JPH0975910A - Wastewater recovery and regeneration method - Google Patents
Wastewater recovery and regeneration methodInfo
- Publication number
- JPH0975910A JPH0975910A JP23845695A JP23845695A JPH0975910A JP H0975910 A JPH0975910 A JP H0975910A JP 23845695 A JP23845695 A JP 23845695A JP 23845695 A JP23845695 A JP 23845695A JP H0975910 A JPH0975910 A JP H0975910A
- Authority
- JP
- Japan
- Prior art keywords
- water
- activated carbon
- sludge
- wastewater
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 44
- 238000011084 recovery Methods 0.000 title claims abstract description 18
- 238000011069 regeneration method Methods 0.000 title claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 153
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 127
- 239000012528 membrane Substances 0.000 claims abstract description 97
- 239000010802 sludge Substances 0.000 claims abstract description 82
- 239000002699 waste material Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000007654 immersion Methods 0.000 claims abstract description 23
- 238000001471 micro-filtration Methods 0.000 claims abstract description 9
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 7
- 239000002994 raw material Substances 0.000 claims description 10
- 238000000926 separation method Methods 0.000 abstract description 29
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 19
- 150000003839 salts Chemical class 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 8
- 239000002440 industrial waste Substances 0.000 abstract description 5
- 239000008235 industrial water Substances 0.000 abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 238000004065 wastewater treatment Methods 0.000 abstract description 4
- 241000894006 Bacteria Species 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000001179 sorption measurement Methods 0.000 description 36
- 239000007788 liquid Substances 0.000 description 35
- 238000001223 reverse osmosis Methods 0.000 description 33
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 25
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 16
- 239000011574 phosphorus Substances 0.000 description 16
- 238000002485 combustion reaction Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 239000003463 adsorbent Substances 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 230000008929 regeneration Effects 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000005416 organic matter Substances 0.000 description 9
- 238000006864 oxidative decomposition reaction Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 229910021536 Zeolite Inorganic materials 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000010457 zeolite Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000701 coagulant Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 239000010865 sewage Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 238000011001 backwashing Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000012510 hollow fiber Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000005273 aeration Methods 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 239000011269 tar Substances 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- -1 clinoptilolite Chemical compound 0.000 description 3
- 238000010612 desalination reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 238000005374 membrane filtration Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 229910001603 clinoptilolite Inorganic materials 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 239000010812 mixed waste Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 102100040998 Conserved oligomeric Golgi complex subunit 6 Human genes 0.000 description 1
- 101000748957 Homo sapiens Conserved oligomeric Golgi complex subunit 6 Proteins 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 241000533293 Sesbania emerus Species 0.000 description 1
- 201000000465 X-linked cone-rod dystrophy 2 Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010841 municipal wastewater Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- UUWCBFKLGFQDME-UHFFFAOYSA-N platinum titanium Chemical compound [Ti].[Pt] UUWCBFKLGFQDME-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
(57)【要約】
【課題】 排水処理及び回収過程で余剰汚泥や濃縮排液
等の副次的な産業廃棄物を発生せずに、排水の大部分を
効率的に回収再利用できるクローズ型回収再生方法を提
供する。
【解決手段】 排水を活性汚泥処理し、活性汚泥処理水
に粉末活性炭を添加して、精密濾過膜又は限外濾過膜を
用いた浸漬式膜分離装置に通水し、透過水を再生水とし
て回収する。活性汚泥処理水に添加する粉末活性炭とし
て排水の活性汚泥処理工程で発生する余剰汚泥から製造
された粉末活性炭を用いる。
【効果】 活性汚泥処理水に活性炭を添加して浸漬式膜
分離装置に通水することにより、排水中のN、P、有機
物、色度、塩類、SS、菌体、臭気成分等の除去を行
い、工業用水、雑用水と同等以上の再生水を得ることが
できる。余剰汚泥を粉末活性炭原料とすることで、汚泥
廃棄物の発生量を削減できる。
(57) [Abstract] [Problem] Closed type that can efficiently recover and reuse most of wastewater without generating secondary industrial waste such as excess sludge and concentrated wastewater in wastewater treatment and recovery processes. Provide a recovery method. SOLUTION: Waste water is treated with activated sludge, activated carbon powder is added to activated sludge treated water, and the water is passed through an immersion type membrane separation device using a microfiltration membrane or an ultrafiltration membrane, and the permeated water is recovered as reclaimed water. To do. As the powdered activated carbon to be added to the activated sludge treated water, the powdered activated carbon produced from the excess sludge generated in the activated sludge treatment process of wastewater is used. [Effect] By adding activated carbon to the activated sludge treated water and passing it through an immersion type membrane separator, it is possible to remove N, P, organic substances, chromaticity, salts, SS, bacteria, odorous components, etc. in the wastewater. It is possible to obtain recycled water equal to or more than industrial water and miscellaneous water. By using surplus sludge as a powdered activated carbon material, the amount of sludge waste generated can be reduced.
Description
【0001】[0001]
【発明の属する技術分野】本発明は排水回収再生方法に
係り、特に、工場排水や下水を回収再利用するに当り、
排水処理及び回収過程で余剰汚泥や濃縮排液等の副次的
な産業廃棄物を殆ど発生することなく、排水の大部分を
効率的に回収再利用することができるクローズ型回収再
生方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater recovery and recycling method, and more particularly, in recovering and recycling factory wastewater and sewage,
The present invention relates to a closed-type recovery / regeneration method capable of efficiently recovering and reusing most of wastewater with little generation of secondary industrial waste such as excess sludge and concentrated wastewater in wastewater treatment and recovery processes.
【0002】[0002]
【従来の技術】水資源保護並びに、渇水期や災害時にお
ける水源確保等の観点から、工業排水や下水を回収して
再利用可能な水質に処理する技術の開発に対する要望
は、近年、増々高まりつつある。同時に、再生水につい
ては、工業用水や雑用水と同等以上の水質が要求され、
その処理プロセスは更に高度対応型となることが予想さ
れる。2. Description of the Related Art From the viewpoints of protecting water resources and securing water sources during periods of drought and disasters, there has been an increasing demand in recent years for the development of technology for collecting industrial wastewater and sewage and processing it into reusable water quality. It's starting. At the same time, reclaimed water is required to have a quality equal to or higher than that of industrial water and miscellaneous water.
It is expected that the treatment process will be more highly advanced.
【0003】[0003]
【発明が解決しようとする課題】快適な社会環境に対応
した排水の回収再生のためには、副次的な廃棄物を発生
せずに、排水の大部分を効率的に回収再利用することが
できるクローズ型プロセスが必要とされるが、現状の処
理プロセスでは、容易な手段で回収できる一部の排水系
のみを対象とし、多くの排水は回収再利用せずに放流し
ている。また、再生に当って、多量の汚泥や濃縮排液等
の副次的な産業廃棄物が発生し、これらの廃棄物の処理
問題を新たに生起している例も多い。[Problems to be Solved by the Invention] In order to recover and recycle wastewater in a comfortable social environment, most wastewater is efficiently recovered and reused without generating secondary waste. However, in the current treatment process, only a part of the drainage system that can be easily recovered is targeted, and most wastewater is discharged without being recovered and reused. In addition, in many cases, secondary industrial waste such as sludge and concentrated effluent is generated during regeneration, which causes a new treatment problem for these wastes.
【0004】本発明は上記従来の問題点を解決し、工場
排水や下水を回収再利用するに当り、排水処理及び回収
過程で余剰汚泥や濃縮排液等の副次的な産業廃棄物を殆
ど発生することなく、排水の大部分を効率的に回収再利
用することができるクローズ型回収再生方法を提供する
ことを目的とする。The present invention solves the above-mentioned conventional problems, and when recovering and reusing factory wastewater and sewage, most of secondary industrial waste such as excess sludge and concentrated wastewater is treated in wastewater treatment and recovery process. It is an object of the present invention to provide a closed type recovery / regeneration method capable of efficiently recovering and reusing most of wastewater without being generated.
【0005】[0005]
【課題を解決するための手段】本発明の排水回収再生方
法は、排水を活性汚泥処理して得られる活性汚泥処理水
に粉末活性炭を添加して、精密濾過膜又は限外濾過膜を
用いた浸漬式膜分離装置に通水し、透過水を再生水とし
て回収する方法であって、前記粉末活性炭として、前記
排水の活性汚泥処理工程で発生する余剰汚泥を原料とし
て製造された粉末活性炭を用いることを特徴とする。In the wastewater recovery and regeneration method of the present invention, powdered activated carbon is added to activated sludge treated water obtained by treating wastewater with activated sludge, and a microfiltration membrane or an ultrafiltration membrane is used. A method of passing water through a submerged membrane separation device and collecting permeated water as reclaimed water, wherein, as the powdered activated carbon, use is made of powdered activated carbon produced from excess sludge generated in the wastewater activated sludge treatment step as a raw material. Is characterized by.
【0006】排水の回収再利用における要求項目とし
て、次の〜がある。The following items are required items in the recovery and reuse of waste water.
【0007】 安定して、安全かつ高度な再生水が得
られる。 副次的な廃棄物が生産されない。 排水の大部分を回収再利用できる。Stable, safe and highly reclaimed water is obtained. No secondary waste is produced. Most of the wastewater can be collected and reused.
【0008】本発明者らは、上記要件を満足し得るプロ
セスとして、本発明の排水回収再生方法を開発した。The present inventors have developed the wastewater recovery and regeneration method of the present invention as a process that can satisfy the above requirements.
【0009】本発明においては、例えば、工場排水の全
量を処理している既設の活性汚泥処理設備から得られる
2次処理水を水源として、これに活性炭を添加して精密
濾過(MF)膜又は限外濾過(UF)膜を用いた浸漬式
膜分離装置に通水することにより、好ましくは、活性汚
泥処理水を、NH4 吸着装置、浸漬式膜分離装置、及
び、逆浸透(RO)膜分離装置に順次通水することによ
り、排水中のN、P、有機物、色度、塩類、SS、菌
体、臭気成分等を効率的に除去して、工業用水、雑用水
と同等以上の再生水を得ることができる。In the present invention, for example, the secondary treated water obtained from the existing activated sludge treatment facility that treats the entire amount of the factory wastewater is used as a water source, and activated carbon is added to this to obtain a microfiltration (MF) membrane or By passing the water through an immersion type membrane separation device using an ultrafiltration (UF) membrane, it is preferable that the activated sludge treated water is an NH 4 adsorption device, an immersion type membrane separation device, and a reverse osmosis (RO) membrane. By sequentially passing water through the separator, N, P, organic matter, chromaticity, salts, SS, bacterial cells, odorous components, etc. in the wastewater can be efficiently removed, and recycled water equal to or more than industrial water and miscellaneous water. Can be obtained.
【0010】また、活性汚泥処理工程から発生する余剰
汚泥を、粉末活性炭の原料に活用することで、汚泥廃棄
物の発生量を削減することができる。Further, by utilizing the surplus sludge generated in the activated sludge treatment step as a raw material for the powdered activated carbon, the amount of sludge waste generated can be reduced.
【0011】本発明においては、発生した廃活性炭は焼
却処理するのが好ましく、特に、この廃活性炭焼却装置
は、活性炭製造工程から発生する排ガスを焼却する排ガ
ス燃焼装置、及び、廃膜(廃浸漬膜、廃RO膜)の焼却
装置を兼ね、発生する熱を活性炭製造装置等の熱源とし
て利用することが好ましい。In the present invention, it is preferable to incinerate the generated waste activated carbon, and in particular, this waste activated carbon incinerator is an exhaust gas combustion device for incinerating the exhaust gas generated from the activated carbon manufacturing process, and a waste film (waste immersion). It is preferable to use the generated heat as a heat source for an activated carbon production apparatus, etc., while also serving as an incinerator for membranes and waste RO membranes.
【0012】また、RO膜分離装置濃縮液等の副次的に
発生する濃縮排水や、NH4 吸着装置からの再生廃液
は、廃棄物の発生を抑えた酸化分解装置で物理化学的な
分解処理を行い、限られた最小量の排液のみを下水道等
に放流するようにするのが望ましい。Concentrated waste water generated as a by-product such as RO membrane separator concentrated liquid and recycled waste liquid from the NH 4 adsorption device are physically and chemically decomposed by an oxidative decomposition device which suppresses the generation of waste. Therefore, it is desirable to discharge only a limited minimum amount of drainage to sewers.
【0013】[0013]
【発明の実施の形態】以下に図面を参照して本発明を詳
細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.
【0014】図1は本発明の排水回収再生方法の一実施
例方法を示す系統図である。以下においては、この図1
に示される主な工程毎に処理方法の詳細を説明する。FIG. 1 is a system diagram showing a method of an embodiment of the waste water recovery and regeneration method of the present invention. In the following, this FIG.
Details of the processing method will be described for each of the main steps shown in FIG.
【0015】 活性汚泥処理装置1 本発明においては、下水又は工場排水等の排水(原水)
を通常の活性汚泥処理装置1で処理し、活性汚泥処理水
を得る。この活性汚泥処理には、任意の処理形式が採用
されており、浮遊方式でも、生物膜方式でも良い。Activated sludge treatment device 1 In the present invention, wastewater (raw water) such as sewage or factory wastewater
Is treated with a usual activated sludge treatment device 1 to obtain activated sludge treated water. For this activated sludge treatment, any treatment method is adopted, and either a floating method or a biofilm method may be used.
【0016】なお、この活性汚泥処理水とは、下水処理
場の活性汚泥処理水や工場排水の活性汚泥処理水であ
り、通常、脱窒、脱リン等の高度処理を行っていない一
般的な2次処理水である。従ってBOD20mg/L付
近、SS20mg/L付近の、一般河川や海域に放流し
ている処理水に相当するが、脱窒、脱リン等を行った生
物処理水であっても良い。The activated sludge treated water is the activated sludge treated water of the sewage treatment plant or the activated sludge treated water of the factory effluent, which is generally not subjected to advanced treatment such as denitrification and dephosphorization. It is secondary treated water. Therefore, it corresponds to the treated water discharged to general rivers and sea areas around BOD 20 mg / L and SS 20 mg / L, but it may be biological treated water that has been subjected to denitrification, dephosphorization, and the like.
【0017】本発明では、後述の如く、この活性汚泥処
理において発生する余剰汚泥(生物膜方式では逆洗によ
って発生する。)は、粉末活性炭の製造原料とするた
め、廃棄物の発生量を削減することができる。In the present invention, as will be described later, the excess sludge generated in this activated sludge treatment (generated by backwashing in the biofilm method) is used as a raw material for producing powdered activated carbon, so that the amount of waste generated is reduced. can do.
【0018】 NH4 吸着装置2 活性汚泥処理装置1からの活性汚泥処理水は、次いでN
H4 吸着装置2でゼオライト等の吸着剤によりNH4 の
吸着処理を行う。NH 4 adsorption device 2 The activated sludge treated water from the activated sludge treatment device 1 is
In the H 4 adsorption device 2, NH 4 adsorption treatment is performed with an adsorbent such as zeolite.
【0019】このNH4 吸着工程は、活性汚泥処理水中
にNH4 −Nが含まれている場合に設けるものであり、
活性汚泥処理工程に組み込まれた生物脱窒処理により、
活性汚泥処理水中のNH4 −Nが所定濃度以下になって
いる場合には省略できる。This NH 4 adsorption step is provided when NH 4 --N is contained in the activated sludge treated water,
By the biological denitrification process incorporated in the activated sludge treatment process,
It can be omitted when NH 4 -N in the activated sludge treated water is below a predetermined concentration.
【0020】活性汚泥処理水のNH4 濃度は、一般に数
十mg/L以下の低濃度であり、また、CaやMgなど
のアルカリ金属イオン濃度が比較的少ないため、活性汚
泥処理水中のNH4 の除去法として、吸着法を採用する
ことは、良好な水質を得るために有利な方法であり、装
置も小型化できる。The NH 4 concentration in the activated sludge treated water is generally a low concentration of several tens mg / L or less, and the concentration of alkali metal ions such as Ca and Mg is relatively low, so that the NH 4 concentration in the activated sludge treated water is small. Adopting the adsorption method as the removal method is advantageous for obtaining good water quality, and the apparatus can be downsized.
【0021】NH4 吸着装置2の吸着剤としては、イオ
ン交換樹脂、ゼオライト等が使用できるが、ゼオライ
ト、特にクリノプチロライトがアンモニアに対する選択
性が良いことから、適している。As the adsorbent of the NH 4 adsorbing device 2, ion exchange resin, zeolite and the like can be used, but zeolite, particularly clinoptilolite, is suitable because it has good selectivity for ammonia.
【0022】NH4 吸着処理は、具体的には、食塩等の
ナトリウム塩でNa型としたゼオライト充填塔に、下降
流又は上向流で活性汚泥処理水を流入させ、Naイオン
とNH4 イオンをイオン交換させることにより実施され
る。この場合、充填塔の通水速度は、活性汚泥処理水の
NH4 濃度にもよるが、NH4 濃度が10mg/L以上
である場合は、SV=5hr-1以下が好ましく、これに
より、処理水(流出水)のNH4 濃度を0.2mg/L
程度にすることが可能である。活性汚泥処理水にSSが
含まれており、そのSS濃度が20mg/L以上である
場合は、NH4吸着装置の前段にSS除去用として簡易
な濾過装置を設けることが好ましいが、SSが数mg/
L程度であるならば、吸着装置でSS濾過を併用するこ
とも可能である。In the NH 4 adsorption treatment, specifically, the activated sludge treated water is caused to flow into a zeolite packed tower which is Na-type with sodium salt such as sodium chloride in a downward flow or an upward flow, to obtain Na ions and NH 4 ions. Is carried out by ion-exchange. In this case, the water flow rate of the packed tower depends on the NH 4 concentration of the activated sludge treated water, but when the NH 4 concentration is 10 mg / L or more, SV = 5 hr −1 or less is preferable. The NH 4 concentration of water (outflow water) is 0.2 mg / L
It is possible to set the degree. When SS is contained in the activated sludge treated water and the SS concentration is 20 mg / L or more, it is preferable to install a simple filtration device for removing SS in the preceding stage of the NH 4 adsorption device. mg /
If it is about L, it is also possible to use SS filtration together with the adsorption device.
【0023】このNH4 吸着工程では、NH4 吸着装置
2の処理水のNH4 濃度が高まった時点で、ゼオライト
等の吸着剤の再生を行う。再生剤としては0.5〜5重
量%程度のNaCl水溶液を用いることが一般的であ
る。5重量%を超える高濃度のNaCl水溶液を用いる
と、再生廃液の処理に問題が生じる。再生廃液の処理の
面からは、特に2重量%以下の溶液が望ましい。再生溶
液の通液は、上向流、下降流のいずれも可能であり、通
液速度はSV=2hr-1以下が好ましい。通液量は、再
生溶液の濃度にもよるが、吸着剤容量の10〜20倍量
の再生溶液を通液することで、吸着剤に吸着されたNH
4 の90%以上を回収することができる。吸着剤の再生
で生成した再生廃液は、後述の酸化分解装置7に導いて
処理する。[0023] In this NH 4 adsorption step, at the time of increasing NH 4 concentration in the treated water NH 4 adsorber 2, reproduces the adsorbent such as zeolite. As a regenerant, it is common to use an aqueous NaCl solution of about 0.5 to 5% by weight. The use of a high-concentration aqueous solution of NaCl exceeding 5% by weight causes a problem in the treatment of the recycling waste liquid. From the viewpoint of treating the waste liquid for regeneration, a solution of 2% by weight or less is particularly desirable. The regeneration solution can be passed through either an upward flow or a downward flow, and the passage speed is preferably SV = 2 hr −1 or less. Although the passing amount depends on the concentration of the regenerating solution, the NH adsorbed on the adsorbent is passed by passing the regenerating solution in an amount of 10 to 20 times the adsorbent capacity.
90% or more of 4 can be recovered. The recycled waste liquid generated by the regeneration of the adsorbent is guided to the oxidative decomposition device 7 described later for processing.
【0024】なお、活性汚泥処理水にSSが含まれ、N
H4 吸着装置にSSが濾過されて捕捉されている場合
は、上記吸着剤の再生前に、通常の濾過器と同等な手
段、例えば充填層底部から逆洗水を通水したり、空気と
逆洗水を同時に又は交互に噴出する逆洗を行う。逆洗排
水は原水又は活性汚泥の曝気槽内に移送して処理する。The activated sludge treated water contains SS,
When SS is filtered and trapped in the H 4 adsorption device, before regeneration of the adsorbent, the same means as an ordinary filter is used, for example, backwash water is passed from the bottom of the packed bed, or air is removed from the adsorbent. Backwashing is performed by jetting backwashing water simultaneously or alternately. Backwash wastewater is transferred to raw water or activated sludge aeration tank for treatment.
【0025】なお、前述の如く、活性汚泥処理水にNH
4 −Nが含まれていない場合(NH4 濃度2mg/L以
下の場合)は、このNH4 吸着装置2を設ける必要はな
い。As mentioned above, NH is added to the activated sludge treated water.
When 4- N is not contained (when the NH 4 concentration is 2 mg / L or less), the NH 4 adsorption device 2 need not be provided.
【0026】 粉末活性炭製造装置4 この粉末活性炭製造装置4では、活性汚泥処理装置1か
ら発生する余剰汚泥を通常の汚泥脱水装置3で濃縮後脱
水処理し、含水率80〜85%とした脱水ケーキを原料
として、粉末活性炭を製造する。この脱水ケーキは、余
剰汚泥に初沈汚泥を混合して脱水したものであっても良
い。Powder Activated Carbon Production Device 4 In this powder activated carbon production device 4, excess sludge generated from the activated sludge treatment device 1 is concentrated and dehydrated by a normal sludge dewatering device 3 to obtain a dehydrated cake having a water content of 80 to 85%. A powdered activated carbon is produced by using as a raw material. The dehydrated cake may be dehydrated by mixing the initial sludge with excess sludge.
【0027】活性炭の製造には、やし殻やくるみ殻、コ
ーヒー豆カス等を炭化処理後、賦活処理する一般的な方
法と同様な方法を採用できる。炭化処理は、含水率80
〜85%に脱水した脱水ケーキを粉砕し、窒素ガスを充
填した電気炉内で400〜900℃で2〜4時間行い、
得られた炭を粒径1mm以下の粉末状に破砕する。その
破砕炭を800〜900℃の電気炉内に入れ、窒素ガス
を吹き込んだ加熱水蒸気や加熱水蒸気を用いて30分間
〜2時間の水蒸気賦活を行う。賦活方法は、その他、炭
酸ガスを用いる方法等、いずれも採用可能である。For the production of activated carbon, the same method as a general method in which palm shell, walnut shell, coffee bean dregs, etc. are carbonized and then activated can be employed. Carbonization treatment has a water content of 80
The dewatered cake dehydrated to ~ 85% is crushed, and is performed in an electric furnace filled with nitrogen gas at 400 to 900 ° C for 2 to 4 hours,
The obtained charcoal is crushed into a powder having a particle size of 1 mm or less. The crushed coal is put into an electric furnace at 800 to 900 ° C., and steam activation is performed for 30 minutes to 2 hours using heated steam or heated steam in which nitrogen gas is blown. As the activation method, any other method such as a method using carbon dioxide gas can be adopted.
【0028】脱水ケーキから得られる粉末活性炭収率
は、余剰汚泥やSSの性状や、炭化、賦活条件により異
なるが、一般には乾燥汚泥量当り10〜25%である。
得られた粉末活性炭の性能は、同粒径のやし殻活性炭と
比較して、ヨウ素吸着やフェノール吸着性能は低下して
いるが、十分に活性炭として使用可能なものである。The yield of powdered activated carbon obtained from the dehydrated cake varies depending on the properties of surplus sludge and SS, carbonization and activation conditions, but is generally 10 to 25% per dry sludge amount.
Regarding the performance of the obtained powdered activated carbon, iodine adsorption and phenol adsorption performance are lower than those of palm shell activated carbon of the same particle size, but it can be sufficiently used as activated carbon.
【0029】この活性炭製造装置4は、余剰汚泥の脱水
ケーキの他に、後述する浸漬膜やRO膜の廃棄物も原料
として用いることができる。また、NH4 吸着装置2の
吸着剤としてイオン交換樹脂を用いた場合において、廃
イオン交換樹脂を活性炭原料の一部として使用すること
もできる。In addition to the dehydrated cake of surplus sludge, the activated carbon producing apparatus 4 can also use as a raw material a waste material of an immersion membrane or an RO membrane described later. When an ion exchange resin is used as the adsorbent of the NH 4 adsorption device 2, the waste ion exchange resin can be used as a part of the activated carbon raw material.
【0030】なお、活性炭製造装置4の炭化工程から
は、小量のタールが発生し、メタンやエタン、CO、C
O2 ガス等が発生するが、これらのタールやガスは後述
の燃焼・焼却装置8で処理する。A small amount of tar is generated from the carbonization process of the activated carbon production apparatus 4, and methane, ethane, CO, C
Although O 2 gas and the like are generated, these tars and gases are processed by the combustion / incineration device 8 described later.
【0031】 浸漬式膜分離装置(粉末活性炭吸着脱
リン装置)5 この浸漬式膜分離装置5では、平膜や中空糸膜状のMF
膜やUF膜を槽内に浸漬設置し、その槽内で粉末活性炭
製造装置4で製造された粉末活性炭を用いて、被処理水
(NH4 吸着装置2又は活性汚泥処理装置1からの流出
水)中の残留有機物、特に、難生物分解性の有機物の活
性炭吸着処理が行われる。Immersion Type Membrane Separation Device (Powder Activated Carbon Adsorption Dephosphorization Device) 5 In this immersion type membrane separation device 5, a flat membrane or a hollow fiber membrane-shaped MF is used.
A membrane or a UF membrane is dipped and installed in a tank, and the powdered activated carbon manufactured by the powdered activated carbon manufacturing apparatus 4 is used in the tank to treat water (effluent water from the NH 4 adsorption apparatus 2 or the activated sludge processing apparatus 1). A), an activated carbon adsorption treatment of residual organic matter, particularly, a biodegradable organic matter is performed.
【0032】活性炭で吸着される物質は、主に、活性汚
泥処理で残留した難生物分解性物質であり、色度成分、
臭気成分、界面活性剤、トリハロメタン等も除去され
る。この吸着処理において、粉末活性炭の吸着効率を高
めるため、槽内で活性炭が十分に混合されるように、槽
内の流速を30cm/秒とするのが好ましい。The substances adsorbed on the activated carbon are mainly biodegradable substances remaining in the activated sludge treatment, and the chromaticity component,
Odorous components, surfactants, trihalomethanes, etc. are also removed. In this adsorption treatment, in order to enhance the adsorption efficiency of the powdered activated carbon, it is preferable to set the flow rate in the tank to 30 cm / sec so that the activated carbon is sufficiently mixed in the tank.
【0033】被処理水の滞留時間は、粉末活性炭の性能
や粒径により異なるが、30分間以上とすることが好ま
しい。The residence time of the water to be treated varies depending on the performance and particle size of the powdered activated carbon, but is preferably 30 minutes or longer.
【0034】活性炭の投入量は、被処理水の有機物濃度
にもよるが、活性炭製造装置4で製造された活性炭の吸
着性能は、市販の活性炭の約1/2程度であることが多
いため、市販の活性炭を用いる場合の2倍量以上を投入
する。活性炭製造装置4で製造可能な活性炭量が必要量
より少ない場合は、不足量を市販の活性炭で補充する。The amount of the activated carbon charged depends on the organic matter concentration of the water to be treated, but the adsorption performance of the activated carbon produced by the activated carbon producing apparatus 4 is about half that of commercially available activated carbon. Add more than twice the amount as when using commercially available activated carbon. When the amount of activated carbon that can be produced by the activated carbon producing apparatus 4 is less than the required amount, the insufficient amount is supplemented with commercially available activated carbon.
【0035】吸着容量の飽和に達した廃活性炭は、後述
するリン含有汚泥と共に、槽底部で濃縮されて後述の燃
焼・焼却装置8に移送され、焼却処理される。The waste activated carbon which has reached the saturation of the adsorption capacity is concentrated at the bottom of the tank together with the phosphorus-containing sludge described later, transferred to the combustion / incinerator 8 described later, and incinerated.
【0036】被処理水にリンが含まれる場合には、槽内
に鉄塩やアルミニウム塩等の凝集剤を添加して、主にオ
ルトリン酸等のリンを凝集脱リン処理で同時に除去す
る。なお、活性汚泥処理装置1に生物脱リン工程がある
場合や原水にリンが含まれていない場合等は、凝集剤添
加の必要はない。When the water to be treated contains phosphorus, an aggregating agent such as iron salt or aluminum salt is added to the tank to mainly remove phosphorus such as orthophosphoric acid simultaneously by the aggregating and dephosphorizing treatment. In addition, when the activated sludge treatment device 1 has a biological dephosphorization process, or when raw water does not contain phosphorus, it is not necessary to add a coagulant.
【0037】添加する凝集剤は脱リンを行うに必要最少
量とし、過剰の鉄やアルミニウムによる後段のRO膜の
負荷を高めないようにする必要がある。一般的な凝集沈
澱脱リン処理で鉄塩を凝集剤とした場合、対象水のリン
酸イオンを完全に凝集除去するには、FePO4 とFe
(OH)3 が生成する化学量論的に必要な量の2〜3倍
量が、凝集剤の添加量とされている。しかし、浸漬式膜
濾過方式においては、凝集沈澱処理におけるような沈降
性の良好なフロックを形成する必要はなく、従って、凝
集剤の添加量も化学量論量の2倍量以内で十分である。
また、高分子凝集助剤を併用する必要もない。通常、被
処理水のリン成分がオトリン酸である場合、化学量論量
の2倍量に相当する凝集剤の添加で、処理水のリン濃度
を0.1mg/L程度とすることが可能となる。It is necessary to add the coagulant in the minimum amount necessary for dephosphorization so that excess iron or aluminum does not increase the load on the RO film in the subsequent stage. When iron salt is used as a coagulant in a general coagulation-sedimentation dephosphorization treatment, FePO 4 and Fe
The amount of coagulant added is 2 to 3 times the stoichiometrically required amount of (OH) 3 . However, in the immersion type membrane filtration system, it is not necessary to form flocs having a good sedimentation property as in the coagulation-sedimentation treatment, and therefore, the addition amount of the coagulant is sufficiently within twice the stoichiometric amount. .
Further, it is not necessary to use a polymer coagulation aid together. Usually, when the phosphorus component of the water to be treated is otolinic acid, it is possible to make the phosphorus concentration of the treated water about 0.1 mg / L by adding a coagulant corresponding to twice the stoichiometric amount. Become.
【0038】この凝集脱リン処理で発生したリン含有汚
泥は、廃活性炭と共に槽底部から引き抜かれ、後述の燃
焼・焼却装置8で焼却処理される。The phosphorus-containing sludge generated by this coagulation dephosphorization treatment is withdrawn from the bottom of the tank together with the waste activated carbon, and is incinerated in the combustion / incineration device 8 described later.
【0039】なお、前述のように対象水にリンが含まれ
ない場合や、リンが含まれていても脱リンを浸漬式膜分
離装置の槽内で行わず、後段のRO膜分離装置で行う場
合は、凝集剤の添加は必要でない。As described above, when the target water does not contain phosphorus, or even when phosphorus is contained, dephosphorization is not carried out in the tank of the immersion type membrane separator, but is carried out by the RO membrane separator at the subsequent stage. In some cases, it is not necessary to add a flocculant.
【0040】活性炭吸着処理後、及び必要に応じて脱リ
ン処理後の処理水は、槽内に浸漬設置したMF膜又はU
F膜で膜濾過される。The treated water after the activated carbon adsorption treatment and, if necessary, the dephosphorization treatment is MF membrane or U immersed in the tank.
Membrane filtration with F membrane.
【0041】この槽内に浸漬設置するMF膜又はUF膜
は、一般に、素材がポリエチレンやポリプロピレンから
なる平膜状、又は中空糸状、更にはセラミック素材の管
状膜であり、膜濾過に当っては、膜面に槽内液が十分に
接触できるように槽内液を流動させる。この流動手段と
しては、撹拌機やポンプ循環、曝気による撹拌等があ
る。また、これらの膜を槽内で回転することで、膜表面
に槽内液を接触させる方法も採用できる。膜の設置で注
意すべき点は、槽内に投入した粉末活性炭や脱リン凝集
汚泥が膜の表面に堆積しないように、絶えず活性炭や凝
集汚泥が膜表面を流動するように、槽内の撹拌状況や設
置場所を調整することである。例えば、槽底部に散気管
を設置し、散気管上に膜を配置して、曝気による上向流
中に膜を配置するようにするのが好ましい。The MF membrane or UF membrane immersed in this tank is generally a flat membrane made of polyethylene or polypropylene, or a hollow fiber, or a tubular membrane made of a ceramic material. , The liquid in the tank is made to flow so that the liquid in the tank can sufficiently come into contact with the membrane surface. Examples of this flow means include a stirrer, pump circulation, aeration and the like. Alternatively, a method of bringing the liquid in the tank into contact with the surface of the film by rotating these films in the tank can be adopted. The point to be noted when installing the membrane is to prevent the powdered activated carbon and dephosphorized coagulated sludge charged in the tank from accumulating on the surface of the membrane, and to keep the activated carbon and coagulated sludge flowing on the surface of the membrane. It is to adjust the situation and the installation place. For example, it is preferable to install an air diffusing tube at the bottom of the tank, arrange the membrane on the air diffusing tube, and arrange the membrane in the upward flow due to aeration.
【0042】この膜分離装置5の膜透過水は、圧力−
0.1〜−0.3Kg/cm2 の減圧下で吸引する方式
が一般的である。The permeated water of the membrane separation device 5 has a pressure-
A method of suctioning under a reduced pressure of 0.1 to -0.3 Kg / cm 2 is generally used.
【0043】浸漬膜の表面や膜内部に有機物や汚泥、種
々の塩類等の汚染物質が付着し、透過水量が低下した場
合には、膜の洗浄を行う。膜の洗浄は、膜を槽内に浸漬
設置した状態で、膜の透過側から洗浄水を供給する逆流
洗浄により実施する。When contaminants such as organic matter, sludge and various salts adhere to the surface of the immersion membrane or inside the membrane and the amount of permeated water decreases, the membrane is washed. The membrane is washed by backwashing in which washing water is supplied from the permeate side of the membrane while the membrane is immersed in the tank.
【0044】洗浄水には処理水を用いてもよいが、水逆
洗だけでは徐々に回復度が低下するので、定期的に洗浄
剤を逆洗水に添加して薬品洗浄を行うのが良い。洗浄剤
としては任意のものを使用できるが、過酸化水素やオゾ
ンが好ましく、例えば、1〜10重量%の過酸化水素水
を注入し、過酸化水素の酸化力と過酸化水素から発生す
る気泡を利用して、汚染物質を分解したり膜から剥離す
る方式が適当である。Treated water may be used as the wash water, but since the degree of recovery gradually decreases only by backwashing with water, it is preferable to periodically add a detergent to the backwash water for chemical cleaning. . Although any cleaning agent can be used, hydrogen peroxide or ozone is preferable. For example, 1 to 10% by weight of hydrogen peroxide solution is injected to oxidize hydrogen peroxide and bubbles generated from hydrogen peroxide. A method of decomposing contaminants or peeling them from the film by using is suitable.
【0045】なお、洗浄後、槽内に残留している過酸化
水素やオゾンは、槽内の粉末活性炭により速やかに分解
されるため、洗浄廃液を槽外に排出する必要性はない。
また、過酸化水素やオゾンを用いることで、後段のRO
膜の塩負荷が増加するおそれもない。Since hydrogen peroxide and ozone remaining in the tank after the cleaning are rapidly decomposed by the powdered activated carbon in the tank, it is not necessary to discharge the cleaning waste liquid to the outside of the tank.
In addition, by using hydrogen peroxide or ozone,
There is also no risk of increasing the salt load of the membrane.
【0046】膜を浸漬した槽の底部には、槽内に投入し
た粉末活性炭と、脱リンで発生する凝集汚泥を排出する
ために、活性炭と汚泥が濃縮可能な沈澱部が設けられて
おり、有機物吸着が飽和状態となった廃活性炭とリン含
有汚泥はここで濃縮されて、後述の燃焼・焼却装置8に
移送される。At the bottom of the tank in which the membrane is immersed, there is provided a powder activated carbon charged into the tank and a precipitation part capable of concentrating the activated carbon and sludge in order to discharge the coagulated sludge generated by dephosphorization. The waste activated carbon and the phosphorus-containing sludge in which the adsorption of organic substances is saturated are concentrated here and transferred to the combustion / incineration device 8 described later.
【0047】また、廃浸漬膜も燃焼・焼却装置8で焼却
処理されるが、粉末活性炭の製造原料とすることも可能
である。Further, although the waste immersion membrane is also incinerated by the combustion / incineration device 8, it can be used as a raw material for producing powdered activated carbon.
【0048】この浸漬式膜分離装置5の膜透過水は、更
に後段のRO膜分離装置6に通水処理されるが、回収再
生水の用途によっては、RO膜による脱塩処理まで要望
されていない場合も有り得る。その場合は、この浸漬式
膜分離装置5の処理水(透過水)が最終回収再生水とな
る。The membrane permeated water of the immersion type membrane separation device 5 is further passed through the RO membrane separation device 6 in the subsequent stage, but depending on the use of the recovered reclaimed water, desalting treatment by the RO membrane is not required. There may be cases. In that case, the treated water (permeated water) of the immersion type membrane separation device 5 becomes the final recovered reclaimed water.
【0049】 RO膜分離装置6 浸漬式膜分離装置5からの透過水水質は、対象水の性状
により大きく異なるが、1〜5mg/LのBODやCO
Dを含んでおり、NH4 −Nは0.2mg/L程度、リ
ン酸は0.1mg/L程度である。回収再生水の用途に
よっては、これらの水質で使用可能な例もあるが、工業
用水や雑用水と同等な水質を望まれる場合は、RO膜分
離処理が必要とされる。RO Membrane Separation Device 6 The quality of the permeated water from the immersion type membrane separation device 5 varies greatly depending on the properties of the target water, but is 1-5 mg / L of BOD or CO.
It contains D, NH 4 —N is about 0.2 mg / L, and phosphoric acid is about 0.1 mg / L. Depending on the use of the recovered reclaimed water, there are some examples in which these water qualities can be used, but when water quality equivalent to industrial water or miscellaneous water is desired, RO membrane separation treatment is required.
【0050】RO膜分離処理に使用される膜の素材は、
酢酸セルロースが一般であり、膜形状としては、中空糸
状、平膜状、スパイラル状、管状等の形状がある。一般
に、RO膜分離装置は、膜の操作圧力により、15Kg
/cm2 付近を標準とする低圧型、30Kg/cm2 付
近の中圧型、40Kg/cm2 以上の高圧型に分けられ
ている。最近、更に操作圧力が低い超低圧型RO膜やナ
ノフィルター(NF)が開発・実用化されつつある。こ
れらの低圧,超低圧RO膜やNFは、高い脱塩性能は得
られにくいが、操作圧力が低いため、省エネルギーの観
点から多くの利点がある。特に、排水の回収工程では、
一般的に排水の塩濃度が海水に比べ大幅に低いため、低
圧,超低圧RO膜、NFを用いて食塩脱塩率を50〜6
0%で運転する方式が、省エネルギーの面からより好ま
しいとされている。The material of the membrane used for the RO membrane separation treatment is
Cellulose acetate is generally used, and the membrane shape includes hollow fiber shape, flat membrane shape, spiral shape, tubular shape, and the like. Generally, RO membrane separators have a pressure of 15 kg depending on the operating pressure of the membrane.
/ Cm 2 near the low-pressure to standard pressure type in the vicinity of 30 Kg / cm 2, are divided into 40 Kg / cm 2 or more high-pressure. Recently, ultra-low pressure RO membranes and nanofilters (NF) with lower operating pressure have been developed and put into practical use. Although these low-pressure and ultra-low-pressure RO membranes and NF are difficult to obtain high desalination performance, they have many advantages from the viewpoint of energy saving because they have low operating pressure. Especially in the wastewater recovery process,
Generally, the salt concentration of wastewater is much lower than that of seawater, so low and ultra low pressure RO membranes and NF are used to increase the salt desalination rate to 50-6.
The method of operating at 0% is said to be more preferable in terms of energy saving.
【0051】これらの市販されている低圧,超低圧RO
膜やNFを用いることにより、通常の工場排水を原水と
した場合、BOD,CODは0.5mg/L以下、Nは
0.2mg/L以下、Pは0.005mg/L以下、F
e、Mnは0.01mg/L以下、大腸菌や一般細菌は
検出されない高度な回収再生水が得られる。また、都市
下水を原水とした場合は、蒸発残留物10〜50mg/
L、M−アルカリ度10〜20mg/Lの高度な水質が
得られる。These commercially available low pressure and ultra low pressure RO
When normal factory wastewater is used as raw water by using a membrane or NF, BOD and COD are 0.5 mg / L or less, N is 0.2 mg / L or less, P is 0.005 mg / L or less, F
e and Mn are 0.01 mg / L or less, and highly recovered reclaimed water in which Escherichia coli and general bacteria are not detected can be obtained. In addition, when municipal wastewater is used as raw water, the evaporation residue is 10-50 mg /
L, M-High water quality with an alkalinity of 10 to 20 mg / L can be obtained.
【0052】これらの低圧,超低圧RO膜は、濃縮倍数
を高めると、操作圧力が増加したり、透過水量が低減す
るため、濃縮倍数は10〜15倍が一般的である。従っ
て、有機物濃度が10〜15倍に濃縮された濃縮液が生
じる。この濃縮液は単独で或いはNH4 吸着装置からの
再生廃液と混合して、後述の酸化分解装置7で分解処理
される。In these low-pressure and ultra-low-pressure RO membranes, when the concentration factor is increased, the operating pressure is increased and the amount of permeated water is reduced. Therefore, the concentration factor is generally 10 to 15 times. Therefore, a concentrated liquid having an organic matter concentration of 10 to 15 times is produced. This concentrated liquid is decomposed alone or in a mixture with the regenerated waste liquid from the NH 4 adsorption device, and decomposed in the oxidative decomposition device 7 described later.
【0053】このRO膜分離装置6から発生する廃RO
膜は、後述の燃焼・焼却装置8で焼却処理されるか、粉
末活性炭の原料として用いられる。Waste RO generated from this RO membrane separation device 6
The membrane is incinerated by a combustion / incinerator 8 described later or used as a raw material for powdered activated carbon.
【0054】 酸化分解装置7 RO膜分離装置6の濃縮液中には、活性炭で吸着除去さ
れずに残留した有機物が10〜15倍に濃縮されてい
る。そのTOC濃度は原水の性状により大きく異なる
が、50〜150mg/Lとなる場合もある。また、N
H4 吸着装置2を採用した場合には、前述の如く、吸着
剤の再生廃液が発生するが、この再生廃液中のNH4 濃
度は再生条件により異なるが、100〜500mg/L
となる。Oxidative Decomposition Device 7 In the concentrated liquid of the RO membrane separation device 6, the organic substances remaining without being adsorbed and removed by activated carbon are concentrated 10 to 15 times. The TOC concentration varies depending on the properties of the raw water, but it may be 50 to 150 mg / L. Also, N
When the H 4 adsorption device 2 is adopted, a regeneration waste liquid of the adsorbent is generated as described above. The NH 4 concentration in the regeneration waste liquid is 100 to 500 mg / L, although it varies depending on the regeneration conditions.
Becomes
【0055】これらのRO膜分離装置6の濃縮液や再生
廃液を処理する場合、再生廃液については食塩濃度が高
いが、生物化学的な硝化脱窒が可能である。しかし、R
O膜分離装置6の濃縮液は難分解性物質が濃縮されてい
るため、生物化学的処理は困難である。更に、RO膜で
濃縮する方式も考えられるが、新たな濃縮液の処理に課
題が残る。When treating the concentrated liquid or the regenerated waste liquid of the RO membrane separation device 6, the regenerated waste liquid has a high salt concentration, but biochemical nitrification denitrification is possible. But R
Since the hardly decomposable substance is concentrated in the concentrated liquid of the O membrane separation device 6, biochemical treatment is difficult. Further, a method of concentrating with an RO membrane is also conceivable, but there remains a problem in processing a new concentrated liquid.
【0056】そこで、本発明においては、RO膜分離装
置6の濃縮液中の有機物及びNH4吸着装置2の再生廃
液中のアンモニアの分解処理方法としては、酸化剤を用
いた酸化分解処理を用いるのが好ましい。Therefore, in the present invention, the oxidative decomposition treatment using an oxidizing agent is used as the decomposition treatment method of the organic matter in the concentrated liquid of the RO membrane separation device 6 and the ammonia in the regenerated waste liquid of the NH 4 adsorption device 2. Is preferred.
【0057】酸化剤としては、過酸化水素、オゾン、亜
硝酸塩等が用いられ、その添加量は有機物、アンモニア
に対し反応当量以上であれば良い。As the oxidizing agent, hydrogen peroxide, ozone, nitrite, etc. are used, and the addition amount thereof may be a reaction equivalent amount or more with respect to the organic substance and ammonia.
【0058】反応は触媒存在下で行うと、短時間に、比
較的低温で進行することから好ましい。この場合、触媒
としては、二酸化チタン、アルミナ等の担体に白金、パ
ラジウム等の貴金属を担持させたものが好適である。It is preferable to carry out the reaction in the presence of a catalyst because it proceeds at a relatively low temperature in a short time. In this case, as the catalyst, it is preferable to use a carrier such as titanium dioxide or alumina on which a noble metal such as platinum or palladium is supported.
【0059】反応温度は任意であるが、100℃以上、
好ましくは140〜200℃で行うのが良く、この温度
において短時間で分解可能である。The reaction temperature is arbitrary, but 100 ° C. or higher,
It is preferably carried out at 140 to 200 ° C., and decomposition can be carried out at this temperature in a short time.
【0060】例えば、有機物を含む濃縮液をチタンに白
金を担持した触媒の存在下、140〜170℃の高温下
で過酸化水素を用いて酸化分解すると、効率的な分解を
行え、有機物は酸化分解されて炭酸ガスとなって除去さ
れる。For example, when a concentrated liquid containing an organic substance is oxidatively decomposed with hydrogen peroxide in the presence of a catalyst in which platinum is supported on titanium at a high temperature of 140 to 170 ° C., the decomposition can be efficiently performed, and the organic substance is oxidized. It is decomposed into carbon dioxide and removed.
【0061】また、アンモニアを含む再生廃液に亜硫酸
ナトリウムを反応当量添加し、140〜170℃に加温
してチタン−白金触媒を充填した反応塔に通液すること
により、アンモニアを窒素ガスにまで酸化して除去する
ことができる。Also, sodium sulfite was added as a reaction equivalent to the waste waste liquid containing ammonia, heated to 140 to 170 ° C., and passed through a reaction column filled with a titanium-platinum catalyst to convert ammonia to nitrogen gas. It can be oxidized and removed.
【0062】濃縮液と再生廃液が混合された濃縮廃液を
処理する場合には、白金触媒を用い、温度100〜20
0℃の条件下で、過酸化水素と反応させることにより、
有機物とアンモニアを同時に分解することができる。When treating the concentrated waste liquid in which the concentrated liquid and the recycled waste liquid are mixed, a platinum catalyst is used and the temperature is 100 to 20.
By reacting with hydrogen peroxide under the condition of 0 ° C,
Organic matter and ammonia can be decomposed at the same time.
【0063】また、再生廃液中のNH4 を白金触媒存在
下、亜硝酸塩で窒素ガスに酸化処理し、その後、過酸化
水素を添加し、白金触媒と接触させて、順次、酸化分解
処理することも可能である。この場合、亜硝酸の使用量
は、NH4 −N量に対し、窒素ガスに還元する化学量論
量と当量で良く、過酸化水素の使用量は、混合濃縮廃液
のTOC量に対し、炭酸ガスまで分解する化学量論量の
1.2〜1.5倍量である。Further, NH 4 in the regenerated waste liquid is oxidized to nitrogen gas with a nitrite in the presence of a platinum catalyst, and then hydrogen peroxide is added to the mixture, which is then brought into contact with the platinum catalyst to successively undergo oxidation decomposition treatment. Is also possible. In this case, the amount of nitrous acid used may be equivalent to the stoichiometric amount of reducing to nitrogen gas with respect to the amount of NH 4 —N, and the amount of hydrogen peroxide used may be equal to the amount of carbonic acid relative to the TOC amount of the mixed concentrated waste liquid. It is 1.2 to 1.5 times the stoichiometric amount that decomposes to gas.
【0064】このような酸化処理で、NH4 −Nの90
%以上を、TOCの90%以上を分解除去することが可
能である。この酸化分解装置7の処理水は放流される。With such an oxidation treatment, 90% of NH 4 --N
% Or more and 90% or more of TOC can be decomposed and removed. The treated water in the oxidative decomposition device 7 is discharged.
【0065】 燃焼・焼却装置8 前述の如く、活性炭製造装置4からは、タール、メタ
ン、エタン、CO、CO2 等を含んだ排ガスが発生す
る。また、浸漬式膜分離装置5からは廃活性炭とリン含
有汚泥が発生する。さらに、廃棄用の浸漬膜が発生す
る。RO膜分離装置6からも廃RO膜が生じる。燃焼・
焼却装置8はこれらの排ガスや廃活性炭、廃膜等を焼却
し、その熱を回収して活性炭製造装置4等の加熱源に活
用する装置である。燃焼・焼却装置8からの灰はリンを
含有しているため、肥料として活用することも可能であ
る。Combustion / Incineration Device 8 As described above, the activated carbon production device 4 generates exhaust gas containing tar, methane, ethane, CO, CO 2, and the like. Further, waste activated carbon and phosphorus-containing sludge are generated from the immersion type membrane separation device 5. Furthermore, a dipping film for disposal is generated. Waste RO membranes are also generated from the RO membrane separation device 6. combustion·
The incinerator 8 is an apparatus that incinerates the exhaust gas, waste activated carbon, waste film, and the like, recovers the heat, and uses the heat as a heating source for the activated carbon manufacturing apparatus 4 and the like. Since the ash from the combustion / incinerator 8 contains phosphorus, it can be used as a fertilizer.
【0066】なお、廃浸漬膜や廃RO膜は、前述の如
く、活性炭製造装置4にて、粉末活性炭の原料とするこ
とも可能である。The waste immersion membrane and the waste RO membrane can be used as the raw material for the powdered activated carbon in the activated carbon manufacturing apparatus 4 as described above.
【0067】このような本発明の方法によれば、濁度2
0度以下、pH6.5〜8.0、アルカリ度75mg/
L以下、蒸発残留物250mg/L以下、塩素イオン8
0mg/L以下、鉄0.3mg/L以下、Mn0.2m
g/L以下で、窒素、リン、大腸菌、界面活性剤、トリ
ハロメタン等が含まれておらず、異臭や着色が無い、通
常の工業用水や雑用水と同等又は同等以上の水質の回収
再生水を得ることができる。According to such a method of the present invention, the turbidity is 2
0 degree or less, pH 6.5 to 8.0, alkalinity 75 mg /
L or less, evaporation residue 250 mg / L or less, chloride ion 8
0 mg / L or less, iron 0.3 mg / L or less, Mn 0.2 m
It is less than g / L and does not contain nitrogen, phosphorus, Escherichia coli, surfactants, trihalomethanes, etc., and has no offensive odor or coloration, and is recovered water of a quality equal to or higher than that of ordinary industrial water or miscellaneous water. be able to.
【0068】[0068]
【実施例】以下に実施例を挙げて本発明をより具体的に
説明する。The present invention will be described more specifically with reference to the following examples.
【0069】実施例1 繊維染色工場の総合排水を原水として、図1の方法に従
って再生水の回収を行った。この総合排水は、BOD5
00〜1300mg/L、COD250〜800mg/
L、SS300〜650mg/L、全−N30〜120
mg/L、全−P4〜12mg/Lであり、色調は褐色
から黒色で、界面活性剤を含む水質変動の激しい排水で
ある。Example 1 Reclaimed water was recovered according to the method shown in FIG. 1 using the total wastewater of the textile dyeing factory as raw water. This integrated wastewater is BOD5
00 to 1300 mg / L, COD 250 to 800 mg / L
L, SS 300 to 650 mg / L, all-N 30 to 120
mg / L, total -P4 to 12 mg / L, the color tone is brown to black, and the waste water contains a surfactant and whose water quality varies greatly.
【0070】活性汚泥処理装置1は、曝気槽滞留時間2
4時間、BOD負荷量0.5〜1.3Kg/m3 で運転
し、処理水水質はBOD25〜35mg/L、COD2
7〜45mg/L、SS5〜12mg/L、全−Nは2
7〜110mg/L、全−Pは3〜10mg/Lであっ
た。なお、全−Nの内、NH4 −Nは25〜95mg/
L、全−Pの内、PO4 −Pは3〜8mg/Lであっ
た。The activated sludge treatment device 1 has an aeration tank residence time of 2
Operated for 4 hours at a BOD load of 0.5 to 1.3 Kg / m 3 , the treated water quality was BOD 25 to 35 mg / L, and COD2.
7-45 mg / L, SS5-12 mg / L, total -N is 2
7 to 110 mg / L, and total-P was 3 to 10 mg / L. In addition, out of all -N, NH 4 -N is 25 to 95 mg /
Of L and all-P, PO 4 -P was 3 to 8 mg / L.
【0071】この活性汚泥処理装置1から発生する余剰
汚泥は、総合排水のSSを含めて、450〜1100m
g/Lであり、カチオン系高分子脱水助剤を添加し、汚
泥脱水装置(ベルトプレス型脱水機)3で平均含水率8
3%に脱水した。脱水ケーキの有機物含有割合は平均8
2%であった。Excess sludge generated from this activated sludge treatment device 1 is 450 to 1100 m including SS of integrated wastewater.
g / L, a cationic polymer dehydration aid was added, and the average water content in the sludge dehydrator (belt press type dehydrator) 3 was 8
Dehydrated to 3%. Dehydrated cake has an average organic content of 8
2%.
【0072】NH4 吸着装置2では、内径50mm、長
さ500mmのカラム内に平均粒径1.25mmのゼオ
ライト(秋田産クリノプチロライト)を0.5L充填
し、2重量%の食塩水溶液を10L上向流で通水し、ゼ
オライトをNa型に転換した後、NH4 −N45mg/
L(平均)の上記活性汚泥処理水を流量2.5L/hr
(SV=5hr-1)で上向流で通水した。通水直後より
通水24時間まで、処理水(流出水)のNH4 −Nは
0.15〜0.2mg/Lであった。通水24時間後に
2重量%の食塩水溶液10Lを用いて、ゼオライトを再
生した。再生廃液のNH4 −Nは263mg/Lであ
り、再生効率は97.8%であった。In the NH 4 adsorption device 2, 0.5 L of zeolite (clinoptilolite from Akita, Japan) having an average particle size of 1.25 mm was filled in a column having an inner diameter of 50 mm and a length of 500 mm, and a 2 wt% saline solution was added. After passing 10 L upward flow of water to convert the zeolite to Na type, NH 4 —N 45 mg /
L (average) of the activated sludge treated water has a flow rate of 2.5 L / hr
(SV = 5 hr −1 ) and water was passed in an upward flow. NH 4 -N of the treated water (outflow water) was 0.15 to 0.2 mg / L from immediately after passing water until 24 hours. After 24 hours of passing water, the zeolite was regenerated using 10 L of a 2 wt% saline solution. NH 4 -N regeneration effluent is 263 mg / L, the regeneration efficiency was 97.8%.
【0073】粉末活性炭製造装置4では、活性汚泥処理
装置1の余剰汚泥を汚泥脱水装置3で脱水して得られ
た、含水率83%で、有機物含有割合82%の脱水ケー
キを原料として粉末活性炭を製造した。炭化処理は、脱
水ケーキを前もって105℃で乾燥し、水分を除去した
乾燥汚泥100gを、数mmの粒径に破砕処理し、ガス
抜き孔を持った容量1Lのステンレス容器内に窒素ガス
とともに投入し、電気炉を用いて500℃において3時
間、炭化した。この炭を粒径0.5〜1mmに破砕処理
した後、内径70mm、長さ1000mmのステンレス
製カラム内に充填し、カラム内に水蒸気を飽和させた窒
素ガスを毎分1Lの流速で流しながら、電気炉内で80
0℃において1時間、賦活処理を行った。賦活処理で得
られた活性炭は17gであり、収率は乾燥余剰汚泥量当
り17%であった。この粉末活性炭のCOD33mg/
Lの対象水における最大COD吸着容量は、65mg−
COD/g−活性炭であり、市販のやし殻から製造した
粉末活性炭に比べて、約1/2であった。In the powder activated carbon producing apparatus 4, the dehydrated cake having a water content of 83% and an organic matter content rate of 82%, which was obtained by dehydrating the excess sludge of the activated sludge treatment apparatus 1 with the sludge dewatering apparatus 3, was used as the powder activated carbon. Was manufactured. In the carbonization treatment, the dehydrated cake was dried at 105 ° C. in advance, 100 g of dried sludge from which water had been removed was crushed to a particle size of several mm, and charged with nitrogen gas into a stainless container having a vent hole with a capacity of 1 L. Then, it was carbonized at 500 ° C. for 3 hours using an electric furnace. After crushing this charcoal to a particle size of 0.5 to 1 mm, it was filled in a stainless steel column having an inner diameter of 70 mm and a length of 1000 mm, and nitrogen gas saturated with water vapor was flowed through the column at a flow rate of 1 L per minute. , 80 in the electric furnace
Activation treatment was performed at 0 ° C. for 1 hour. The activated carbon obtained by the activation treatment was 17 g, and the yield was 17% based on the amount of excess dry sludge. COD of this powdered activated carbon 33 mg /
The maximum COD adsorption capacity of L target water is 65 mg-
COD / g-activated carbon, which was about 1/2 of that of powdered activated carbon produced from commercially available palm shell.
【0074】浸漬式膜分離装置5では、NH4 吸着試験
装置から得られた平均NH4 −N0.18mg/L、平
均PO4 −P7mg/L、平均BOD28mg/L、平
均COD33mg/LのNH4 吸着処理水に、活性炭製
造装置4で製造した粉末活性炭を800mg/L投入し
た。また、塩化第2鉄をFe濃度として50mg/L添
加した。この添加Fe濃度はNH4 吸着処理水のリン酸
イオン(7mg/L)を凝集除去するに必要な化学量論
量の2倍量である。なお、塩化第2鉄添加時には、水酸
化ナトリウムで槽内液pHを6.5に調整した。また、
活性炭吸着及び凝集反応を十分に行うため、槽内液を3
0分間にわたり滞留させ強撹拌を行った。[0074] In immersion membrane separation device 5, the average NH 4 -N0.18mg / L of NH 4 obtained from adsorption test device, average PO 4 -P7mg / L, the average BOD28mg / L, NH average COD33mg / L 4 800 mg / L of powdered activated carbon produced by the activated carbon producing apparatus 4 was added to the adsorption-treated water. Further, ferric chloride was added at a Fe concentration of 50 mg / L. This added Fe concentration is twice the stoichiometric amount required to aggregate and remove the phosphate ions (7 mg / L) of the NH 4 adsorption treated water. When ferric chloride was added, the pH of the liquid in the tank was adjusted to 6.5 with sodium hydroxide. Also,
In order to fully perform activated carbon adsorption and aggregation reactions,
The mixture was allowed to stay for 0 minutes and vigorous stirring was performed.
【0075】この浸漬膜分離装置5は、槽容量10Lの
小型のもので、この槽内に標準孔径0.1μmの中空糸
型MF膜を用いた小型の膜装置を浸漬設置し、膜透過水
を−0.2Kg/cm2 の減圧吸引により0.5m3 /
m2 ・dayの透過流量で得た。膜透過水の水質はCO
D4.5mg/L、NH4 −N0.5mg/L、PO4
−P0.1mg/L、界面活性剤(ABS)0.001
mg/L以下であり、色調は無色透明であった。This submerged membrane separation device 5 is a small one having a tank capacity of 10 L, and a small membrane device using a hollow fiber type MF membrane having a standard pore diameter of 0.1 μm is immersed and installed in the tank, and the membrane permeated water is passed. To 0.5 m 3 / by vacuum suction of -0.2 Kg / cm 2.
It was obtained at a permeation flow rate of m 2 · day. The quality of the membrane permeate is CO
D4.5mg / L, NH 4 -N0.5mg / L, PO 4
-P 0.1 mg / L, surfactant (ABS) 0.001
It was below mg / L, and the color tone was colorless and transparent.
【0076】次に、この膜透過水を、酢酸セルロースよ
りなる中空糸状RO膜を用いた低圧RO膜分離装置6に
食塩脱塩率50%、濃縮倍率13倍の条件で通水した。Next, this membrane-permeated water was passed through a low-pressure RO membrane separation device 6 using a hollow fiber RO membrane made of cellulose acetate under conditions of a salt desalination rate of 50% and a concentration ratio of 13 times.
【0077】得られた回収再生水(RO膜透過水)は、
下記の通りであり、無臭、無着色の高水質処理水であっ
た。The recovered reclaimed water (RO membrane permeated water) thus obtained was
The water was as follows, and it was odorless and non-colored high-quality treated water.
【0078】回収再生水水質 濁度:1度以上 pH:7.4 COD:0.5mg/L以下 NH4 −N:0.2mg/L以下 PO4 −P:0.005mg/L以下 アルカリ度:45mg/L 蒸発残留物:200mg/L Cl:65mg/L Fe:0.01mg/L以下 Mn:0.01mg/L以下 界面活性剤:0.001mg/L以下 なお、上記処理において、NH4 吸着装置2からの吸着
剤再生廃液は食塩濃度2重量%、NH4 −Nが263m
g/Lであった。この再生廃液とRO膜分離装置6の濃
縮液とを混合して得られた食塩濃度1.1重量%、NH
4 −N156mg/L、TOC120mg/Lの混合廃
液を、酸化分解装置7で酸化処理した。即ち、チタンに
白金を担持させた触媒を100ml充填したカラム(内
径30mm、長さ300mmのステンレス製)に、温度
160℃の条件下で亜硝酸と過酸化水素を酸化剤として
接触酸化した。まず、NH4 −Nの処理は、亜硝酸ソー
ダをNH4 −Nの化学量論量と当量の768mg/L添
加し、SV=2hr-1の流量で上向流で通水した。還元
処理後、TOCの酸化処理を同じカラムで、温度160
℃、SV=2hr-1の同条件で行った。このときの過酸
化水素の添加量は、TOCの全量が炭酸ガスに分解する
化学量論量の1.5倍量の1020mg/Lとした。カ
ラム流出液中の全−Nは3〜5mg/L、TOCは8〜
10mg/Lであり、混合廃液のNH4 −N、TOCは
各々92%以上分解処理された。この酸化分解処理水は
放流した。 Water quality of recovered reclaimed water Turbidity: 1 degree or more pH: 7.4 COD: 0.5 mg / L or less NH 4 -N: 0.2 mg / L or less PO 4 -P: 0.005 mg / L or less Alkalinity: 45 mg / L Evaporation residue: 200 mg / L Cl: 65 mg / L Fe: 0.01 mg / L or less Mn: 0.01 mg / L or less Surfactant: 0.001 mg / L or less NH 4 adsorption in the above treatment The waste liquid for regenerating the adsorbent from the device 2 has a salt concentration of 2% by weight and NH 4 —N of 263 m.
g / L. A salt concentration of 1.1% by weight obtained by mixing the recycled waste liquid with the concentrated liquid of the RO membrane separation device 6, NH
A mixed waste liquid of 4- N156 mg / L and TOC 120 mg / L was oxidized by the oxidative decomposition apparatus 7. That is, a column (made of stainless steel having an inner diameter of 30 mm and a length of 300 mm) filled with 100 ml of a catalyst in which platinum is supported on titanium (stainless steel having an inner diameter of 30 mm and a length of 300 mm) was catalytically oxidized under the condition of a temperature of 160 ° C. using nitrous acid and hydrogen peroxide as oxidizing agents. First, for the treatment of NH 4 —N, sodium nitrite was added in an amount of 768 mg / L, which was equivalent to the stoichiometric amount of NH 4 —N, and water was passed in an upward flow at a flow rate of SV = 2 hr −1 . After the reduction treatment, the TOC oxidation treatment was performed in the same column at a temperature of 160.
It was carried out under the same conditions of C and SV = 2 hr −1 . The amount of hydrogen peroxide added at this time was 1020 mg / L, which was 1.5 times the stoichiometric amount at which the total amount of TOC was decomposed into carbon dioxide gas. Total-N in column effluent is 3-5 mg / L, TOC is 8-
It was 10 mg / L, and NH 4- N and TOC in the mixed waste liquid were decomposed by 92% or more. This oxidative decomposition treated water was discharged.
【0079】また、粉末活性炭製造装置4で発生したタ
ール及びガス、浸漬式膜分離装置5から発生する廃活性
炭、リン含有汚泥及び廃浸漬膜、並びに、RO膜分離装
置6の廃RO膜は、燃焼・焼却装置8で燃焼・焼却処理
し、リン含有灰を得ると共に、発生した燃焼熱は、粉末
活性炭製造装置4の加熱源として有効利用した。Further, the tar and gas generated in the powder activated carbon production apparatus 4, the waste activated carbon generated from the immersion type membrane separation apparatus 5, the phosphorus-containing sludge and the waste immersion membrane, and the waste RO membrane of the RO membrane separation apparatus 6 are Combustion / incineration processing was performed in the combustion / incineration apparatus 8 to obtain phosphorus-containing ash, and the generated combustion heat was effectively used as a heating source of the powdered activated carbon production apparatus 4.
【0080】なお、本実施例において、原水として繊維
染色工場の総合排水からの前記水質の回収再生水の回収
率は75%であり、酸化分解装置7から放流した処理水
は原水100L当り約25Lであり、燃焼・焼却装置8
で発生したリン含有灰は原水100L当り約14gであ
った。In this example, the recovery rate of the above-mentioned water quality from the wastewater of the textile dyeing factory as the raw water was 75%, and the treated water discharged from the oxidative decomposition apparatus 7 was about 25 L per 100 L of the raw water. Yes, combustion / incinerator 8
The phosphorus-containing ash generated in 1 was about 14 g per 100 L of raw water.
【0081】[0081]
【発明の効果】以上詳述した通り、本発明の排水回収再
生方法によれば、工場排水や下水を回収再利用するに当
り、排水処理及び回収過程で余剰汚泥や濃縮排液等の副
次的な産業廃棄物を殆ど発生することなく、排水の大部
分を効率的に回収して、高水質な回収再生水を得ること
ができる。As described in detail above, according to the method for recovering and recycling wastewater of the present invention, when recovering and reusing factory wastewater and sewage, by-products such as excess sludge and concentrated effluent during wastewater treatment and recovery process It is possible to efficiently recover most of the wastewater and obtain recovered reclaimed water with high water quality, with almost no generation of industrial waste.
【図1】本発明の排水回収再生方法の一実施例方法を示
す系統図である。FIG. 1 is a system diagram showing an example method of a wastewater recovery and regeneration method of the present invention.
1 活性汚泥処理装置 2 NH4 吸着装置 3 汚泥脱水装置 4 粉末活性炭製造装置 5 浸漬式膜分離装置 6 RO膜分離装置 7 酸化分解装置 8 燃焼・焼却装置1 Activated sludge treatment device 2 NH 4 adsorption device 3 Sludge dewatering device 4 Powdered activated carbon production device 5 Immersion type membrane separation device 6 RO membrane separation device 7 Oxidation decomposition device 8 Combustion / incineration device
Claims (2)
泥処理水に粉末活性炭を添加して、精密濾過膜又は限外
濾過膜を用いた浸漬式膜分離装置に通水し、透過水を再
生水として回収する方法であって、前記粉末活性炭とし
て、前記排水の活性汚泥処理工程で発生する余剰汚泥を
原料として製造された粉末活性炭を用いることを特徴と
する排水回収再生方法。1. An activated sludge treated water obtained by treating wastewater with activated sludge, and powdered activated carbon is added to the treated sludge to pass through an immersion type membrane separator using a microfiltration membrane or an ultrafiltration membrane. A method for recovering reclaimed water, which comprises using, as the powdered activated carbon, powdered activated carbon produced from excess sludge generated in an activated sludge treatment step of the wastewater as a raw material.
装置で発生する廃活性炭を焼却処理することを特徴とす
る排水回収再生方法。2. The wastewater recovery and regeneration method according to claim 1, wherein waste activated carbon generated in the immersion type membrane separator is incinerated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23845695A JPH0975910A (en) | 1995-09-18 | 1995-09-18 | Wastewater recovery and regeneration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23845695A JPH0975910A (en) | 1995-09-18 | 1995-09-18 | Wastewater recovery and regeneration method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0975910A true JPH0975910A (en) | 1997-03-25 |
Family
ID=17030501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23845695A Pending JPH0975910A (en) | 1995-09-18 | 1995-09-18 | Wastewater recovery and regeneration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0975910A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002336661A (en) * | 2001-05-16 | 2002-11-26 | Toray Ind Inc | Method for cleaning separation membrane |
JP2003024754A (en) * | 2001-07-17 | 2003-01-28 | Maezawa Ind Inc | Membrane module washing method |
KR101214991B1 (en) * | 2012-06-21 | 2013-01-03 | 다이텍연구소 | Method for treating waste water |
JP2013085983A (en) * | 2011-10-13 | 2013-05-13 | Kurita Water Ind Ltd | Organic wastewater collection processing device and collection processing method |
JP5852199B1 (en) * | 2014-09-12 | 2016-02-03 | 旭金属工業株式会社 | Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection |
CN105585199A (en) * | 2016-03-14 | 2016-05-18 | 尚鼎炉业科技(扬州)有限公司 | Zero discharging treatment process of printing and dyeing wastewater |
JP2020108874A (en) * | 2019-01-07 | 2020-07-16 | オルガノ株式会社 | Membrane filtration apparatus and membrane filtration method |
-
1995
- 1995-09-18 JP JP23845695A patent/JPH0975910A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002336661A (en) * | 2001-05-16 | 2002-11-26 | Toray Ind Inc | Method for cleaning separation membrane |
JP2003024754A (en) * | 2001-07-17 | 2003-01-28 | Maezawa Ind Inc | Membrane module washing method |
JP2013085983A (en) * | 2011-10-13 | 2013-05-13 | Kurita Water Ind Ltd | Organic wastewater collection processing device and collection processing method |
KR101214991B1 (en) * | 2012-06-21 | 2013-01-03 | 다이텍연구소 | Method for treating waste water |
JP5852199B1 (en) * | 2014-09-12 | 2016-02-03 | 旭金属工業株式会社 | Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection |
CN105585199A (en) * | 2016-03-14 | 2016-05-18 | 尚鼎炉业科技(扬州)有限公司 | Zero discharging treatment process of printing and dyeing wastewater |
JP2020108874A (en) * | 2019-01-07 | 2020-07-16 | オルガノ株式会社 | Membrane filtration apparatus and membrane filtration method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3883445B2 (en) | Sewage treatment equipment | |
JP3842907B2 (en) | Treatment of metal-containing wastewater and method for recovering valuable metals | |
CN103288236B (en) | Treatment method for salt-containing wastewater | |
KR20060114333A (en) | Installation and method for the purification of an aqueous effluent by means of oxidation and membrane filtration | |
CN107857438B (en) | Zero-emission process for wastewater treatment of chemical enterprises and parks | |
JP3698093B2 (en) | Water treatment method and water treatment apparatus | |
JPH0810797A (en) | Treatment of photographic processing waste | |
JPH0975910A (en) | Wastewater recovery and regeneration method | |
JP4164896B2 (en) | Landfill leachate treatment method | |
KR100467396B1 (en) | Discharged water treatment method | |
KR101646590B1 (en) | Method for treating recycle water of wastewater treatment | |
CN103951141B (en) | A kind of garbage leachate treatment process and treatment unit | |
JPH0366036B2 (en) | ||
KR102139744B1 (en) | An anaerobic sewage treatment apparatus comprising a dissolved methane recovery apparatus and anaerobic sewage treatment method | |
JPH0899097A (en) | Water purifying method and apparatus | |
JP3444202B2 (en) | Water treatment equipment | |
JP2000350997A (en) | Wastewater treatment method and treatment device | |
JP5055746B2 (en) | Water circulation system using membrane | |
JP2007069053A (en) | Organic sludge treatment method and organic sludge treatment equipment | |
JPH11347595A (en) | Water purification system and sludge concentration method | |
KR101065940B1 (en) | Method and apparatus for treatment and reuse of high concentration hydrofluoric acid, phosphoric acid and nitric acid containing wastewater | |
KR100297928B1 (en) | Method of nitrogen removal in wastewater with photocatalytic technology | |
JPH0739889A (en) | Treatment of high concentration ammonia waste liquid | |
KR20050072342A (en) | Nitrogen removal system by physical and chemical treatment | |
JPH0433518B2 (en) |