document: A1