BR112020012672A2 - disposições de detecção para plataformas cirúrgicas assistidas por robô - Google Patents
disposições de detecção para plataformas cirúrgicas assistidas por robô Download PDFInfo
- Publication number
- BR112020012672A2 BR112020012672A2 BR112020012672-1A BR112020012672A BR112020012672A2 BR 112020012672 A2 BR112020012672 A2 BR 112020012672A2 BR 112020012672 A BR112020012672 A BR 112020012672A BR 112020012672 A2 BR112020012672 A2 BR 112020012672A2
- Authority
- BR
- Brazil
- Prior art keywords
- surgical
- detection system
- controller
- robotic
- sensor
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 171
- 238000004891 communication Methods 0.000 claims abstract description 155
- 230000015654 memory Effects 0.000 claims description 81
- 230000033001 locomotion Effects 0.000 claims description 60
- 238000000034 method Methods 0.000 description 96
- 238000006073 displacement reaction Methods 0.000 description 80
- 238000001356 surgical procedure Methods 0.000 description 59
- 230000002452 interceptive effect Effects 0.000 description 42
- 238000010304 firing Methods 0.000 description 41
- 238000003384 imaging method Methods 0.000 description 41
- 230000006870 function Effects 0.000 description 36
- 238000005520 cutting process Methods 0.000 description 28
- 238000012545 processing Methods 0.000 description 28
- 238000003860 storage Methods 0.000 description 28
- 238000004422 calculation algorithm Methods 0.000 description 26
- 230000008878 coupling Effects 0.000 description 25
- 238000010168 coupling process Methods 0.000 description 25
- 238000005859 coupling reaction Methods 0.000 description 25
- 239000012530 fluid Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 25
- 239000004744 fabric Substances 0.000 description 23
- 230000004044 response Effects 0.000 description 22
- 239000000779 smoke Substances 0.000 description 21
- 238000003032 molecular docking Methods 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 18
- 230000002262 irrigation Effects 0.000 description 17
- 238000003973 irrigation Methods 0.000 description 17
- 238000013519 translation Methods 0.000 description 16
- 238000002059 diagnostic imaging Methods 0.000 description 15
- 239000003990 capacitor Substances 0.000 description 13
- 238000012800 visualization Methods 0.000 description 13
- 230000006835 compression Effects 0.000 description 12
- 238000007906 compression Methods 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 12
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 230000007704 transition Effects 0.000 description 11
- 206010028980 Neoplasm Diseases 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 230000004913 activation Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000003044 adaptive effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000002955 isolation Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 238000005070 sampling Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- 230000005355 Hall effect Effects 0.000 description 7
- 238000007726 management method Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000012806 monitoring device Methods 0.000 description 7
- 238000013538 segmental resection Methods 0.000 description 7
- 230000001960 triggered effect Effects 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 210000000115 thoracic cavity Anatomy 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 210000000078 claw Anatomy 0.000 description 5
- 230000003750 conditioning effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000002224 dissection Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 206010002091 Anaesthesia Diseases 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000037005 anaesthesia Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000002271 resection Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 230000001954 sterilising effect Effects 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 210000003484 anatomy Anatomy 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000005670 electromagnetic radiation Effects 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 230000002427 irreversible effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 3
- SYHGEUNFJIGTRX-UHFFFAOYSA-N methylenedioxypyrovalerone Chemical compound C=1C=C2OCOC2=CC=1C(=O)C(CCC)N1CCCC1 SYHGEUNFJIGTRX-UHFFFAOYSA-N 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 238000001429 visible spectrum Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000013481 data capture Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000012913 prioritisation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000002432 robotic surgery Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 241000238366 Cephalopoda Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 208000007123 Pulmonary Atelectasis Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 208000016709 aortopulmonary window Diseases 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008867 communication pathway Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013479 data entry Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000010336 energy treatment Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 238000012830 laparoscopic surgical procedure Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000012978 minimally invasive surgical procedure Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001373 regressive effect Effects 0.000 description 1
- 230000036387 respiratory rate Effects 0.000 description 1
- 238000013349 risk mitigation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/76—Manipulators having means for providing feel, e.g. force or tactile feedback
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1674—Programme controls characterised by safety, monitoring, diagnostic
- B25J9/1676—Avoiding collision or forbidden zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00199—Electrical control of surgical instruments with a console, e.g. a control panel with a display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00221—Electrical control of surgical instruments with wireless transmission of data, e.g. by infrared radiation or radiowaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00225—Systems for controlling multiple different instruments, e.g. microsurgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00477—Coupling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
- A61B2034/254—User interfaces for surgical systems being adapted depending on the stage of the surgical procedure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/304—Surgical robots including a freely orientable platform, e.g. so called 'Stewart platforms'
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/305—Details of wrist mechanisms at distal ends of robotic arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/77—Manipulators with motion or force scaling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Robotics (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Mechanical Engineering (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Urology & Nephrology (AREA)
- Human Computer Interaction (AREA)
- Surgical Instruments (AREA)
Abstract
São revelados vários sistemas cirúrgicos. Um sistema cirúrgico compreende um sistema robótico. O sistema robótico compreende uma unidade de controle; um braço robótico compreendendo uma porção de fixação; um primeiro sistema de detecção em comunicação de sinal com a unidade de controle; e um segundo sistema de detecção. O primeiro sistema de detecção é configurado para detectar uma posição da porção de fixação. Uma ferramenta cirúrgica é fixada de modo removível à dita porção de fixação. O segundo sistema de detecção é independente do primeiro sistema de detecção e é configurado para detectar uma posição da ferramenta cirúrgica.
Description
Relatório Descritivo da Patente de Invenção para "DISPOSI- ÇÕES DE DETECÇÃO PARA PLATAFORMAS CIRÚRGICAS ASSIS- TIDAS POR ROBÔ".
[001] Este pedido reivindica o benefício de prioridade sob 35 U.S.C.$ 119(e) para o pedido de patente provisório US nº 62/649.323, intitulado SENSING. ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PATFORMS, depositado em 28 de março de 2018, cuja revelação está aqui incorporada por referência em sua totalidade.
[002] O presente pedido reivindica a prioridade sob 35 U.S.C.$ 119(e) ao pedido de patente provisório US nº de série 62/611.341, inti- tulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, ao pedido de patente provisório US nº de série 62/611.340, intitulado CLOUD-BASED MEDICAL ANALYTICS, deposi- tado em 28 de dezembro de 2017, e ao pedido de patente provisório US nº de série 62/611.339, intitulado ROBOT ASSISTED SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, que estão, cada um dos quais, aqui incorporados a título de referência, em sua totalida- de.
[003] A presente revelação refere-se a sistemas cirúrgicos robóti- cos. Os sistemas cirúrgicos robóticos podem incluir uma unidade de con- trole central, um console de comando do cirurgião e um robô dotado de um ou mais braços robóticos. As ferramentas cirúrgicas robóticas podem ser montadas de modo liberável no(s) braço(s) robótico(s). O número e o tipo das ferramentas cirúrgicas robóticas podem depender do tipo de procedimento cirúrgico. Os sistemas cirúrgicos robóticos podem ser usa- dos em conexão com uma ou mais telas e/ou um ou mais instrumentos cirúrgicos de mão durante um procedimento cirúrgico.
[004] Em um aspecto geral, é fornecido um sistema cirúrgico. O sistema cirúrgico compreende um sistema robótico. O sistema robótico compreende uma unidade de controle; um braço robótico compreenden- do uma porção de fixação; um primeiro sistema de detecção em comuni- cação de sinal com a unidade de controle; e um segundo sistema de de- tecção. O primeiro sistema de detecção é configurado para detectar uma posição da porção de fixação. O sistema cirúrgico compreende adicio- nalmente uma ferramenta cirúrgica fixada de modo removível à porção de fixação. O segundo sistema de detecção é independente do primeiro sistema de detecção e é configurado para detectar uma posição da fer- ramenta cirúrgica.
[005] Em outro aspecto geral, é fornecido outro sistema cirúrgico. O sistema cirúrgico compreende um sistema robótico. O sistema robótico compreende uma unidade de controle; um braço robótico compreenden- do uma primeira porção, uma segunda porção e uma articulação entre a primeira e a segunda porções; um primeiro sistema de detecção configu- rado para detectar uma posição da primeira e da segunda porções do braço robótico; e um sistema de detecção redundante. O sistema de de- tecção redundante é configurado para detectar uma posição da primeira porção e da segunda porção do braço robótico.
[006] Em ainda outro aspecto geral, um outro sistema cirúrgico é fornecido. O sistema cirúrgico compreende um robô cirúrgico que compreende: uma unidade de controle e um braço robótico. O braço robótico compreende um motor. O sistema cirúrgico compreende adi- cionalmente uma ferramenta cirúrgica fixada de modo removível ao braço robótico; um primeiro sistema de detecção em comunicação de sinal com a unidade de controle; e um segundo sistema de detecção. O primeiro sistema de detecção compreende um sensor de torque no motor e é configurado para detectar uma posição da ferramenta ci- rúrgica. O segundo sistema de detecção é configurado para detectar independentemente uma posição da ferramenta cirúrgica.
[007] Os recursos de vários aspectos são apresentados com particularidade nas reivindicações em anexo. Os vários aspectos, no entanto, no que se refere tanto à organização quanto aos métodos de operação, juntamente com objetos e vantagens adicionais dos mes- mos, podem ser melhor compreendidos em referência à descrição apresentada a seguir, considerada em conjunto com os desenhos em anexo, como a seguir.
[008] A Figura 1 é um diagrama de blocos de um sistema cirúrgi- co interativo implementado por computador, de acordo com ao menos um aspecto da presente revelação.
[009] A Figura 2 é um sistema cirúrgico sendo usado para exe- cutar um procedimento cirúrgico em uma sala de operação, de acor- do com ao menos um aspecto da presente revelação.
[0010] A Figura 3 ilustra um controlador cirúrgico central pareado com um sistema de visualização, um sistema robótico e um instrumento inteligente, de acordo com ao menos um aspecto da presente revelação.
[0011] A Figura 4 é uma vista em perspectiva parcial de um com- partimento de controlador cirúrgico central, e de um módulo gerador combinado recebido de maneira deslizante em um compartimento de controlador cirúrgico central, de acordo com ao menos um aspecto da presente revelação.
[0012] A Figura 5 é uma vista em perspectiva de um módulo ge- rador em combinação com contatos bipolares, ultrassônicos e mono- polares e um componente de evacuação de fumaça, de acordo com ao menos um aspecto da presente revelação.
[0013] A Figura 6 ilustra diferentes conectores de barramento de potência para uma pluralidade de portas de acoplamento lateral de um gabinete modular lateral configurado para receber uma pluralida-
de de módulos, de acordo com ao menos um aspecto da presente revelação.
[0014] A Figura 7 ilustra um alojamento modular vertical configurado para receber uma pluralidade de módulos, de acordo com ao menos um aspecto da presente revelação.
[0015] A Figura 8 ilustra uma rede de dados cirúrgicos que com- preende um controlador central de comunicação modular configurado para conectar dispositivos modulares situados em uma ou mais salas de cirurgia de uma instalação de serviços de saúde, ou em qualquer ambiente de uma instalação de serviços de saúde especialmente equipada para operações cirúrgicas, à nuvem, de acordo com ao me- nos um aspecto da presente revelação.
[0016] A Figura 9 ilustra um sistema cirúrgico interativo implementa- do por computador, de acordo com ao menos um aspecto da presente revelação.
[0017] A Figura 10 ilustra um controlador cirúrgico central que compreende uma pluralidade de módulos acoplados à torre de con- trole modular, de acordo com ao menos um aspecto da presente re- velação.
[0018] A Figura 11 ilustra um aspecto de um dispositivo de contro- lador central de rede de barramento serial universal (USB), de acordo com ao menos um aspecto da presente revelação.
[0019] A Figura 12 ilustra um diagrama lógico de um sistema de controle de um instrumento ou ferramenta cirúrgica, de acordo com ao menos um aspecto da presente revelação.
[0020] A Figura 13 ilustra um circuito de controle configurado para controlar aspectos do instrumento ou ferramenta cirúrgica, de acordo com ao menos um aspecto da presente revelação.
[0021] A Figura 14 ilustra um circuito lógico combinacional confi- gurado para controlar aspectos do instrumento ou ferramenta cirúrgi-
ca, de acordo com ao menos um aspecto da presente revelação.
[0022] A Figura 15 ilustra um circuito lógico sequencial configurado para controlar aspectos do instrumento ou ferramenta cirúrgica, de acor- do com ao menos um aspecto da presente revelação.
[0023] A Figura 16 ilustra um instrumento ou ferramenta cirúrgica que compreende uma pluralidade de motores que podem ser ativados para executar várias funções, de acordo com ao menos um aspecto da presente revelação.
[0024] A Figura 17 é um diagrama esquemático de um instrumen- to cirúrgico robótico configurado para operar uma ferramenta cirúrgica aqui descrita, de acordo com ao menos um aspecto da presente reve- lação.
[0025] A Figura 18 ilustra um diagrama de blocos de um instru- mento cirúrgico programado para controlar a translação distal do membro de deslocamento, de acordo com um aspecto da presente revelação.
[0026] A Figura 19 é um diagrama esquemático de um instrumen- to cirúrgico configurado para controlar várias funções, de acordo com ao menos um aspecto da presente revelação.
[0027] A Figura 20 é um diagrama de blocos simplificado de um gerador configurado para fornecer sintonia sem indutor, entre outros benefícios, de acordo com ao menos um aspecto da presente revela- ção.
[0028] A Figura 21 ilustra um exemplo de um gerador, que é uma forma do gerador da Figura 20, de acordo com ao menos um aspecto da presente revelação.
[0029] A Figura 22 é um diagrama esquemático de um sistema ci- rúrgico robótico, de acordo com um aspecto da presente revelação.
[0030] A Figura 23 é uma vista em perspectiva de um braço robó- tico de um sistema cirúrgico robótico e ilustra esquematicamente com-
ponentes adicionais do sistema cirúrgico robótico, de acordo com um aspecto da presente revelação.
[0031] A Figura 24 é uma vista em perspectiva de um braço robó- tico de um sistema cirúrgico robótico, e mostra adicionalmente um operador ajustando manualmente a posição do braço robótico, de acordo com um aspecto da presente revelação.
[0032] A Figura 25 é um gráfico de força plotado em função do tempo para o braço robótico da Figura 24 em um modo de assistên- cia de energia passiva, de acordo com um aspecto da presente reve- lação.
[0033] A Figura 26 é uma vista em perspectiva de um braço robó- tico e uma tela interativa secundária dentro de um campo estéril, de acordo com ao menos um aspecto da presente revelação.
[0034] A Figura 27 é um gráfico de força plotado em função do tem- po para o braço robótico da Figura 26, de acordo com um aspecto da presente revelação.
[0035] A Figura 28 é uma vista em perspectiva de um braço robótico e um controlador central robótico de um sistema cirúrgico robótico, de acordo com ao menos um aspecto da presente revelação.
[0036] A Figura 29 é uma vista em detalhe de um atuador de extre- midade de um grampeador linear fixado ao braço robótico da Figura 28, representando o atuador de extremidade posicionado em relação a uma região de tecido-alvo durante um procedimento cirúrgico, de acordo com ao menos um aspecto da presente revelação.
[0037] A Figura 30 é um gráfico de distância e "força-para-fechar" plotado em função do tempo para o grampeador linear da Figura 29, de acordo com um aspecto da presente revelação.
[0038] A Figura 31 é um diagrama esquemático representando um sistema cirúrgico robótico que tem uma pluralidade de sistemas de de- tecção, de acordo com um aspecto da presente revelação.
[0039] A Figura 31A é uma vista em detalhe de um trocarte da Figura 31, de acordo com ao menos um aspecto da presente revela- ção.
[0040] A Figura 32 é um fluxograma representando um sistema cirúrgico robótico que utiliza uma pluralidade de sistemas de detec- ção independentes, de acordo com um aspecto da presente revela- ção.
[0041] A Figura 33 é uma linha de tempo que representa o reconhe- cimento situacional de um controlador cirúrgico central, de acordo com um aspecto da presente revelação.
[0042] O requerente do presente pedido detém os seguintes pe- didos de patente US provisórios, depositados em 28 de março de 2018, que estão, cada um dos quais, aqui incorporados a título de referência em sua totalidade:
[0043] e Pedido de patente provisório US nº de série 62/649.302, intitulado INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES;
[0044] e Pedido de patente provisório US nº de série 62/649.294, intitulado DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD;
[0045] e Pedido de patente provisório US nº de série 62/649.300, intitulado SURGICAL HUB SITUATIONAL AWARENESS;
[0046] e Pedido de patente provisório US nº de série 62/649.309, intitulado SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER;
[0047] e Pedido de patente provisório US nº de série 62/649.310, intitulado COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS;
[0048] e Pedido de patente provisório US nº de série 62/649.291,
intitulado USE OF LASER LIGHT AND RED-GREEN-BLUE COLO-
[0049] e Pedido de patente provisório US nº de série 62/649.296, intitulado ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGI- CAL DEVICES;
[0050] e Pedido de patente provisório US nº de série 62/649.333, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATI- ON AND RECOMMENDATIONS TO A USER;
[0051] e Pedido de patente provisório US nº de série 62/649.327, intitulado CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES;
[0052] + Pedido de patente provisório US nº de série 62/649.315, intitulado DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK;
[0053] e Pedido de patente provisório US nº de série 62/649.313, intitulado CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES;
[0054] e Pedido de patente provisório US nº de série 62/649.320, intitulado DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGI- CAL PLATFORMS;
[0055] e Pedido de patente provisório US nº de série 62/649.307, intitulado AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; e
[0056] e Pedido de patente provisório US nº de série 62/649.323, intitulado SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SUR- GICAL PLATFORMS.
[0057] O requerente do presente pedido detém os seguintes pedi- dos de patente US, depositados em 29 de março de 2018, que estão, cada um dos quais, aqui incorporados a título de referência em sua totalidade:
[0058] e Pedido de patente US nº de série , intitulado INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNI- CATION —CAPABILITIES; nº do documento do procurador END8499USNP/170766;
[0059] e Pedido de patente US nº de série , intitulado
INTERACTIVE SURGICAL SYSTEMS WITH CONDITION HANDLING OF DEVICES AND DATA CAPABILITIES; nº do documento do procura- dor END8499USNP1/170766-1;
[0060] e Pedido de patente US nº de série , intitulado SURGICAL HUB COORDINATION OF CONTROL AND COMMUNICA- TION OF OPERATING ROOM DEVICES; nº do documento do procura- dor END8499USNP2/170766-2;
[0061] e Pedido de patente US nº de série , intitula- do SPATIAL AWARENESS OF SURGICAL HUBS IN OPERATING ROOMS; nº do documento do procurador END8499USNP3/170766-3;
[0062] e Pedido de patente US nº de série , intitula- do COOPERATIVE UTILIZATION OF DATA DERIVED FROM SECONDARY SOURCES BY INTELLIGENT SURGICAL HUBS; nº do documento do procurador END8499USNP4/170766-4;
[0063] e Pedido de patente US nº de série , intitula- do SURGICAL HUB CONTROL ARRANGEMENTS; nº do documento do procurador END8499USNP5/170766-5;
[0064] e Pedido de patente US nº de série , intitulado
DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD; nº do documento do procura- dor END8500USNP/170767;
[0065] e Pedido de patente US nº de série , intitu- lado COMMUNICATION HUB AND STORAGE DEVICE FOR STO-
RING PARAMETERS AND STATUS OF A SURGICAL DEVICE TO BE SHARED WITH CLOUD BASED ANALYTICS SYSTEMS; nº do documento do procurador END8500USNP1/170767-1;
[0066] e Pedido de patente US nº de série , intitu- lado SELF DESCRIBING DATA PACKETS GENERATED AT AN |IS- SUING INSTRUMENT; nº do documento do procurador END8500USNP2/170767-2;
[0067] e Pedido de patente US nº de série , intitu- lado DATA PAIRING TO INTERCONNECT A DEVICE MEASURED PARAMETER WITH AN OUTCOME; nº do documento do procurador END8500USNP3/170767-3;
[0068] e Pedido de patente US nº de série , intitu- lado SURGICAL HUB SITUATIONAL AWARENESS; nº do documen- to do procurador END8501USNP/170768;
[0069] e Pedido de patente US nº de série , intitulado SURGICAL SYSTEM DISTRIBUTED PROCESSING; nº do documento do procurador END8501USNP1/170768-1;
[0070] e Pedido de patente US nº de série , intitu- lado AGGREGATION AND REPORTING OF SURGICAL HUB DATA; nº do documento do procurador END8501USNP2/170768-2;
[0071] e Pedido de patente US nº de série , intitulado
SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER; nº do documento do procurador END8502USNP/170769;
[0072] e Pedido de patente US nº de série , intitula- do DISPLAY OF ALIGNMENT OF STAPLE CARTRIDGE TO PRIOR LINEAR STAPLE LINE; nº do documento do procurador END8502USNP1/170769-1;
[0073] e Pedido de patente US nº de série , intitula- do STERILE FIELD INTERACTIVE CONTROL DISPLAYS; nº do do- cumento do procurador END8502USNP2/170769-2;
[0074] e Pedido de patente US nº de série , intitulado
COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS; nº do documento do procurador END8503USNP/170770;
[0075] e Pedido de patente US nº de série , intitulado USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT; nº do do- cumento do procurador END8504USNP/170771;
[0076] e Pedido de patente US nº de série , intitu- lado “CHARACTERIZATION OF TISSUE IRREGULARITIES THROUGH THE USE OF MONO-CHROMATIC LIGHT REFRACTI- VITY; nº do documento do procurador END8504USNP1/170771-1;e
[0077] e Pedido de patente US nº de série , intitulado DUAL CMOS ARRAY IMAGING; nº do documento do procurador END8504USNP2/170771-2.
[0078] O requerente do presente pedido detém os seguintes pedi- dos de patente US, depositados em 29 de março de 2018, que estão, cada um dos quais, aqui incorporados a título de referência em sua totalidade:
[0079] + Pedido de patente US nº de série , intitu- lado ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES; nº do documento do procurador END8506USNP/170773;
[0080] e Pedido de patente US nº de série , intitulado ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL HUBS; nº do documento do procurador END8506USNP1/170773-1;
[0081] + Pedido de patente US nº de série , intitulado- CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER; nº do documento do procurador END8507USNP/170774;
[0082] e Pedido de patente US nº de série , intitula- do CLOUD-BASED MEDICAL ANALYTICS FOR LINKING OF LOCAL USAGE TRENDS WITH THE RESOURCE ACQUISITION BEHA-
VIORS OF LARGER DATA SET; nº do documento do procurador END8507USNP1/170774-1;
[0083] e Pedido de patente US nº de série , intitula- do CLOUD-BASED MEDICAL ANALYTICS FOR MEDICAL FACILITY SEGMENTED INDIVIDUALIZATION OF INSTRUMENT FUNCTION; nº do documento do procurador END8507USNP2/170774-2;
[0084] e Pedido de patente US nº de série , intitula- do CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AU- THENTICATION TRENDS AND REACTIVE MEASURES; nº do docu- mento do procurador END8508USNP/170775;
[0085] e Pedido de patente US nº de série , intitu- lado DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK; nº do documento do procurador END8509USNP/170776; e
[0086] e Pedido de patente US nº de série , intitu- lado CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES; nº do documento do procurador END8510USNP/170777.
[0087] O requerente do presente pedido detém os seguintes pedi- dos de patente US, depositados em 29 de março de 2018, que estão, cada um dos quais, aqui incorporados a título de referência em sua totalidade:
[0088] e Pedido de patente US nº de série , intitulado DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLAT- FORMS; nº do documento do procurador END8511USNP/170778;
[0089] e Pedido de patente US nº de série , intitulado COMMUNICATION ARRANGEMENTS FOR ROBOT-ASSISTED SUR- GICAL —PLATFORMS; nº do documento do procurador END8511USNP1/170778-1;
[0090] e Pedido de patente US nº de série , intitulado CONTROLS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; nº do documento do procurador END8511USNP2/170778-2;
[0091] e Pedido de patente US nº de série , intitulado AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGI- CAL PLATFORMS; nº do documento do procurador END8512USNP/170779;
[0092] e Pedido de patente US nº de série , intitulado CONTROLLERS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; nº do documento do procurador END8512USNP1/170779-1;
[0093] e Pedido de patente US nº de série , intitulado COOPERATIVE SURGICAL ACTIONS FOR ROBOT-ASSISTED SUR- GICAL —PLATFORMS; nº do documento do procurador END8512USNP2/170779-2; e
[0094] e Pedido de patente US nº de série , intitula- do DISPLAY ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS; nº do documento do procurador END8512USNP3/170779-3.
[0095] Antes de explicar com detalhes os vários aspectos dos ins- trumentos cirúrgicos e geradores, deve-se observar que os exemplos ilustrativos não estão limitados, em termos de aplicação ou uso, aos detalhes de construção e disposição de partes ilustradas nos dese- nhos e na descrição em anexo. Os exemplos ilustrativos podem ser implementados ou incorporados em outros aspectos, variações e modificações, e podem ser praticados ou executados de várias ma- neiras. Além disso, exceto onde indicado em contrário, os termos e expressões usados na presente revelação foram escolhidos com o propósito de descrever os exemplos ilustrativos para a conveniência do leitor e não para o propósito de limitar a mesma. Além disso, deve- se entender que um ou mais dentre os aspectos, expressões de as- pectos, e/ou exemplos descritos a seguir podem ser combinados com qualquer um ou mais dentre os outros aspectos, expressões de as-
pectos e/ou exemplos descritos a seguir.
[0096] Com referência à Figura 1, um sistema cirúrgico interativo implementado por computador 100 inclui um ou mais sistemas cirúrgi- cos 102 e um sistema baseado em nuvem (por exemplo, a nuvem 104 que pode incluir um servidor remoto 113 acoplado a um dispositivo de armazenamento 105). Cada sistema cirúrgico 102 inclui ao menos um controlador cirúrgico central 106 em comunicação com a nuvem 104 que pode incluir um servidor remoto 113. Em um exemplo, conforme ilustrado na Figura 1, o sistema cirúrgico 102 inclui um sistema de vi- sualização 108, um sistema robótico 110, um instrumento cirúrgico in- teligente de mão 112, que são configurados para se comunicar uns com os outros e/ou com o controlador central 106. Em alguns aspec- tos, um sistema cirúrgico 102 pode incluir um número M de controlado- res cirúrgicos centrais 106, um número N de sistemas de visualização 108, um número O de sistemas robóticos 110, e um número P de ins- trumentos cirúrgicos inteligentes de mão 112, onde M, N O e P são números inteiros maiores ou iguais a 1.
[0097] A Figura 3 representa um exemplo de um sistema cirúrgico 102 sendo usado para executar um procedimento cirúrgico em um pa- ciente que está deitado em uma mesa de operação 114 em uma sala de operação cirúrgica 116. Um sistema robótico 110 é usado no pro- cedimento cirúrgico como uma parte do sistema cirúrgico 102. O sis- tema robótico 110 inclui um console do cirurgião 118, um carro do pa- ciente 120 (robô cirúrgico), e um controlador cirúrgico central robótico
122. O carro do paciente 120 pode manipular ao menos uma ferra- menta cirúrgica acoplada de maneira removível 117 através de uma incisão minimamente invasiva no corpo do paciente enquanto o cirur- gião observa o sítio cirúrgico através do console do cirurgião 118. Uma imagem do sítio cirúrgico pode ser obtida por um dispositivo de image- amento médico 124, que pode ser manipulado por meio do carro do paciente 120 para orientar o dispositivo de imageamento 124. O con- trolador central robótico 122 pode ser usado para processar as ima- gens do sítio cirúrgico para exibição subsequente para o cirurgião através do console do cirurgião 118.
[0098] Outros tipos de sistemas robóticos podem ser prontamente adaptados para uso com o sistema cirúrgico 102. Vários exemplos de sistemas robóticos e instrumentos cirúrgicos que são adequados para uso com a presente revelação são descritos no pedido de patente provi- sório nº de série 62/611.339, intitulado ROBOT ASSISTED SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja revelação está aqui incorporada a título de referência em sua totalidade.
[0099] Vários exemplos de análise com base em nuvem que são realizados pela nuvem 104, e são adequados para uso com a presente revelação, são descritos no pedido de patente provisório US nº de série 62/611.340, intitulado CLOUD-BASED MEDICAL ANALYTICS, deposita- do em 28 de dezembro de 2017, cuja revelação está aqui incorporada a título de referência, em sua totalidade.
[00100] Em vários aspectos, o dispositivo de imageamento 124 inclui ao menos um sensor de Imagem e um ou mais componentes ópticos. Os sensores de imagem adequados incluem, mas não se limitam a, senso- res de dispositivo acoplado a carga (CCD) e sensores semicondutores de óxido metálico complementares (CMOS).
[00101] Os componentes ópticos do dispositivo de imageamento 124 podem incluir uma ou mais fontes de iluminação e/ou uma ou mais lentes. A uma ou mais fontes de iluminação podem ser direcio- nadas para iluminar porções do campo cirúrgico. O um ou mais sen- sores de imagem podem receber luz refletida ou refratada do campo cirúrgico, incluindo a luz refletida ou refratada do tecido e/ou instru- mentos cirúrgicos.
[00102] Auma ou mais fontes de iluminação podem ser configura-
das para irradiar energia eletromagnética no espectro visível, bem como no espectro invisível. O espectro visível, por vezes chamado de o espectro óptico ou espectro luminoso, é aquela porção do espectro eletromagnético que é visível a (isto é, pode ser detectada por) o olho humano e pode ser chamada de luz visível ou simplesmente luz. Um olho humano típico responderá s comprimentos de onda no ar que são de cerca de 380 nm a cerca de 750 nm.
[00103] O espectro invisível (isto é, o espectro não luminoso) é aquela porção do espectro eletromagnético situada abaixo e acima do espectro visível (isto é, comprimentos de onda abaixo de cerca de 380 nm e acima de cerca de 750 nm). O espectro invisível não é de- tectável pelo olho humano. Os comprimentos de onda maiores que cerca de 750 nm são mais longos que o espectro vermelho visível, e eles se tornam invisíveis infravermelho (IR), micro-ondas, rádio e ra- diação eletromagnética. Os comprimentos de onda menores que cer- ca de 380 nm são mais curtos que o espectro ultravioleta, e eles se tornam ultravioleta invisíveis, raio x, e radiação eletromagnética de raios gama.
[00104] Em vários aspectos, o dispositivo de imageamento 124 é con- figurado para uso em um procedimento minimamente invasivo. Exemplos de dispositivos de imageamento adequados para uso com a presente revelação incluem, mas não se limitam a, um artroscópio, angioscópio, broncoscópio, coledocoscópio, colonoscópio, citoscópio, duodenoscópio, enteroscópio, esofagastro-duodenoscópio (gastroscópio), endoscópio, laringoscópio, nasofaringo-neproscópio, sigmoidoscópio, toracoscópio, e ureteroscópio.
[00105] Em um aspecto, o dispositivo de imageamento emprega monitoramento de múltiplos espectros para discriminar topografia e estruturas subjacentes. Uma imagem multiespectral é uma que captu- ra dados de imagem dentro de faixas de comprimento de onda ao lon-
go do espectro eletromagnético. Os comprimentos de onda podem ser separados por filtros ou mediante o uso de instrumentos que são sen- síveis a comprimentos de onda específicos, incluindo a luz de frequên- cias além da faixa de luz visível, por exemplo, IR e luz ultravioleta. As imagens espectrais podem permitir a extração de informações adicio- nais que o olho humano não consegue capturar com seus receptores para as cores vermelho, verde e azul. O uso de imageamento multies- pectral é descrito em maiores detalhes sob o título "Advanced Imaging Acquisition Module" no pedido de patente provisório US nº de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, deposi- tado em 28 de dezembro de 2017, cuja revelação está aqui incorpora- da a título de referência em sua totalidade. O monitoramento multies- pectral pode ser uma ferramenta útil para a relocalização de um cam- po cirúrgico após uma tarefa cirúrgica ser concluída para executar um ou mais dos testes anteriormente descritos no tecido tratado.
[00106] É axiomático que a esterilização estrita da sala de operação e do equipamento cirúrgico seja necessária durante qualquer cirurgia. À higiene rigorosa e as condições de esterilização necessárias em uma "sala cirúrgica", isto é, uma sala de operação ou tratamento, justificam a mais alta esterilização possível de todos os dispositivos e equipamentos médicos. Parte desse processo de esterilização é a necessidade de es- terilizar qualquer coisa que entra em contato com o paciente ou penetra no campo estéril, incluindo o dispositivo de imageamento 124 e seus conectores e componentes. Será entendido que o campo estéril pode ser considerado uma área especificada, como dentro de uma bandeja ou sobre uma toalha estéril, que é considerado livre de micro- organismos, ou o campo estéril pode ser considerado uma área, imedia- tamente ao redor de um paciente, que foi preparado para a realização de um procedimento cirúrgico. O campo estéril pode incluir os membros da equipe esterilizados, que estão adequadamente vestidos, e todos os móveis e acessórios na área.
[00107] Em vários aspectos, o sistema de visualização 108 inclui um ou mais sensores de imageamento, uma ou mais unidades de pro- cessamento de imagem, uma ou mais matrizes de armazenamento e uma ou mais telas que são estrategicamente dispostas em relação ao campo estéril, conforme ilustrado na Figura 2. Em um aspecto, o sis- tema de visualização 108 inclui uma interface para HL7, PACS e RME. Vários componentes do sistema de visualização 108 são descritos sob o título "Advanced Imaging Acquisition Module" no pedido de patente provisório US nº de série 62/611.341, intitulado INTERACTIVE SUR- GICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja re- velação está aqui incorporada a título de referência em sua totalidade.
[00108] Conforme ilustrado na Figura 2, uma tela principal 119 é posicionada no campo estéril para ser visível para o operador na mesa de operação 114. Além disso, uma torre de visualização 111 é posici- onada fora do campo estéril. A torre de visualização 111 inclui uma primeira tela não estéril 107 e uma segunda tela não estéril 109, que são opostas uma à outra. O sistema de visualização 108, guiado pelo controlador central 106, é configurado para utilizar as telas 107, 109, e 119 para coordenar o fluxo de informações para os operadores dentro e fora do campo estéril. Por exemplo, o controlador central 106 pode fazer com que o sistema de visualização 108 exiba um instantâneo de um sítio cirúrgico, conforme registrado por um dispositivo de imagea- mento 124, em uma tela não estéril 107 ou 109, enquanto se mantém uma transmissão ao vivo do sítio cirúrgico na tela principal 119. O ins- tantâneo na tela não estéril 107 ou 109 pode permitir que um operador não estéril execute uma etapa diagnóstica relevante para o procedi- mento cirúrgico, por exemplo.
[00109] Em um aspecto, o controlador central 106 é também confi- gurado para rotear uma entrada ou retroinformação diagnóstica por um operador não estéril na torre de visualização 111 para a tela prin- cipal 119 dentro do campo estéril, onde a entrada ou retroinformação pode ser vista por um operador estéril na mesa de operação. Em um exemplo, a entrada pode ser sob a forma de uma modificação do ins- tantâneo exibido na tela não estéril 107 ou 109, que pode ser roteada para a tela principal 119 pelo controlador central 106.
[00110] Com referência à Figura 2, um instrumento cirúrgico 112 está sendo usado no procedimento cirúrgico como parte do sistema cirúrgico 102. O controlador central 106 é também configurado para coordenar o fluxo de informações para uma tela do instrumento cirúr- gico 112. Por exemplo, no pedido de patente provisório US nº de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, deposi- tado em 28 de dezembro de 2017, cuja revelação está aqui incorpora- da a título de referência em sua totalidade. Uma entrada ou retroinfor- mação diagnóstica inserida por um operador não estéril na torre de visualização 111 pode ser roteada pelo controlador central 106 para a tela do instrumento cirúrgico 115 no campo estéril, onde pode ser vista pelo operador do instrumento cirúrgico 112. Instrumentos cirúrgicos exemplificadores que são adequados para uso com o sistema cirúrgico 102 são descritos sob o título "Surgical Instrument Hardware" e no pe- dido de patente provisório nº de série 62/611.341, intitulado INTE- RACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, cuja revelação está aqui incorporada a título de referência em sua totalidade, por exemplo.
[00111] — Agora com referência à Figura 3, um controlador central 106 é mostrado em comunicação com um sistema de visualização 108, um sis- tema robótico 110 e um instrumento cirúrgico inteligente de mão 112. O controlador central 106 inclui uma tela do controlador central 135, um módulo de imageamento 138, um módulo gerador 140, um módulo de comunicação 130, um módulo de processador 132 e uma matriz de ar-
mazenamento 134. Em certos aspectos, conforme ilustrado na Figura 3, o controlador central 106 inclui adicionalmente um módulo de evacuação de fumaça 126 e/ou um módulo de sucção/irrigação 128.
[00112] Durante um procedimento cirúrgico, a aplicação de energia ao tecido, para vedação e/ou corte, está geralmente associada à eva- cuação de fumaça, sucção de excesso de fluido e/ou irrigação do teci- do. O fluido, a potência, e/ou as linhas de dados de diferentes fontes são frequentemente entrelaçadas durante o procedimento cirúrgico. Um tempo valioso pode ser perdido para abordar esta questão durante um procedimento cirúrgico. Para desembaraçar as linhas pode ser neces- sário desconectar as linhas de seus respectivos módulos, o que pode exigir a reinicialização dos módulos. O compartimento modular do con- trolador central 136 oferece um ambiente unificado para gerenciar as linhas de energia, de dados e de fluido, o que reduz a frequência de en- trelaçamento entre tais linhas.
[00113] Os aspectos da presente revelação apresentam um contro- lador cirúrgico central para uso em um procedimento cirúrgico que en- volve a aplicação de energia ao tecido em um sítio cirúrgico. O contro- lador cirúrgico central inclui um compartimento do controlador central e um módulo gerador combinado recebido de maneira deslizante em uma estação de acoplamento do compartimento do controlador cen- tral. A estação de acoplamento inclui dados e contatos de potência. O módulo gerador combinado inclui dois ou mais dentre um componente gerador de energia ultrassônica, um componente gerador de energia RF bipolar, e um componente gerador de energia RF monopolar que são alojados em uma única unidade. Em um aspecto, o módulo gera- dor combinado inclui também um componente de evacuação de fuma- ça, ao menos um cabo para aplicação de energia para conectar o mó- dulo gerador combinado a um instrumento cirúrgico, ao menos um componente de evacuação de fumaça configurado para evacuar fuma-
ça, fluido, e/ou os particulados gerados pela aplicação de energia te- rapêutica ao tecido, e uma linha de fluido que se estende do sítio ci- rúrgico remoto até o componente de evacuação de fumaça.
[00114] Em um aspecto, a linha de fluido é uma primeira linha de fluido e uma segunda linha de fluido se estende do sítio cirúrgico re- moto até um módulo de sucção e irrigação recebido de maneira des- lizante no compartimento do controlador central. Em um aspecto, o compartimento do controlador central compreende uma interface de fluidos.
[00115] Certos procedimentos cirúrgicos podem exigir a aplicação de mais de um tipo de energia ao tecido. Um tipo de energia pode ser mais benéfico para cortar o tecido, enquanto um outro tipo de energia dife- rente pode ser mais benéfico para vedar o tecido. Por exemplo, um ge- rador bipolar pode ser usado para vedar o tecido enquanto um gerador ultrassônico pode ser usado para cortar o tecido vedado. Aspectos da presente revelação apresentam uma solução em que um compartimen- to modular do controlador central 136 é configurado para acomodar di- ferentes geradores e facilitar uma comunicação interativa entre os mesmos. Uma das vantagens do compartimento modular do controlador central 136 é permitir a rápida remoção e/ou substituição de vários mó- dulos.
[00116] Aspectos da presente revelação apresentam um comparti- mento cirúrgico modular para uso em um procedimento cirúrgico que envolve aplicação de energia ao tecido. O compartimento cirúrgico mo- dular inclui um primeiro módulo gerador de energia, configurado para gerar uma primeira energia para aplicação ao tecido, e uma primeira estação de acoplamento que compreende uma primeira porta de aco- plamento que inclui primeiros contatos de dados e contatos de energia, sendo que o primeiro módulo gerador de energia é móvel de maneira deslizante em um engate elétrico com a potência e os contatos de da-
dos e sendo que o primeiro módulo gerador de energia é móvel de ma- neira deslizante para fora do engate elétrico com os primeiros contatos de potência e dados.
[00117] Além do exposto acima, o compartimento modular também inclui um segundo módulo gerador de energia configurado para gerar uma segunda energia, diferente da primeira energia, para aplicação ao tecido, e uma segunda estação de acoplamento que compreende uma segunda porta de acoplamento que inclui segundos contatos de energia e de dados, sendo que o segundo módulo gerador de energia é móvel de maneira deslizante em um engate elétrico com os conta- tos de energia e de dados, e sendo que o segundo módulo gerador de energia é móvel de maneira deslizante para fora do engate elétrico com os segundos contatos de energia e de dados.
[00118] Além disso, o compartimento cirúrgico modular também inclui um barramento de comunicação entre a primeira porta de aco- plamento e a segunda porta de acoplamento, configurado para facili- tar a comunicação entre o primeiro módulo gerador de energia e o segundo módulo gerador de energia.
[00119] Com referência às Figuras 3 a 7, são apresentados aspectos da presente revelação para um compartimento modular do controlador central 136 que permite a integração modular de um módulo gerador 140, um módulo de evacuação de fumaça 126 e um módulo de suc- ção/irrigação 128. O compartimento modular do controlador central 136 facilita ainda mais a comunicação interativa entre os módulos 140, 126,
128. Conforme ilustrado na Figura 5, o módulo gerador 140 pode ser um módulo gerador com componentes monopolares, bipolares e ultrassôni- cos integrados, suportados em uma única unidade de gabinete 139 inse- rível de maneira deslizante no compartimento modular do controlador central 136. Conforme ilustrado na Figura 5, o módulo gerador 140 pode ser configurado para se conectar a um dispositivo monopolar 146, um dispositivo bipolar 147 e um dispositivo ultrassônico 148. Alternativamen- te, o módulo gerador 140 pode compreender uma série de módulos ge- radores monopolares, bipolares e/ou ultrassônicos que interagem através do compartimento modular do controlador central 136. O compartimento modular do controlador central 136 pode ser configurado para facilitar a inserção de múltiplos geradores e a comunicação interativa entre os ge- radores ancorados no compartimento modular do controlador central 136 de modo que os geradores atuariam como um único gerador.
[00120] Em um aspecto, o compartimento modular do controlador central 136 compreende uma placa posterior de comunicação e alimen- tação modular 149 com cabeçotes de comunicação externos e sem fio para permitir a conexão removível dos módulos 140, 126, 128 e a comu- nicação interativa entre os mesmos.
[00121] Em um aspecto, o compartimento modular do controlador central 136 inclui estações de acoplamento, ou gavetas, 151, aqui também chamadas de gavetas, que são configuradas para receber de maneira deslizante os módulos 140, 126, 128. A Figura 4 ilustra uma vista em perspectiva parcial de um compartimento do controla- dor cirúrgico central 136, e um módulo gerador combinado 145 rece- bidos de maneira deslizante em uma estação de acoplamento 151 do compartimento do controlador cirúrgico central 136. Uma porta de acoplamento 152 com os contatos de energia e de dados em um lado posterior do módulo gerador combinado 145 é configurado para en- gatar uma porta de acoplamento correspondente 150 com os conta- tos de energia e de dados de uma estação de acoplamento corres- pondente 151 do compartimento modular do controlador central 136 conforme o módulo gerador combinado 145 é deslizado para a posi- ção na estação de acoplamento correspondente 151 do comparti- mento modular do controlador central 136. Em um aspecto, o módulo gerador combinado 145 inclui um módulo bipolar, ultrassônico e mo-
nopolar e um módulo de evacuação de fumaça integrado em uma única unidade de compartimento 139, conforme ilustrado na Figura 5.
[00122] Em vários aspectos, o módulo de evacuação de fumaça 126 inclui uma linha de fluidos 154 que transporta fumaça captura- da/coletada de fluido para longe de um sítio cirúrgico e para, por exemplo, o módulo de evacuação de fumaça 126. A sucção a vácuo que se origina do módulo de evacuação de fumaça 126 pode puxar a fumaça para dentro de uma abertura de um conduto de utilidade no sítio cirúrgico. O conduto de utilidade, acoplado à linha de fluido, po- de estar sob a forma de um tubo flexível que termina no módulo de evacuação de fumaça 126. O conduto de utilidade e a linha de fluido definem uma trajetória de fluido que se estende em direção ao módu- lo de evacuação de fumaça 126 que é recebido no compartimento do controlador central 136.
[00123] Em vários aspectos, o módulo de sucção/irrigação 128 é acoplado a uma ferramenta cirúrgica compreendendo uma linha de aspiração de fluido e uma linha de sucção de fluido. Em um exemplo, as linhas de fluido de aspiração e sucção estão sob a forma de tubos flexíveis que se estendem do sítio cirúrgico em direção ao módulo de sucção/irrigação 128. Um ou mais sistemas de acionamento podem ser configurados para causar a irrigação e aspiração de fluidos para e a partir do sítio cirúrgico.
[00124] Em um aspecto, a ferramenta cirúrgica inclui um eixo de acionamento que tem um atuador de extremidade em uma extremida- de distal do mesmo e ao menos um tratamento de energia associado ao atuador de extremidade, um tubo de aspiração, e um tubo de irriga- ção. O tubo de aspiração pode ter uma porta de entrada em uma ex- tremidade distal do mesmo e o tubo de aspiração se estende através do eixo de acionamento. De modo similar, um tubo de irrigação pode se estender através do eixo de acionamento e pode ter uma porta de entrada próxima ao implemento de aplicação de energia. O implemen- to de aplicação de energia é configurado para aplicar energia ultrassô- nica e/ou de RF ao sítio cirúrgico e é acoplado ao módulo gerador 140 por um cabo que se estende inicialmente através do eixo de aciona- mento.
[00125] O tubo de irrigação pode estar em comunicação fluida com uma fonte de fluido, e o tubo de aspiração pode estar em comunica- ção fluida com uma fonte de vácuo. A fonte de fluido e/ou a fonte de vácuo podem ser alojadas no módulo de sucção/irrigação 128. Em um exemplo, a fonte de fluido e/ou a fonte de vácuo podem ser aloja- das no compartimento do controlador central 136 separadamente do módulo de sucçãáo/irrigação 128. Em tal exemplo, uma interface de fluido pode ser configurada para conectar o módulo de suc- ção/irrigação 128 à fonte de fluido e/ou à fonte de vácuo.
[00126] Em um aspecto, os módulos 140, 126, 128 e/ou suas esta- ções de acoplamento correspondentes no compartimento modular do controlador central 136 podem incluir recursos de alinhamento que são configurados para alinhar as portas de acoplamento dos módulos em en- gate com suas contrapartes nas estações de acoplamento do comparti- mento modular do controlador central 136. Por exemplo, conforme ilus- trado na Figura 4, o módulo gerador combinado 145 inclui suportes late- rais 155 que são configurados para engatar de maneira deslizante os su- portes correspondentes 156 da estação de acoplamento correspondente 151 do compartimento modular do controlador central 136. Os suportes cooperam para guiar os contatos da porta de acoplamento do módulo gerador combinado 145 em um engate elétrico com os contatos da porta de acoplamento do compartimento modular do controlador central 136.
[00127] Em alguns aspectos, as gavetas 151 do compartimento modular do controlador central 136 têm o mesmo, ou substancialmen- te o mesmo tamanho, e os módulos são ajustados em tamanho para serem recebidos nas gavetas 151. Por exemplo, os suportes laterais 155 e/ou 156 podem ser maiores ou menores dependendo do tama- nho do módulo. Em outros aspectos, as gavetas 151 são diferentes em tamanho e são cada uma projetada para acomodar um módulo específico.
[00128] Além disso, os contatos de um módulo específico podem ser chaveados para engate com os contatos de uma gaveta especiífi- ca para evitar a inserção de um módulo em uma gaveta com desali- nhamento de contatos.
[00129] Conforme ilustrado na Figura 4, a porta de acoplamento 150 de uma gaveta 151 pode ser acoplada à porta de acoplamento 150 de uma outra gaveta 151 através de um link de comunicação 157 para facilitar uma comunicação interativa entre os módulos alojados no compartimento modular do controlador central 136. As portas de acoplamento 150 do compartimento modular do controlador central 136 podem, alternativa ou adicionalmente, facilitar uma comunicação interativa sem fio entre os módulos alojados no compartimento modu- lar do controlador central 136. Qualquer comunicação sem fio ade- quada pode ser usada, como, por exemplo, Air Titan Bluetooth.
[00130] A Figura6 ilustra conectores de barramento de energia indivi- duais para uma pluralidade de portas de acoplamento laterais de um ga- binete modular lateral 160 configurado para receber uma pluralidade de módulos de um controlador cirúrgico central 206. O compartimento mo- dular lateral 160 é configurado para receber e interconectar lateralmente os módulos 161. Os módulos 161 são inseridos de maneira deslizante nas estações de acoplamento 162 do compartimento modular lateral 160, o qual inclui uma placa posterior para interconexão dos módulos 161. Conforme ilustrado na Figura 6, os módulos 161 são dispostos lateral- mente no gabinete modular lateral 160. Alternativamente, os módulos 161 podem ser dispostos verticalmente em um gabinete modular lateral.
[00131] A Figura 7 ilustra um gabinete modular vertical 164 confi- gurado para receber uma pluralidade de módulos 165 do controlador cirúrgico central 106. Os módulos 165 são inseridos de maneira des- lizante em estações de acoplamento, ou gavetas, 167 do gabinete modular vertical 164, o qual inclui um painel traseiro para intercone- xão dos módulos 165. Embora as gavetas 167 do gabinete modular vertical 164 sejam dispostas verticalmente, em certos casos, um ga- binete modular vertical 164 pode incluir gavetas que são dispostas lateralmente. Além disso, os módulos 165 podem interagir um com o outro através das portas de acoplamento do gabinete modular vertical
164. No exemplo da Figura 7, uma tela 177 é fornecida para mostrar os dados relevantes para a operação dos módulos 165. Além disso, o compartimento modular vertical 164 inclui um módulo mestre 178 que aloja uma pluralidade de submódulos que são recebidos de maneira deslizante no módulo mestre 178.
[00132] Em vários aspectos, o módulo de imageamento 138 com- preende um processador de vídeo integrado e uma fonte de luz modu- lar e é adaptado para uso com vários dispositivos de imageamento. Em um aspecto, o dispositivo de imageamento é compreendido de um compartimento modular que pode ser montado com um módulo de fon- te de luz e um módulo de câmera. O compartimento pode ser um compartimento descartável. Em ao menos um exemplo, o comparti- mento descartável é acoplado de modo removível a um controlador reutilizável, um módulo de fonte de luz, e um módulo de câmera. O módulo de fonte de luz e/ou o módulo de câmera podem ser escolhi- dos de forma seletiva dependendo do tipo de procedimento cirúrgico. Em um aspecto, o módulo de câmera compreende um sensor CCD. Em um outro aspecto, o módulo de câmera compreende um sensor CMOS. Em um outro aspecto, o módulo de câmera é configurado para imageamento do feixe escaneado. De modo semelhante, o módulo de fonte de luz pode ser configurado para fornecer uma luz branca ou uma luz diferente, dependendo do procedimento cirúrgico.
[00133] Durante um procedimento cirúrgico, a remoção de um dispo- sitivo cirúrgico do campo cirúrgico e a sua substituição por um outro dis- positivo cirúrgico que inclui uma câmera Diferentes ou outra fonte lumi- nosa pode ser ineficiente. Perder de vista temporariamente do campo cirúrgico pode levar a consequências indesejáveis. O módulo de disposi- tivo de imageamento da presente revelação é configurado para permitir a substituição de um módulo de fonte de luz ou um módulo de câmera "midstream" durante um procedimento cirúrgico, sem a necessidade de remover o dispositivo de imageamento do campo cirúrgico.
[00134] Em um aspecto, o dispositivo de imageamento compreen- de um compartimento tubular que inclui uma pluralidade de canais. Um primeiro canal é configurado para receber de maneira deslizante o módulo da Câmera, que pode ser configurado para um encaixe do tipo snap-fit (encaixe por pressão) com o primeiro canal. Um segundo canal é configurado para receber de maneira deslizante o módulo da câmera, que pode ser configurado para um encaixe do tipo snap-fit (encaixe por pressão) com o primeiro canal. Em outro exemplo, o módulo de câmera e/ou o módulo de fonte de luz pode ser girado pa- ra uma posição final dentro de seus respectivos canais. Um engate rosqueado pode ser usado em vez do encaixe por pressão.
[00135] Em vários exemplos, múltiplos dispositivos de imageamen- to são colocados em diferentes posições no campo cirúrgico para for- necer múltiplas vistas. O módulo de imageamento 138 pode ser con- figurado para comutar entre os dispositivos de imageamento para fornecer uma vista ideal. Em vários aspectos, o módulo de imagea- mento 138 pode ser configurado para integrar as imagens dos dife- rentes dispositivos de imageamento.
[00136] Vários processadores de imagens e dispositivos de image-
amento adequados para uso com a presente revelação são descritos na patente US nº 7.995.045 intitulada COMBINED SBI AND CON- VENTIONAL IMAGE PROCESSOR, concedida em 9 de agosto de 2011 que está aqui incorporado a título de referência em sua totalida- de. Além disso, a patente US nº 7.982.776, intitulada SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD, concedida em 19 de julho de 2011, que está aqui incorporada a título de referência em sua totalidade, descreve vários sistemas para remover artefatos de movimento dos dados de imagem. Tais sistemas podem ser integra- dos com o módulo de imageamento 138. Além desses, a publicação do pedido de patente US nº 2011/0306840, intitulada CONTROLLA- BLE MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPA- RATUS, publicada em 15 de dezembro de 2011, e a publicação do pedido de patente US nº 2014/0243597, intitulada SYSTEM FOR PERFORMING A MINIMALLY INVASIVE SURGICAL PROCEDURE, publicada em 28 de agosto de 2014, que estão, cada uma das quais, aqui incorporadas a título de referência em sua totalidade.
[00137] A Figura 8 ilustra uma rede de dados cirúrgicos 201 que compreende um controlador central de comunicação modular 203 confi- gurado para conectar dispositivos modulares situados em uma ou mais salas de cirurgia de uma instalação de serviços de saúde, ou qualquer ambiente em uma instalação de serviços públicos especialmente equi- pada para operações cirúrgicas, a um sistema baseado em nuvem (por exemplo, a nuvem 204 que pode incluir um servidor remoto 213 acopla- do a um dispositivo de armazenamento 205). Em um aspecto, o contro- lador central de comunicação modular 203 compreende um controlador central de rede 207 e/ou uma chave de rede 209 em comunicação com um roteador de rede. O controlador central de comunicação modular 203 também pode ser acoplado a um sistema de computador local 210 para fornecer processamento de computador local e manipulação de dados. A rede de dados cirúrgicos 201 pode ser configurada como uma rede passiva, inteligente, ou de comutação. Uma rede de dados cirúrgi- cos passiva serve como um conduto para os dados, permitindo que os dados sejam transmitidos de um dispositivo (ou segmento) para um ou- tro e para os recursos de computação em nuvem. Uma rede de dados cirúrgicos inteligente inclui recursos para permitir que o tráfego passe através da rede de dados cirúrgicos a serem monitorados e para confi- gurar cada porta no controlador central de rede 207 ou chave de rede
209. Uma rede de dados cirúrgicos inteligente pode ser chamada de um controlador central ou chave controlável. Um controlador central de chaveamento lê o endereço de destino de cada pacote e então encami- nha o pacote para a porta correta.
[00138] Os dispositivos modulares 1a a 1n situados na sala de opera- ção podem ser acoplados ao controlador central de comunicação modu- lar 203. O controlador central de rede 207 e/ou a chave de rede 209 po- dem ser acoplados a um roteador de rede 211 para conectar os dispositi- vos 1a a 1n à nuvem 204 ou ao sistema de computador local 210. Os dados associados aos dispositivos 1a a 1n podem ser transferidos para computadores baseados em nuvem através do roteador para processa- mento e manipulação remota dos dados. Os dados associados aos dis- positivos 1a a 1h podem também ser transferidos para o sistema de computador local 210 para processamento e manipulação dos dados lo- cais. Os dispositivos modulares 2a a 2m situados na mesma sala de ope- ração também podem ser acoplados a uma chave de rede 209. A chave de rede 209 pode ser acoplada ao controlador central de rede 207 e/ou ao roteador de rede 211 para conectar os dispositivos 2a a 2m à nuvem
204. Os dados associados aos dispositivos 2a a 2n podem ser transferi- dos para a nuvem 204 através do roteador de rede 211 para o proces- samento e manipulação dos dados. Os dados associados aos dispositi- vos 2a a 2m podem também ser transferidos para o sistema de compu-
tador local 210 para processamento e manipulação dos dados locais.
[00139] Será entendido que a rede de dados cirúrgicos 201 pode ser expandida pela interconexão dos múltiplos controladores centrais de rede 207 e/ou das múltiplas chaves de rede 209 com múltiplos ro- teadores de rede 211. O controlador central de comunicação modular 203 pode estar contido em uma torre de controle modular configurada para receber múltiplos dispositivos 1a a 1n/2a a 2m. O sistema de computador local 210 também pode estar contido em uma torre de controle modular. O controlador central de comunicação modular 203 é conectado a uma tela 212 para exibir as imagens obtidas por al- guns dos dispositivos 1a a 1n/2a a 2m, por exemplo, durante os pro- cedimentos cirúrgicos. Em vários aspectos, os dispositivos 1a a 1n/2a a 2m podem incluir, por exemplo, vários módulos como um módulo de imageamento 138 acoplado a um endoscópio, um módulo gerador 140 acoplado a um dispositivo cirúrgico baseados em energia, um módulo de evacuação de fumaça 126, um módulo de suc- ção/irrigação 128, um módulo de comunicação 130, um módulo de processador 132, uma matriz de armazenamento 134, um dispositivo cirúrgico acoplado a uma tela e/ou um módulo de sensor sem conta- to, entre outros dispositivos modulares que podem ser conectados ao controlador central de comunicação modular 203 da rede de dados cirúrgicos 201.
[00140] Em um aspecto, a rede de dados cirúrgicos 201 pode com- preender uma combinação de controladores centrais de rede, chaves de rede e roteadores de rede que conectam os dispositivos 1a a 1n/2a a 2m à nuvem. Qualquer um ou todos os dispositivos 1a a 1n/2a a 2m acopla- dos ao controlador central de rede ou chave de rede podem coletar da- dos em tempo real e transferir dados para computadores em nuvem para processamento e manipulação de dados. Será entendido que a compu- tação em nuvem depende do compartilhamento dos recursos de compu-
tação em vez de ter servidores locais ou dispositivos pessoais para lidar com aplicações de software. A palavra "nuvem" pode ser usada como uma metáfora para "a Internet", embora o termo não seja limitado como tal. Consequentemente, o termo "computação em nuvem" pode ser usa- do aqui para se referir a "um tipo de computação baseada na Internet", em que diferentes serviços — como servidores, armazenamento, e aplica- tivos — são aplicados ao controlador central de comunicação modular 203 e/ou ao sistema de computador 210 situados na sala de cirurgia (por exemplo, um sala ou espaço fixo, móvel, temporário, ou campo de ope- ração) e aos dispositivos conectados ao controlador central de comuni- cação modular 203 e/ou ao sistema de computador 210 através da Inter- net. A infraestrutura de nuvem pode ser mantida por um fornecedor de serviços em nuvem. Neste contexto, o fornecedor de serviços em nuvem pode ser a entidade que coordena o uso e controle dos dispositivos 1a a 1n/2a a 2m localizados em uma ou mais salas de operação. Os serviços de computação em nuvem podem realizar um grande número de cálcu- los com base nos dados coletados por instrumentos cirúrgicos inteligen- tes, robôs, e outros dispositivos computadorizados localizados na sala de operação. O hardware do controlador central permite que múltiplos dis- positivos ou conexões sejam conectados a um computador que se co- munica com os recursos de computação e armazenamento em nuvem.
[00141] A aplicação de técnicas de processamento de dados de computador em nuvem nos dados coletados pelos dispositivos 1a a 1n/2a a 2m, a rede de dados cirúrgicos fornece melhor resultados ci- rúrgicos, custos reduzidos, e melhor satisfação do paciente. Ao me- nos alguns dos dispositivos 1a a 1hn/2a a 2m podem ser usados para visualizar os estados do tecido para avaliar a ocorrência de vazamen- tos ou perfusão de tecido vedado após um procedimento de vedação e corte do tecido. Ao menos alguns dos dispositivos 1a a 1n/2a a 2m podem ser usados para identificar a patologia, como os efeitos de doenças, com o uso da computação baseada em nuvem para exami- nar dados incluindo imagens de amostras de tecido corporal para fins de diagnóstico. Isso inclui confirmação da localização e margem do tecido e fenótipos. Ao menos alguns dos dispositivos 1a a 1n/2a a 2m pode ser usado para identificar estruturas anatômicas do corpo com o uso de uma variedade de sensores integrados com dispositivos de imageamento e técnicas como a sobreposição de imagens captura- das por múltiplos dispositivos de imageamento. Os dados colhidos pelos dispositivos 1a a 1n/2a a 2m, incluindo os dados de imagem, podem ser transferidos para a nuvem 204 ou o sistema de computa- dor local 210 ou ambos para processamento e manipulação de dados incluindo processamento e manipulação de imagem. Os dados po- dem ser analisados para melhorar os resultados do procedimento ci- rúrgico por determinação de se tratamento adicional, como aplicação de intervenção endoscópica, tecnologias emergentes, uma radiação direcionada, intervenção direcionada, robóticas precisas a sítios e condições específicas de tecido, podem ser seguidas. Essa análise de dados pode usar adicionalmente processamento analítico dos re- sultados, e com o uso de abordagens padronizadas podem fornecer retroinformação padronizado benéfico tanto para confirmar tratamen- tos cirúrgicos e o comportamento do cirurgião ou sugerir modifica- ções aos tratamentos cirúrgicos e o comportamento do cirurgião.
[00142] Em uma implementação, os dispositivos da sala de operação 1a a 1h podem ser conectados ao controlador central de comunicação modular 203 através de um canal com fio ou um canal sem fio depen- dendo da configuração dos dispositivos 1a a 1h em um controlador cen- tral de rede. O controlador central de rede 207 pode ser implementado, em um aspecto, como um dispositivo de transmissão de rede local que atua sobre a camada física do modelo OSI ("open system interconnec- tion", ou interconexão de sistemas abertos). O controlador central de re-
de fornece conectividade aos dispositivos 1a a 1n situados na mesma rede da sala de operação. O controlador central de rede 207 coleta da- dos sob a forma de pacotes e os envia para o roteador em modo "half- duplex". O controlador central de rede 207 não armazena nenhum con- trole de acesso a mídias/protocolo da Internet (MAC/IP) para transferir os dados de dispositivo. Apenas um dos dispositivos 1a a 1n por vez pode enviar dados através do controlador central de rede 207. O controlador central de rede 207 não tem tabelas de roteamento ou inteligência acerca de onde enviar informações e transmite todos os dados da rede através de cada conexão e a um servidor remoto 213 (Figura 9) na nuvem 204. O controlador central de rede 207 pode detectar erros básicos de rede, como colisões, mas ter todas as informações transmitidas para múltiplas portas de entrada pode ser um risco de segurança e provocar estrangu- lamentos.
[00143] Em uma outra implementação, os dispositivos de sala de operação 2a a 2m podem ser conectados a uma chave de rede 209 através de um canal com ou sem fio. A chave de rede 209 funciona na camada de conexão de dados do modelo OSI. A chave de rede 209 é um dispositivo multicast para conectar os dispositivos 2a a 2m locali- zados no mesmo centro de operação à rede. A chave de rede 209 en- via dados sob a forma de quadros para o roteador de rede 211 e fun- ciona em modo duplex completo. Múltiplos dispositivos 2a a 2m podem enviar dados ao mesmo tempo através da chave de rede 209. A chave de rede 209 armazena e usa endereços MAC dos dispositivos 2a a 2m para transferir dados.
[00144] O controlador central de rede 207 e/ou a chave de rede 209 são acoplados ao roteador de rede 211 para uma conexão com a nu- vem 204. O roteador de rede 211 funciona na camada de rede do mo- delo OSI. O roteador de rede 211 cria uma rota para transmitir pacotes de dados recebidos do controlador central de rede 207 e/ou da chave de rede 211 para um computador com recursos em nuvem para futuro processamento e manipulação dos dados coletados por qualquer um dentre ou todos os dispositivos 1a a 1n/ 2a a 2m. O roteador de rede 211 pode ser usado para conectar duas ou mais redes diferentes situa- das em locais diferentes, como, por exemplo, diferentes salas de opera- ção da mesma instalação de serviços de saúde ou diferentes redes lo- calizadas em diferentes salas de operação das diferentes instalações de serviços de saúde. O roteador de rede 211 envia dados sob a forma de pacotes para a nuvem 204 e funciona em modo duplex completo. Múltiplos dispositivos podem enviar dados ao mesmo tempo. O roteador de rede 211 usa endereços IP para transferir dados.
[00145] Em um exemplo, o controlador central de rede 207 pode ser implementado como um controlador central USB, o que permite que múltiplos dispositivos USB sejam conectados a um computador hospedeiro. O controlador central de USB pode expandir uma única porta USB em vários níveis de modo que haja mais portas disponí- veis para conectar os dispositivos ao computador hospedeiro do sis- tema. O controlador central de rede 207 pode incluir recursos com fio ou sem fio para receber informações sobre um canal com fio ou um canal sem fio. Em um aspecto, um protocolo sem fio de comunicação de rádio sem fio, de banda larga e de curto alcance USB sem fio po- de ser usado para comunicação entre os dispositivos 1a a Ine os dispositivos 2a a 2m situados na sala de operação.
[00146] Em outros exemplos, os dispositivos da sala de operação 1a a 1n/2a a 2m pode se comunicar com ao controlador central de comunicação modular 203 através de tecnologia Bluetooth sem fio pa- drão para troca de dados ao longo de curtas distâncias (com o uso de ondas de rádio UHF de comprimento de onda curta na banda ISM de 2,4 a 2,485 GHz) de dispositivos fixos e móveis e construir redes de área pessoal (PANs, "personal area networks"). Em outros exemplos,
os dispositivos da sala de operação 1a a 1n/2a a 2m pode se comuni- car com ao controlador central de comunicação modular 203 através de tecnologia Bluetooth sem fio padrão para troca de dados ao longo de curtas distâncias (com o uso de ondas de rádio UHF de compri- mento de onda curta na banda ISM de 2,4 a 2,485 GHz) de dispositi- vos fixos e móveis e construir redes de área pessoal (PANs, "personal area networks"). O módulo de computação pode incluir uma pluralida- de de módulos de comunicação. Por exemplo, um primeiro módulo de comunicação pode ser dedicado a comunicações sem fio de curto al- cance como Wi-Fi e Bluetooth, e um segundo módulo de comunicação pode ser dedicado a comunicações sem fio de alcance mais longo como GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, e outros.
[00147] O controlador central de comunicação modular 203 pode servir como uma conexão central para um ou todos os dispositivos da sala de operação 1a a 1n/2a a 2m e lida com um tipo de dados conhe- cido como quadros. Os quadros transportam os dados gerados pelos dispositivos 1a a 1n/2a a 2m. Quando um quadro é recebido pelo con- trolador central de comunicação modular 203, ele é amplificado e transmitido para o roteador de rede 211, que transfere os dados para OS recursos de computação em nuvem com o uso de uma série de pa- drões ou protocolos de comunicação sem fio ou com fio, conforme aqui descrito.
[00148] O controlador central de comunicação modular 203 pode ser usado como um dispositivo independente ou ser conectado a con- troladores centrais de rede e chaves de rede compatíveis para formar uma rede maior. O controlador central de comunicação modular 203 é, em geral, fácil de instalar, configurar e manter, o que o torna uma boa opção para operações em rede dos dispositivos 1a a 1n/2a a 2m da sala de operação.
[00149] A Figura9 ilustra um sistema cirúrgico interativo, implementa-
do por computador 200. O sistema cirúrgico interativo implementado por computador 200 é similar em muitos aspectos ao sistema cirúrgico intera- tivo, implementado por computador 100. Por exemplo, o sistema cirúrgi- co, interativo, implementado por computador 200 inclui um ou mais sis- temas cirúrgicos 202, que são similares em muitos aspectos aos siste- mas cirúrgicos 102. Cada sistema cirúrgico 202 inclui ao menos um con- trolador cirúrgico central 206 em comunicação com uma nuvem 204 que pode incluir um servidor remoto 213. Em um aspecto, o sistema cirúrgico interativo implementado por computador 200 compreende uma torre de controle modular 236 conectada a múltiplos dispositivos de sala de ope- ração como, por exemplo, instrumentos cirúrgicos inteligentes, robôs e outros dispositivos computadorizados localizados na sala de operações. Conforme mostrado na Figura 10, a torre de controle modular 236 com- preende um controlador central de comunicação modular 203 acoplado a um sistema de computador 210. Conforme ilustrado no exemplo da Figu- ra 9, a torre de controle modular 236 é acoplada a um módulo de image- amento 238 que é acoplado a um endoscópio 239, um módulo gerador 240 que é acoplado a um dispositivo de energia 241, um módulo de eva- cuação de fumaça 226, um módulo de sucção/irrigação 228, um módulo de comunicação 230, um módulo de processador 232, uma matriz de armazenamento 234, um dispositivo/instrumento inteligente 235 opcio- nalmente acoplado a uma tela 237, e um módulo de sensor sem contato
242. Os dispositivos da sala de operação estão acoplados aos recursos de computação em nuvem e ao armazenamento de dados através da torre de controle modular 236. O controlador central robótico 222 também pode ser conectado à torre de controle modular 236 e aos recursos de computação em nuvem. Os dispositivos/Instrumentos 235, sistemas de visualização 208, entre outros, podem ser acoplados à torre de controle modular 236 por meio de padrões ou protocoles de comunicação com fio ou sem fio, conforme aqui descrito. A torre de controle modular 236 pode ser acoplada a uma tela do controlador central 215 (por exemplo, moni- tor, tela) para exibir e sobrepor imagens recebidas do módulo de image- amento, tela do dispositivo/instrumento e/ou outros sistemas de visuali- zação 208. A tela do controlador central também pode exibir os dados recebidos dos dispositivos conectados à torre de controle modular em conjunto com imagens e imagens sobrepostas.
[00150] A Figura 10 ilustra um controlador cirúrgico central 206 que compreende uma pluralidade de módulos acoplados à torre de controle modular 236. A torre de controle modular 236 compreende um controla- dor central de comunicação modular 203, por exemplo, um dispositivo de conectividade de rede, e um sistema de computador 210 para forne- cer processamento, visualização e imageamento locais, por exemplo. Conforme mostrado na Figura 10, o controlador central de comunicação modular 203 pode ser conectado em uma configuração em camadas para expandir o número de módulos (por exemplo, dispositivos) que po- dem ser conectados ao controlador central de comunicação modular 203 e transferir para o sistema de computador 210 dados associados aos módulos, recursos de computação em nuvem, ou ambos. Conforme mostrado na Figura 10, cada um dos controladores centrais/chaves de rede no controlador central de comunicação modular 203 inclui três por- tas a jusante e uma porta a montante. O controlador central/chave de rede a montante é conectado a um processador para fornecer uma co- nexão de comunicação com a recursos de computação em nuvem e uma tela local 217. A comunicação com a nuvem 204 pode ser feita através de um canal de comunicação com fio ou sem fio.
[00151] O controlador cirúrgico central 206 emprega um módulo de sensor sem contato 242 para medir as dimensões da sala de operação e gerar um mapa da sala de cirurgia com o uso de dispositivos de medição sem contato do tipo laser ou ultrassônico. Um módulo de sensor sem contato baseado em ultrassom escaneia a sala de operação transmitindo uma rajada de ultrassom e recebendo o eco quando este ricocheteia nas paredes circundantes de uma sala de operação, conforme descrito sob o título "Surgical Hub Spatial Awareness Within an Operating Room" no pedido de patente provisório US nº de série 62/611.341, intitulado INTE- RACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro 2017, que está aqui incorporado a título de referência em sua totalidade, no qual o módulo de sensor é configurado para determinar o tamanho da sala de operação e ajustar os limites da distância de emparelhamento com Bluetooth. Um módulo de sensor sem contato baseado em laser es- caneia a sala de operação transmitindo pulsos de luz laser, recebendo pulsos de luz laser que saltam das paredes do perímetro da sala de ope- ração, e comparando a fase do pulso transmitido ao pulso recebido para determinar o tamanho da sala de operação e para ajustar os limites de distância de emparelhamento com Bluetooth, por exemplo.
[00152] O sistema de computador 210 compreende um processador 244 e uma interface de rede 245. O processador 244 é acoplado a um módulo de comunicação 247, armazenamento 248, memória 249, memó- ria não volátil 250, e interface de entrada/ saída 251 através de um bar- ramento de sistema. O barramento do sistema pode ser qualquer um dos vários tipos de estruturas de barramento, incluindo o barramento de me- mória ou controlador de memória, um barramento periférico ou barra- mento externo, e/ou barramento local que usa qualquer variedade de ar- quiteturas de barramento disponíveis incluindo, mas não se limitando a, barramento de 9 bits, arquitetura de padrão industrial (ISA), Micro- Charmel Architecture (MSA), ISA estendida (EISA), Eletrônica de drives inteligentes (IDE), barramento local VESA (VLB), Interconexão de com- ponentes periféricos (PCI), USB, porta gráfica acelerada (AGP), barra- mento de PCMCIA (Associação internacional de cartões de memória pa- ra computadores pessoais, "Personal Computer Memory Card Internatio- nal Association"), Interface de sistemas para pequenos computadores
(SCSI), ou qualquer outro barramento proprietário.
[00153] O processador 244 pode ser qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex disponível junto à Texas Instruments. Em um aspecto, o processador pode ser um processador Core Cortex-M4F LM4F230H5QR ARM, disponível junto à Texas Instruments, por exem- plo, que compreende uma memória integrada de memória flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório seriada de ciclo único de 32 KB (SRAM), uma memória só de leitura interna (ROM) carregada com o programa StellarisWareO, memória só de leitura programável e apagável eletrica- mente (EEPROM) de 2 KB, um ou mais módulos de modulação por lar- gura de pulso (PWM), uma ou mais análogos de entradas de codificador de quadratura (QEI), um ou mais conversores analógico para digital (ADC) de 12 bits com 12 canais de entrada analógica, detalhes dos quais estão disponíveis para a folha de dados do produto.
[00154] Em um aspecto, o processador 244 pode compreender um controlador de segurança que compreende duas famílias com base em controlador, como TMS570 e RM4x, conhecidas sob o nome comercial de Hercules ARM Cortex R4, também pela Texas Instruments. O contro- lador de segurança pode ser configurado especificamente para as apli- cações críticas de segurança IEC 61508 e ISO 26262, dentre outras, pa- ra fornecer recursos avançados de segurança integrada enquanto forne- ce desempenho, conectividade e opções de memória escalonáveis.
[00155] A memória de sistema inclui memória volátil e memória não volátil. O sistema básico de entrada/saída (BIOS), contendo as rotinas básicas para transferir informações entre elementos dentro do sistema de computador, como durante a partida, é armazenado em memória não volátil. Por exemplo, a memória não volátil pode incluir
ROM, ROM programável (PROM), ROM eletricamente programável (EPROM), EEPROM ou memória flash. A memória volátil inclui me- mória de acesso aleatório (RAM), que atua como memória cache ex- terno. Além disso, a RAM está disponível em muitas formas como SRAM, RAM dinâmica (DRAM), DRAM síncrona (SDRAM), SDRAM taxa de dados dobrada (DDR SDRAM), SDRAM aperfeiçoada (ES- DRAM), Synchlink DRAM (SLDRAM), e RAM direta Rambus RAM (DRRAM).
[00156] O sistema de computador 210 inclui também mídia de ar- mazenamento de computador removível/não removível, volátil/não vo- látil, como, por exemplo, armazenamento de disco. O armazenamento de disco inclui, mas não se limita a, dispositivos como uma unidade de disco magnético, unidade de disco flexível, acionador de fita, aciona- dor Jaz, acionador Zip, acionador LS-60, cartão de memória flash ou memória stick (pen-drive). Além disso, o disco de armazenamento po- de incluir mídias de armazenamento separadamente ou em combina- ção com outras mídias de armazenamento incluindo, mas não se limi- tam a, uma unidade de disco óptico como um dispositivo ROM de dis- co compacto (CD-ROM) unidade de disco compacto gravável (CD-R Drive), unidade de disco compacto regravável (CD-RW drive), ou uma unidade ROM de disco digital versátil (DVD-ROM). Para facilitar a co- nexão dos dispositivos de armazenamento de disco com o barramento de sistema, uma interface removível ou não removível pode ser usada.
[00157] Deve-se considerar que o sistema de computador 210 in- clui um software que age como intermediário entre os usuários e os recursos básicos do computador descritos em um ambiente operaci- onal adequado. Tal software inclui um sistema operacional. O sistema operacional, que pode ser armazenado no armazenamento de disco, atua para controlar e alocar recursos do sistema de computador. As aplicações de sistemas se beneficiam dos recursos de gerenciamento pelo sistema operacional através de módulos de programa e “dados de programa armazenadas na memória do sistema ou no disco de armazenamento. Deve-se considerar que vários componentes aqui descritos podem ser implementados com vários sistemas operacio- nais ou combinações de sistemas operacionais.
[00158] “Um usuário insere comandos ou informações no sistema de computador 210 através do(s) dispositivo(s) de entrada acoplado(s) à interface 1/O 251. Os dispositivos de entrada incluem, mas não se limitam a, um dispositivo apontador como um mouse, trackball, stylus, touchpad, teclado, microfone, joystick, bloco de jogo, placa de satélite, escâner, car- tão sintonizador de TV, câmera digital, câmera de vídeo digital, câmera de web, e similares. Esses e outros dispositivos de entrada se conectam ao processador através do barramento de sistema através da(s) porta(s) de interface. As portas de interface incluem, por exemplo, uma porta se- rial, uma porta paralela, uma porta de jogo e um USB. Os dispositivos de saída usam alguns dos mesmos tipos de portas que os dispositivos de entrada. Dessa forma, por exemplo, uma porta USB pode ser usada para fornecer entrada ao sistema de computador e para fornecer informações do sistema de computador para um dispositivo de saída. Um adaptador de saída é fornecido para ilustrar que existem alguns dispositivos de saí- da como monitores, telas, alto-falantes, e impressoras, entre outros dis- positivos de saída, que precisam de adaptadores especiais. Os adapta- dores de saída incluem, a título de Ilustração e não de limitação, cartões de vídeo e som que fornecem um meio de conexão entre o dispositivo de saída e o barramento de sistema. Deve ser observado que outros dispo- sitivos e/ou sistemas de dispositivos, como computadores remotos, for- necem capacidades de entrada e de saída.
[00159] O sistema de computador 210 pode operar em um ambiente em rede com o uso de conexões lógicas com um ou mais computadores remotos, como os computadores em nuvem, ou os computadores locais.
Os computadores remotos em nuvem podem ser um computador pesso- al, servidor, roteador, computador pessoal de rede, estação de trabalho, aparelho baseado em microprocessador, dispositivo de pares, ou outro nó de rede comum, e similares, e tipicamente incluem muitos ou todos os elementos descritos em relação ao sistema de computador. Para fins de brevidade, apenas um dispositivo de armazenamento de memória é ilus- trado com o computador remoto. Os computadores remotos são logica- mente conectados ao sistema de computador através de uma interface de rede e então fisicamente conectados através de uma conexão de co- municação. A interface de rede abrange redes de comunicação como redes de áreas locais (LANs) e redes de áreas amplas (WANs). As tec- nologias LAN incluem interface de dados distribuída por fibra (FDDI), in- terface de dados distribuídos por cobre (CDDI), Ethernet/IEEE 802,3, anel de Token/IEEE 802,5 e similares. As tecnologias WAN incluem, mas não se limitam a, links de ponto a ponto, redes de comutação de circuito como redes digitais de serviços integrados (ISDN) e variações nos mes- mos, redes de comutação de pacotes e linhas digitas de assinante (DSL).
[00160] Em vários aspectos, o sistema de computador 210 da Figu- ra 33, o módulo de imageamento 238 e/ou o sistema de visualização 208, e/ou o módulo de processador 232 das Figuras 9 e 10 podem compreender um processador de imagem, um motor de processamen- to de imagem, um processador de mídia, ou qualquer processador de sinal digital (PSD) especializado usado para processar imagens digi- tais. O processador de imagem pode empregar computação paralela com tecnologias de instrução única de múltiplos dados (SIMD) ou de múltiplas instruções de múltiplos dados (MIMD) para aumentar a velo- cidade e a eficiência. O motor de processamento de imagem digital pode executar uma série de tarefas. O processador de imagem pode ser um sistema em um circuito integrado com arquitetura de processa- dor de múltiplos núcleos.
[00161] As conexões de comunicação referem-se ao hardwa- re/software usado para conectar a interface de rede ao barramento. Embora a conexão de comunicação seja mostrada para clareza ilus- trativa dentro do sistema de computador, ela também pode ser exter- na ao sistema de computador 210. O hardware/software necessário para a ligação à interface de rede inclui, apenas para fins ilustrativos, tecnologias internas e externas como modems, incluindo modems de série de telefone regulares, modems de cabo e modems DSL, adap- tadores de ISDN e cartões Ethernet.
[00162] A Figura 11 ilustra um diagrama de blocos funcionais de um aspecto de um dispositivo de controlador central de rede USB 300, de acordo com ao menos um aspecto da presente revelação. No aspecto ilustrado, o dispositivo de controlador central de rede USB 300 usa um controlador central de circuito integrado TUSB2036 dis- ponível junto à Texas Instruments. O controlador central de rede USB 300 é um dispositivo CMOS que fornece uma porta de transceptor USB a montante 302 e até três portas de transceptor USB a jusante 304, 306, 308 em conformidade com a especificação USB 2.0. A por- ta de transceptor USB a montante 302 é uma porta-raiz de dados di- ferenciais que compreende uma entrada de dados diferenciais "me- nos" (DMO) emparelhada com uma entrada de dados diferenciais "mais" (DPO). As três portas do transceptor USB a jusante 304, 306, 308 são portas de dados diferenciais, sendo que cada porta inclui sa- ídas de dados diferenciais "mais" (DP1-DP3) emparelhadas com zai- das de dados diferenciais "menos" (DM1-DM3).
[00163] O dispositivo de controlador central de rede USB 300 é im- plementado com uma máquina de estado digital em vez de um micro- controlador, e nenhuma programação de firmware é necessária. Os transceptores USB totalmente compatíveis são integrados no circuito para a porta do transceptor USB a montante 302 e todas as portas de transceptor USB a jusante 304, 306, 308. As portas de transceptor USB a jusante 304, 306, 308 suportam tanto os dispositivos de velocidade total como de baixa velocidade configurando automaticamente a taxa de varredura de acordo com a velocidade do dispositivo fixado às portas. O dispositivo de controlador central de rede USB 300 pode ser configura- do em modo alimentado por barramento ou em modo autoalimentado e inclui uma lógica de energia do controlador central 312 para gerenciar a potência.
[00164] O dispositivo de controlador central de rede USB 300 inclui um motor de interface serial 310 (SIE). O SIE 310 é a extremidade frontal do hardware do controlador central de rede USB 300 e lida com a maior parte do protocolo descrito no capítulo 8 da especificação USB. O SIE 310 tipicamente compreende a sinalização até o nível da transação. As funções que ele maneja poderiam incluir: reconhecimento de pacote, se- quenciamento de transação, SOP, EOP, RESET, e RESUME a detec- ção/geração de sinais, separação de relógio/dados, codifica- ção/descodificação de dados não retorno a zero invertido (NRZI), gera- ção e verificação de CRC (token e dados), geração e verifica- ção/descodificação de pacote ID (PID)) e/ou conversão série- paralelo/paralelo-série. O SIE 310 recebe uma entrada de relógio 314 e é acoplado a um circuito de lógica suspender/retomar e temporizador de quadro 316 e a um circuito de repetição do controlador central 318 para controlar a comunicação entre a porta do transceptor USB a montante 302 e as portas do transceptor USB a jusante 304, 306, 308 através dos circuitos de lógica de porta 320, 322, 324. O SIE 310 é acoplado a um decodificador de comando 326 através da lógica de interface para contro- lar os comandos a partir de uma memória EEPROM serial através de uma interface de EEPROM serial 330.
[00165] Em vários aspectos, o controlador central de rede USB 300 pode conectar 127 as funções configuradas em até seis camadas (níveis)
lógicas a um único computador. Além disso, o controlador central de rede USB 300 pode conectar todos os periféricos com o uso de um cabo de quatro fios padronizado que fornece tanto comunicação como distribui- ção de potência. As configurações de potência são modos alimentados por barramento e autoalimentados. O controlador central de rede USB 300 pode ser configurado para suportar quatro modos de gerenciamento de potência: um controlador central alimentado por barramento, com ge- renciamento de potência de porta individual ou gerenciamento de energia de portas agrupadas, e o controlador central autoalimentado, com geren- ciamento de energia de porta individual ou gerenciamento de energia de portas agrupadas. Em um aspecto, com o uso de um cabo USB, o con- trolador central de rede de USB 300, a porta de transceptor USB a mon- tante 302 é plugada em um controlador de hospedeiro USB, e as portas de transceptor USB a jusante 304, 306, 308 são expostas para conectar dispositivos USB compatíveis, e assim por diante.
Hardware do instrumento cirúrgico
[00166] A Figura 12 ilustra um diagrama lógico de um módulo de um sistema de controle 470 de um instrumento ou ferramenta cirúrgi- ca, de acordo com um ou mais aspectos da presente revelação. O sis- tema 470 compreende um circuito de controle. O circuito de controle inclui um microcontrolador 461 que compreende um processador 462 e uma memória 468. Um ou mais dos sensores 472, 474, 476, por exemplo, fornecem retroinformação em tempo real para o processador
462. Um motor 482, acionado por um acionador do motor 492, acopla operacionalmente um membro de deslocamento longitudinalmente móvel para acionar o elemento cortante da viga com perfil em |. Um sistema de rastreamento 480 é configurado para determinar a posição do membro de deslocamento longitudinalmente móvel. As informações de posição são fornecidas ao processador 462, que pode ser progra- mado ou configurado para determinar a posição do membro de acio-
namento longitudinalmente móvel, bem como a posição de um mem- bro de disparo, barra de disparo e um elemento cortante da viga com perfil em |. Motores adicionais podem ser fornecidos na interface do acionador de instrumento para controlar o disparo da viga com perfil em |, o deslocamento do tubo de fechamento, a rotação do eixo de acionamento e a articulação. Uma tela 473 exibe uma variedade de condições de operação dos instrumentos e pode incluir funcionalidade de tela sensível ao toque para entrada de dados. As informações exi- bidas na tela 473 podem ser sobrepostas com imagens capturadas através de módulos de imageamento endoscópicos.
[00167] Em um aspecto, o microcontrolador 461 pode ser qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex disponível junto à Texas Instruments. Em um aspecto, o microcontrolador principal 461 pode ser um núcleo de processador LM4F230H5QR ARM Cortex-M4F, disponível junto à Texas Instruments, por exemplo compreendendo uma memória flash integrada de ciclo único de 256 KB, ou outra me- mória não volátil, de até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório estáticas (SRAM) de ciclo único de 32 KB, e uma memória só de leitura (ROM) carregada com software StellarisWareO, uma memó- ria programável e apagável eletricamente só de leitura (EEPROM) de 2 KB, um ou mais módulos de modulação por largura de pulso (PWM), uma ou mais análogos de entradas de codificador de quadratura (QElI), e/ou um ou mais conversores analógico para digital (ADC) de 12 bits com 12 canais de entrada analógica, cujos detalhes estão disponíveis para a folha de dados do produto.
[00168] Em um aspecto, o microcontrolador 461 pode compreender um controlador de segurança que compreende duas famílias à base de controladores, como TMS570 e RM4x conhecidas sob o nome co-
mercial de Hercules ARM Cortex R4, também disponíveis pela Texas Instruments. O controlador de segurança pode ser configurado especi- ficamente para as aplicações críticas de segurança IEC 61508 e ISO 26262, dentre outras, para fornecer recursos avançados de segurança integrada enquanto fornece desempenho, conectividade e opções de memória escalonáveis.
[00169] O microcontrolador 461 pode ser programado para realizar várias funções, como o controle preciso da velocidade e da posição dos sistemas de corte e de articulação. Em um aspecto, o microcontrolador 461 inclui um processador 462 e uma memória 468. O motor elétrico 482 pode ser um motor de corrente contínua (CC) escovado com uma caixa de câmbio e conexões mecânicas com um sistema de articulação ou bis- turi. Em um aspecto, um acionador de motor 492 pode ser um A3941 disponível junto à Allegro Microsystems, Inc. Outros acionadores de mo- tor podem ser prontamente substituídos para uso no sistema de rastrea- mento 480 que compreende um sistema de posicionamento absoluto. Uma descrição detalhada de um sistema de posicionamento absoluto é feita na publicação de pedido de patente US nº 2017/0296213, intitulada SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STA- PLING AND CUTTING INSTRUMENT, publicada em 19 de outubro de 2017, que está aqui incorporado a título de referência em sua totalidade.
[00170] O microcontrolador 461 pode ser programado para forne- cer controle preciso da velocidade e da posição dos membros de des- locamento e sistemas de articulação. O microcontrolador 461 pode ser configurado para computar uma resposta no software do micro- controlador 461. A resposta computada é comparada a uma resposta medida do sistema real para se obter uma resposta "observada", que é usada para as decisões reais baseadas na realimentação. A res- posta observada é um valor favorável e ajustado, que equilibra a na- tureza uniforme e contínua da resposta simulada com a resposta me-
dida, o que pode detectar influências externas no sistema.
[00171] Em um aspecto, o motor 482 pode ser controlado pelo acio- nador de motor 492 e pode ser usado pelo sistema de disparo do instru- mento ou ferramenta cirúrgica. Em várias formas, o motor 482 pode ser um motor de acionamento de corrente contínua (CC) escovado, com uma velocidade de rotação máxima de aproximadamente 25.000 RPM, por exemplo. Em outras disposições, o motor 482 pode incluir um motor sem escovas, um motor sem fio, um motor síncrono, um motor de passo ou qualquer outro tipo de motor elétrico adequado. O acionador de motor 492 pode compreender um acionador de ponte H que compreende tran- sístores de efeito de campo (FETs), por exemplo. O motor 482 pode ser alimentado por um conjunto de alimentação montado de modo liberável no conjunto de empunhadura ou compartimento da ferramenta para for- necer poder de controle para o instrumento ou ferramenta cirúrgica. O conjunto de alimentação pode compreender uma bateria que pode incluir várias células de bateria conectadas em série, as quais podem ser usa- das como a fonte de energia para energizar o instrumento ou ferramenta cirúrgica. Em determinadas circunstâncias, as células de bateria do con- junto de alimentação podem ser substituíveis e/ou recarregáveis. Em ao menos um exemplo, as células de bateria podem ser baterias de íons de lítio que podem ser acopláveis e separáveis do conjunto de alimentação.
[00172] O acionador de motor 492 pode ser um A3941, disponível junto à Allegro Microsystems, Inc. O acionador 492 A3941 é um con- trolador de ponte inteira para uso com transístores de efeito de cam- po de óxido de metal semicondutor (MOSFET) de potência externa, de canal N, especificamente projetados para cargas indutivas, como motores de corrente contínua escovados. O acionador 492 compre- ende um regulador de bomba de carga único que fornece acionamen- to de porta completo (>10 V) para baterias com tensão até 7 Ve permite que o A3941 opere com um acionamento de porta reduzido,
até 5,5 V. Um capacitor de comando de entrada pode ser empregado para fornecer a tensão ultrapassante à fornecida pela bateria neces- sária para os MOSFETs de canal N. Uma bomba de carga interna para o acionamento do lado de cima permite a operação em corrente contínua (100% ciclo de trabalho). A ponte inteira pode ser acionada nos modos de queda rápida ou lenta usando diodos ou retificação sincronizada. No modo de queda lenta, a recirculação da corrente pode se dar por meio de FET do lado de cima ou do lado de baixo. Os FETs de energia são protegidos do efeito shoot-through por meio de resistores com tempo morto programável. Os diagnósticos inte- grados fornecem indicação de subtensão, sobretemperatura e falhas na ponte de energia, podendo ser configurado para proteger os MOSFETs de potência na maioria das condições de curto-circuito. Outros acionadores de motor podem ser prontamente substituídos para uso no sistema de rastreamento 480 compreendendo um siste- ma de posicionamento absoluto.
[00173] O sistema de rastreamento 480 compreende uma disposi- ção de circuito de acionamento de motor controlado que compreende um sensor de posição 472 de acordo com um aspecto da presente re- velação. O sensor de posição 472 para um sistema de posicionamento absoluto fornece um sinal de posição único que corresponde à locali- zação de um membro de deslocamento. Em um aspecto, o membro de deslocamento representa um membro de acionamento longitudinal- mente móvel que compreende uma cremalheira de dentes de aciona- mento para engate engrenado com uma engrenagem de acionamento correspondente de um conjunto redutor de engrenagem. Em outros aspectos, o membro de deslocamento representa o membro de dispa- ro, que pode ser adaptado e configurado para incluir uma cremalheira de dentes de acionamento. Em ainda um outro aspecto, o membro de deslocamento representa a barra de disparo ou a viga com perfil em |,
cada uma das quais podendo ser adaptada e configurada para incluir uma cremalheira de dentes de acionamento.
Consequentemente, co- mo usado aqui, o termo "membro de deslocamento" é usado generi- camente para se referir a qualquer membro móvel do instrumento ou ferramenta cirúrgica, como o membro de acionamento, o membro de disparo, a barra de disparo, a viga com perfil em |, ou qualquer ele- mento que possa ser deslocado.
Em um aspecto, o membro de acio- namento longitudinalmente móvel é acoplado ao membro de disparo, à barra de disparo e à viga com perfil em |. Consequentemente, o siste- ma de posicionamento absoluto pode, com efeito, rastrear o desloca- mento linear da viga com perfil em | mediante o rastreamento do des- locamento linear do membro de acionamento longitudinalmente móvel.
Em vários outros aspectos, o membro de deslocamento pode ser aco- plado a qualquer sensor de posição 472 adequado para medir o deslo- camento linear.
Dessa forma, o membro de acionamento longitudinal- mente móvel, o membro de disparo, a barra de disparo ou a viga com perfil em |, ou combinações dos mesmos, podem ser acoplados a qualquer sensor de deslocamento adequado.
Os sensores de deslo- camento linear podem incluir sensores de deslocamento de contato ou sem contato.
Sensores de deslocamento linear podem compreender Transformadores Lineares Diferenciais Variáveis (LVDT), Transdutores Diferenciais de Relutância Variável (DVRT), um potenciômetro, um sis- tema de detecção magnético que compreende um magneto móvel e uma série linearmente disposta em Sensores de Efeito Hall, um siste- ma de detecção magnético que compreende um magneto fixo e uma série de móveis, dispostos linearmente em Sensores de Efeito Hall, um sistema de detecção óptico móvel que compreende uma fonte de luz móvel e uma série de fotodiodos ou fotodetectores linearmente dispostos, um sistema de detecção óptico que compreende uma fonte de luz fixa e uma série móvel de fotodiodos ou fotodetectores linear-
mente dispostos, ou qualquer combinação dos mesmos.
[00174] O motor elétrico 482 pode incluir um eixo de acionamento gi- ratório, que faz interface de modo operacional com um conjunto de en- grenagem, que está montado em engate de acoplamento com um con- junto ou cremalheira de dentes de acionamento no membro de aciona- mento. Um elemento sensor pode ser operacionalmente acoplado a um conjunto de engrenagem de modo que uma única revolução do elemento sensor de posição 472 corresponda à alguma translação longitudinal li- near do membro de deslocamento. Uma disposição de engrenagens e sensores pode ser conectada ao atuador linear por meio de uma disposi- ção de cremalheira e pinhão, ou de um atuador giratório, por meio de uma roda dentada ou outra conexão. Uma fonte de alimentação fornece energia para o sistema de posicionamento absoluto e um indicador de saída pode exibir a saída do sistema de posicionamento absoluto. O membro de acionamento representa o membro de acionamento longitu- dinalmente móvel que compreende uma cremalheira de dentes de acio- namento formada na mesma para engate engrenado com uma engrena- gem de acionamento correspondente do conjunto redutor de engrena- gem. O membro de deslocamento representa o membro de disparo longi- tudinalmente móvel, a barra de disparo, a viga com perfil em |, ou combi- nações dos mesmos.
[00175] Uma única revolução do elemento sensor associada ao sen- sor de posição 472 é equivalente a um deslocamento linear longitudinal d1 do membro do deslocamento, onde d1 é a distância linear longitudinal pela qual o membro de deslocamento se move do ponto "a" ao ponto "b" depois de uma única revolução do elemento sensor acoplado ao membro de deslocamento. A disposição do sensor pode ser conectada por meio de uma redução de engrenagem que resulta no sensor de posição 472 completando uma ou mais revoluções para o curso completo do membro de deslocamento. O sensor de posição 472 pode completar múltiplas re-
voluções para o curso completo do membro de deslocamento.
[00176] Uma série de chaves, onde n é um número inteiro maior que um, pode ser empregada sozinha ou em combinação com uma redução de engrenagem para fornecer um sinal de posição única para mais de uma revolução do sensor de posição 472. O estado das chaves é reali- mentado no microcontrolador 461 que aplica uma lógica para determi- nar um sinal de posição única correspondente ao deslocamento linear longitudinal d1 + d2 + ... da do membro de deslocamento. A saída do sensor de posição 472 é fornecida ao microcontrolador 461. Em várias modalidades, o sensor de posição 472 da disposição de sensor pode compreender um sensor magnético, um sensor giratório analógico, co- mo um potenciômetro, ou uma série de elementos de efeito Hall analó- gicos, que emitem uma combinação única de posição de sinais ou valo- res.
[00177] O sensor de posição 472 pode compreender qualquer núme- ro de elementos de detecção magnética, como, por exemplo, sensores magnéticos classificados de acordo com se eles medem o campo mag- nético total ou os componentes vetoriais do campo magnético. As técni- cas usadas para produzir ambos os tipos de sensores magnéticos abrangem muitos aspectos da física e da eletrônica. As tecnologias usa- das para a detecção de campo magnético incluem fluxômetro, fluxo satu- rado, bombeamento óptico, precessão nuclear, SQUID, efeito Hall, mag- netorresistência anisotrópica, magnetorresistência gigante, junções túnel magnéticas, magnetoimpedância gigante, compostos magnetostriti- vos/piezoelétricos, magnetodiodo, transístor magnético, fibra óptica, magneto-óptica e sensores magnéticos baseados em sistemas microele- tromecânicos, dentre outros.
[00178] Em um aspecto, o sensor de posição 472 para o sistema de rastreamento 480 que compreende um sistema de posicionamento abso- luto compreende um sistema de posicionamento absoluto giratório mag-
nético. O sensor de posição 472 pode ser implementado como um sen- sor de posição giratório, magnético, de circuito integrado único ASSOSSEQFT, disponível junto à Austria Microsystems, AG. O sensor de posição 472 fazer interface com o microcontrolador 461 para fornecer um sistema de posicionamento absoluto. O sensor de posição 472 é um componente de baixa tensão e baixa potência e inclui quatro elementos de efeito em uma área do sensor de posição 472 localizada acima de um imã. Um ADC de alta resolução e um controlador inteligente de gerenci- amento de potência são também fornecidos no circuito integrado. Um processador CORDIC (computador digital para rotação de coordenadas), também conhecido como o método dígito por dígito e algoritmo de Vol- der, é fornecido para implementar um algoritmo simples e eficiente para calcular funções hiperbólicas e trigonométricas que exigem apenas ope- rações de adição, subtração, deslocamento de bits e tabela de pesquisa. A posição do ângulo, os bits de alarme e as informações de campo mag- nético são transmitidos através de uma interface de comunicação serial padrão, como uma interface periférica serial (SPI), para o microcontrola- dor 461. O sensor de posição 472 fornece 12 ou 14 bits de resolução. O sensor de posição 472 pode ser um circuito integrado ASS5055 fornecido em um pequeno encapsulamento QFN de 16 pinos com dimensões de 4x4Xx0,85 mm.
[00179] O sistema de rastreamento 480 que compreende um siste- ma de posicionamento absoluto pode compreender e/ou ser programa- do para implementar um controlador de feedback, como um PID, feed- back de estado, e controlador adaptável. Uma fonte de alimentação converte o sinal do controlador de feedback em uma entrada física para o sistema, nesse caso a tensão. Outros exemplos incluem uma PWM de tensão, corrente e força. Outros sensores podem ser providenciados a fim de medir os parâmetros do sistema físico além da posição medida pelo sensor de posição 472. Em alguns aspectos, os outros sensores podem incluir disposições de sensor conforme aquelas descritas na pa- tente US nº 9.345.481 intitulada STAPLE CARTRIDGE TISSUE THI- CKNESS SENSOR SYSTEM, concedida em 24 de maio de 2016, que está incorporada por referência em sua totalidade neste documento; o pedido de patente US nº de série 2014/0263552, intitulado STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, publicado em 18 de setembro de 2014, está incorporado por referência em sua totali- dade neste documento; e o pedido de patente US nº de série 15/628.175, intitulado TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INS- TRUMENT, submetido em 20 de junho de 2017, está incorporado por referência em sua totalidade neste documento. Em um sistema de pro- cessamento de sinal digital, um sistema de posicionamento absoluto é acoplado a um sistema de captura de dados digitais onde a saída do sistema de posicionamento absoluto terá uma resolução e frequência de amostragem finitas. O sistema de posicionamento absoluto pode compreender um circuito de comparação e combinação para combinar uma resposta computada com uma resposta medida através do uso de algoritmos, como uma média ponderada e um laço de controle teórico, que acionam a resposta calculada em direção à resposta medida. À resposta computada do sistema físico considera as propriedades, como massa, inércia, atrito viscoso, resistência à indutância, etc., para prever quais serão os estados e saídas do sistema físico, sabendo-se a entra- da.
[00180] O sistema de posicionamento absoluto fornece um posicio- namento absoluto do membro deslocado sobre a ativação do instru- mento sem que seja preciso recolher ou avançar o membro de acio- namento longitudinalmente móvel para a posição de reinício (zero ou inicial), como pode ser requerido pelos codificadores convencionais giratórios que meramente contam o número de passos progressivos ou regressivos que o motor 482 percorreu para inferir a posição de um atuador dispositivo, barra de acionamento, bisturi, e congêneres.
[00181] Um sensor 474, como, por exemplo, um medidor de esforço ou um medidor de microesforço, está configurado para medir um ou mais parâmetros do atuador de extremidade, como, por exemplo, a amplitude do esforço exercido sobre a bigorna durante uma operação de preensão, que pode ser indicativa em relação à compressão do te- cido. O esforço medido é convertido em um sinal digital e fornecido ao processador 462. Alternativamente, ou em adição ao sensor 474, um sensor 476, como, por exemplo, um sensor de carga, pode medir a força de fechamento aplicada pelo sistema de acionamento de fecha- mento à bigorna. O sensor 476, como, por exemplo, um sensor de carga, pode medir a força de disparo aplicada a uma viga com perfil em | em um curso de disparo do instrumento ou ferramenta cirúrgica. A viga com perfil em | é configurada para engatar um deslizador em cunha, que é configurado para mover para cima os acionadores de grampos para forçar os grampos a se deformarem em contato com uma bigorna. A viga com perfil em | inclui um gume cortante afiado que pode ser utilizado para separar tecido, à medida que a viga com perfil em | é avançada distalmente pela barra de disparo. Alternativamente, um sensor de corrente 478 pode ser utilizado para medir a corrente drenada pelo motor 482. A força necessária para avançar o membro de disparo pode corresponder à corrente drenada pelo motor 482, por exemplo. A força medida é convertida em um sinal digital e fornecida ao processador 462.
[00182] Em uma forma, um sensor medidor de esforço 474 pode ser usado para medir a força aplicada ao tecido pelo atuador de extremida- de. Um medidor de esforço pode ser acoplado ao atuador de extremida- de para medir a força aplicada ao tecido que está sendo tratado pelo atuador de extremidade. Um sistema para medir forças aplicadas ao te-
cido preso pelo atuador de extremidade compreende um sensor medidor de esforço 474, como, por exemplo, um medidor de microesforço, que é configurado para medir um ou mais parâmetros do atuador de extremi- dade, por exemplo. Em um aspecto, o sensor medidor de esforço 474 pode medir a amplitude ou a magnitude da tensão mecânica exercida sobre um membro de garra de um atuador de extremidade durante uma operação de preensão, que pode ser indicativa da compressão do tecido. O esforço medido é convertido em um sinal digital e fornecido ao proces- sador 462 de um microcontrolador 461. Um sensor de carga 476 pode medir a força usada para operar o elemento cortante, por exemplo, para cortar o tecido capturado entre a bigorna e o cartucho de grampos. Um sensor de campo magnético pode ser usado para medir a espessura do tecido capturado. A medição do sensor de campo magnético também pode ser convertida em um sinal digital e fornecida ao processador 462.
[00183] As medições da compressão do tecido, da espessura do teci- do e/ou da força necessária para fechar o atuador de extremidade no te- cido, conforme respectivamente medido pelos sensores 474, 476, podem ser usadas pelo microcontrolador 461 para caracterizar a posição seleci- onada do membro de disparo e/ou o valor correspondente da velocidade do membro de disparo. Em um caso, uma memória 468 pode armazenar uma técnica, uma equação e/ou uma tabela de consulta que pode ser usada pelo microcontrolador 461 na avaliação.
[00184] O sistema de controle 470 do instrumento ou ferramenta ci- rúrgica também pode compreender circuitos de comunicação com fio ou sem fio para comunicação com o controlador central de comunicação modular mostrado nas Figuras 8 a 11.
[00185] A Figura 13 ilustra um circuito de controle 500 configurado para controlar aspectos do instrumento ou ferramenta cirúrgica de acor- do com um aspecto da presente revelação. O circuito de controle 500 pode ser configurado para implementar vários processos aqui descritos.
O circuito de controle 500 pode compreender um microcontrolador que compreende um ou mais processadores 502 (por exemplo, micropro- cessador, microcontrolador) acoplado a ao menos um circuito de memó- ria 504. O circuito de memória 504 armazena instruções executáveis em máquina que, quando executadas pelo processador 502, fazem com que o processador 502 execute instruções de máquina para implemen- tar vários dos processos aqui descritos. O processador 502 pode ser qualquer um dentre inúmeros processadores de apenas um núcleo ou multinúcleo conhecidos na técnica. O circuito de memória 504 pode compreender mídia de armazenamento volátil e não volátil. O proces- sador 502 pode incluir uma unidade de processamento de instruções 506 e uma unidade de aritmética 508. A unidade de processamento de instrução pode ser configurada para receber instruções a partir do cir- cuito de memória 504 da presente revelação.
[00186] A Figura 14 ilustra um circuito lógico combinacional 510 configurado para controlar aspectos do instrumento ou ferramenta cirúrgica de acordo com um aspecto da presente revelação. O circuito lógico combinacional 510 pode ser configurado para implementar vá- rios processos aqui descritos. O circuito lógico combinacional 510 pode compreender uma máquina de estado finito que compreende uma lógica combinacional 512 configurada para receber dados asso- ciados ao instrumento ou ferramenta cirúrgica em uma entrada 514, processar os dados pela lógica combinacional 512 e fornecer uma saída 516.
[00187] A Figura 15 ilustra um circuito lógico sequencial 520 configu- rado para controlar aspectos do instrumento ou ferramenta cirúrgica de acordo com um aspecto da presente revelação. O circuito lógico se- quencial 520 ou a lógica combinacional 522 pode ser configurado para implementar o processo aqui descrito. O circuito lógico sequencial 520 pode compreender uma máquina de estados finitos. O circuito lógico sequencial 520 pode compreender uma lógica combinacional 522, ao menos um circuito de memória 524, um relógio 529 e, por exemplo. O ao menos um circuito de memória 524 pode armazenar um estado atual da máquina de estados finitos. Em certos casos, o circuito lógico se- quencial 520 pode ser síncrono ou assíncrono. A lógica combinacional 522 é configurada para receber dados associados ao instrumento ou ferramenta cirúrgica de uma entrada 526, processar os dados pela lógi- ca combinacional 522, e fornecer uma saída 528. Em outros aspectos, o circuito pode compreender uma combinação de um processador (por exemplo, processador 502, Figura 13) e uma máquina de estados finitos para implementar vários processos da presente invenção. Em outros aspectos, a máquina de estados finitos pode compreender uma combi- nação de um circuito lógico combinacional (por exemplo, um circuito lógico combinacional 510, Figura 14) e o circuito lógico sequencial 520.
[00188] A Figura 16 ilustra um instrumento ou ferramenta cirúrgica que compreende uma pluralidade de motores que podem ser ativados para executar várias funções. Em certos casos, um primeiro motor pode ser ativado para executar uma primeira função, um segundo motor pode ser ativado para executar uma segunda função, um terceiro motor pode ser ativado para executar uma terceira função, um quarto motor pode ser ativado para executar uma quarta função, e assim por diante. Em certos casos, a pluralidade de motores do instrumento cirúrgico robótico 600 pode ser individualmente ativada para causar movimentos de disparo, fechamento, e/ou articulação no atuador de extremidade. Os movimentos de disparo, fechamento e/ou articulação podem ser transmitidos ao atua- dor de extremidade através de um conjunto de eixo de acionamento, por exemplo.
[00189] Em certos casos, o sistema de instrumento ou ferramenta cirúrgica pode incluir um motor de disparo 602. O motor de disparo 602 pode ser operacionalmente acoplado a um conjunto de aciona-
mento do motor de disparo 604, o qual pode ser configurado para transmitir movimentos de disparo gerados pelo motor 602 ao atuador de extremidade, e, em particular, para deslocar o elemento da viga com perfil em |. Em certos casos, os movimentos de disparo gerados pelo motor de disparo 602 podem fazer com que os grampos sejam posicionados a partir do cartucho de grampos no tecido capturado pelo atuador de extremidade e/ou pelo gume cortante do elemento de viga com perfil em | para ser avançado a fim de cortar o tecido capturado, por exemplo. O elemento de viga com perfil em | pode ser retraído in- vertendo-se a direção do motor 602.
[00190] Em certos casos, o instrumento ou ferramenta cirúrgica pode incluir um motor de fechamento 603. O motor de fechamento 603 pode ser operacionalmente acoplado a um conjunto de acionamento do motor de fechamento 605 que pode ser configurado para transmitir movimentos de fechamento, gerados pelo motor 603 ao atuador de extremidade, par- ticularmente para deslocar um tubo de fechamento para fechar a bigorna e comprimir o tecido entre a bigorna e o cartucho de grampos. Os movi- mentos de fechamento podem fazer com que o atuador de extremidade transicione de uma configuração aberta para uma configuração aproxi- mada para capturar o tecido, por exemplo. O atuador de extremidade pode ser transicionado para uma posição aberta invertendo-se a direção do motor 603.
[00191] Em certos casos, o instrumento ou ferramenta cirúrgica pode incluir um ou mais motores de articulação 606a, 606b, por exemplo. Os motores 606a, 606b podem ser operacionalmente aco- plados aos conjuntos de acionamento do motor de articulação 608a, 608b, que podem ser configurados para transmitir movimentos de ar- ticulação gerados pelos motores 606a, 606b ao atuador de extremi- dade. Em certos casos, os movimentos de articulação podem fazer com que o atuador de extremidade seja articulado em relação ao con-
junto de eixo de acionamento, por exemplo.
[00192] Conforme descrito acima, o instrumento ou ferramenta ci- rúrgica pode incluir uma pluralidade de motores que podem ser confi- gurados para executar várias funções independentes. Em certos ca- sos, a pluralidade de motores do instrumento ou ferramenta cirúrgica pode ser ativada individualmente ou separadamente para executar uma ou mais funções, enquanto outros motores permanecem inativos. Por exemplo, os motores de articulação 606a, 606b podem ser ativa- dos para fazer com que o atuador de extremidade seja articulado, en- quanto o motor de disparo 602 permanece inativo. Alternativamente, o motor de disparo 602 pode ser ativado para disparar a pluralidade de grampos, e/ou avançar o gume cortante, enquanto o motor de articula- ção 606 permanece inativo. Além disso, o motor de fechamento 603 pode ser ativado simultaneamente com o motor de disparo 602 para fazer com que o tubo de fechamento e o elemento de viga com perfil em | avancem distalmente, conforme descrito em mais detalhes mais adiante neste documento.
[00193] Em certos casos, o instrumento ou ferramenta cirúrgica po- de incluir um módulo de controle comum 610 que pode ser usado com uma pluralidade de motores do instrumento ou ferramenta cirúrgica. Em certos casos, o módulo de controle comum 610 pode acomodar um dentre a pluralidade de motores de cada vez. Por exemplo, o mó- dulo de controle comum 610 pode ser acoplável à e separável da plu- ralidade de motores do instrumento cirúrgico robótico individualmente. Em certos casos, uma pluralidade dos motores do instrumento ou fer- ramenta cirúrgica pode compartilhar um ou mais módulos de controle comuns, como o módulo de controle comum 610. Em certos casos, uma pluralidade de motores do instrumento ou ferramenta cirúrgica pode ser individualmente e seletivamente engatada ao módulo de con- trole comum 610. Em certos casos, o módulo de controle comum 610 pode ser seletivamente chaveado entre fazer interface com um dentre uma pluralidade de motores do instrumento ou ferramenta cirúrgica para fazer interface com um outro dentre a pluralidade de motores do instrumento ou ferramenta cirúrgica.
[00194] Em ao menos um exemplo, o módulo de controle comum 610 pode ser seletivamente chaveado entre o engate operacional com os mo- tores de articulação 606a, 606B, e o engate operacional com o motor de disparo 602 ou o motor de fechamento 603. Em ao menos um exemplo, conforme ilustrado na Figura 16, uma chave 614 pode ser movida ou transicionada entre uma pluralidade de posições e/ou estados. Na primei- ra posição 616, a chave 614 pode acoplar eletricamente o módulo de controle comum 610 ao motor de disparo 602; em uma segunda posição 617, a chave 614 pode acoplar eletricamente o módulo de controle 610 ao motor de fechamento 603; em uma terceira posição 618a, a chave 614 pode acoplar eletricamente o módulo de controle comum 610 ao primeiro motor de articulação 606a; e em uma quarta posição 618b, a chave 614 pode acoplar eletricamente o módulo de controle comum 610 ao segundo motor de articulação 606b, por exemplo. Em certos casos, módulos de controle comum 610 separados podem ser acoplados eletri- camente ao motor de disparo 602, ao motor de fechamento 603, e aos motores de articulação 606a, 606b ao mesmo tempo. Em certos casos, a chave 614 pode ser uma chave mecânica, uma chave eletromecânica, uma chave em estado sólido ou qualquer mecanismo de chaveamento adequado.
[00195] Cada um dentreos motores 602, 603, 606a, 606b pode com- preender um sensor de torque para medir o torque de saída no eixo de acionamento do motor. A força em um atuador de extremidade pode ser detectada de qualquer maneira convencional, como por meio de senso- res de força nos lados exteriores das garras ou por um sensor de torque do motor que aciona as garras.
[00196] Em vários casos, conforme ilustrado na Figura 16, o módu- lo de controle comum 610 pode compreender um acionador de motor 626 que pode compreender um ou mais FETs H-Bridge. O acionador do motor 626 pode modular a energia transmitida a partir de uma fon- te de alimentação 628 a um motor acoplado ao módulo de controle comum 610, com base em uma entrada proveniente de um microcon- trolador 620 (o "controlador"), por exemplo. Em certos casos, o mi- crocontrolador 620 pode ser usado para determinar a corrente drena- da pelo motor, por exemplo, enquanto o motor está acoplado ao mó- dulo de controle comum 610, conforme descrito acima.
[00197] Em certos exemplos, o microcontrolador 620 pode incluir um microprocessador 622 (o "processador") e uma ou mais mídias legíveis por computador não transitórias ou unidades de memória 624 (a "memó- ria"). Em certos casos, a memória 624 pode armazenar várias instruções de programa que, quando executadas, podem fazer com que o proces- sador 622 execute uma pluralidade de funções e/ou cálculos aqui descri- tos. Em certos casos, uma ou mais dentre as unidades de memória 624 podem ser acopladas ao processador 622, por exemplo.
[00198] Em certos casos, a fonte de alimentação 628 pode ser usada para fornecer energia ao microcontrolador 620, por exemplo. Em certos casos, a fonte de energia 628 pode compreender uma ba- teria (ou "pacote de bateria" ou "fonte de energia"), como uma bateria de íons de Li, por exemplo. Em certos casos, o pacote de bateria po- de ser configurado para ser montado de modo liberável à empunha- dura para fornecer energia ao instrumento cirúrgico 600. Várias célu- las de bateria conectadas em série podem ser usadas como a fonte de energia 628. Em certos casos, a fonte de energia 628 pode ser substituível e/ou recarregável, por exemplo.
[00199] Em vários casos, o processador 622 pode controlar o aciona- dor do motor 626 para controlar a posição, a direção de rotação e/ou a velocidade de um motor que está acoplado ao módulo de controle co- mum 610. Em certos casos, o processador 622 pode sinalizar ao aciona- dor do motor 626 para parar e/ou desativar um motor que esteja acopla- do ao módulo de controle comum 610. Deve-se compreender que o ter- mo "processador", conforme usado aqui, inclui qualquer microprocessa- dor, microcontrolador ou outro dispositivo de computação básica ade- quado que incorpora as funções de uma unidade de processamento cen- tral de computador (CPU) em um circuito integrado ou, no máximo, al- guns circuitos integrados. O processador é um dispositivo programável multiuso que aceita dados digitais como entrada, as processa de acordo com instruções armazenadas na sua memória, e fornece resultados co- mo saída. Este é um exemplo de lógica digital sequencial, já que ele tem memória interna. Os processadores operam em números e símbolos re- presentados no sistema binário de numerais.
[00200] Em um exemplo, o processador 622 pode ser qualquer pro- cessador de núcleo único ou de múltiplos núcleos, como aqueles conhe- cidos pelo nome comercial de ARM Cortex da Texas Instruments. Em certos casos, o microcontrolador 620 pode ser um LM 4F230H5QR, dis- ponível junto à Texas Instruments, por exemplo. Em ao menos um exemplo, o LM4F230H5QR da Texas Instruments é um núcleo proces- sador ARM Cortex-M4F que compreende uma memória integrada do tipo flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma SRAM de ciclo único de 32 KB, uma ROM interna carregada com o software StellarisWareOQ, EEPROM de 2 KB, um ou mais módulos de PWM, um ou mais análogos de QEI, um ou mais ADCs de 12 bits com 12 canais de entrada analógica, dentre outros recursos que são prontamente disponíveis para a folha de dados do produto. Outros micro- controladores podem ser prontamente substituídos para uso com o mó- dulo 4410. Consequentemente, a presente revelação não deve ser limi-
tada nesse contexto.
[00201] Em certos casos, a memória 624 pode incluir instruções de programa para controlar cada um dos motores do instrumento cirúrgico 600 que são acopláveis ao módulo de controle comum 610. Por exem- plo, a memória 624 pode incluir instruções de programa para controlar o motor de disparo 602, o motor de fechamento 603 e os motores de articulação 606a, 606b. Tais instruções de programa podem fazer com que o processador 622 controle as funções de disparo, fechamento e articulação de acordo com as entradas a partir dos algoritmos ou pro- gramas de controle do instrumento ou ferramenta cirúrgica.
[00202] Em certos casos, um ou mais mecanismos e/ou sensores como, por exemplo, sensores 630, podem ser utilizados para alertar o processador 622 quanto às instruções de programa que precisam ser utilizadas em uma configuração específica. Por exemplo, os sensores 630 podem alertar o processador 622 para usar as instruções de pro- grama associadas ao disparo, fechamento e articulação do atuador de extremidade. Em certos casos, os sensores 630 podem compreender sensores de posição que podem ser utilizados para detectar a posição da chave 614, por exemplo. Consequentemente, o processador 622 pode usar as instruções de programa associadas ao disparo da viga com perfil em | do atuador de extremidade mediante a detecção, através dos sen- sores 630, por exemplo, de que a chave 614 está na primeira posição 616; o processador 622 pode usar as instruções de programa associadas ao fechamento da bigorna mediante detecção através dos sensores 630, por exemplo, de que a chave 614 está na segunda posição 617; e o pro- cessador 622 pode usar as instruções de programa associadas com a articulação do atuador de extremidade mediante detecção através dos sensores 630, por exemplo, que a chave 614 está na terceira ou quarta posição 618a, 618b.
[00203] A Figura 17 é um diagrama esquemático de um instrumento cirúrgico robótico 700 configurado para operar uma ferramenta cirúrgica descrita neste documento, de acordo com um aspecto dessa revelação. O instrumento cirúrgico robótico 700 pode ser programado ou configura- do para controlar a translação distal/proximal de um membro de deslo- camento, o deslocamento distal/proximal de um tubo de fechamento, a rotação do eixo de acionamento, e articulação, quer com um único tipo ou múltiplos enlaces de acionamento de articulação. Em um aspecto, o instrumento cirúrgico 700 pode ser programado ou configurado para con- trolar individualmente um membro de disparo, um membro de fechamen- to, um membro de eixo de acionamento e/ou um ou mais membros de articulação. O instrumento cirúrgico 700 compreende um circuito de con- trole 710 configurado para controlar membros de disparo acionados por motor, membros de fechamento, membros de eixo de acionamento e/ou um ou mais membros de articulação.
[00204] Em um aspecto, o instrumento cirúrgico robótico 700 compre- ende um circuito de controle 710 configurado para controlar uma bigorna 716 e uma porção de viga com perfil em | 714 (incluindo um gume cor- tante afiado) de um atuador de extremidade 702, um cartucho de gram- pos 718 removível, um eixo de acionamento 740 e um ou mais membros de articulação 742a, 742b através de uma pluralidade de motores 704a a 704e. Um sensor de posição 734 pode ser configurado para fornecer re- troinformação sobre a viga com perfil em | 714 ao circuito de controle
710. Outros sensores 738 podem ser configurados para fornecer retroin- formação ao circuito de controle 710. Um temporizador/contador 731 for- nece informações de temporização e contagem ao circuito de controle
710. Uma fonte de energia 712 pode ser fornecida para operar os moto- res 704a a 704e e um sensor de corrente 736 fornece retroinformação de corrente do motor ao circuito de controle 710. Os motores 704a a 704e podem ser operados individualmente pelo circuito de controle 710 em um controle de retroinformação de circuito aberto ou circuito fechado.
[00205] Em um aspecto, o circuito de controle 710 pode compreen- der um ou mais microcontroladores, microprocessadores ou outros processadores adequados para executar instruções que fazem com que o processador ou processadores executem uma ou mais tarefas. Em um aspecto, um temporizador/contador 731 fornece ao circuito de controle 710 um sinal de saída, como o tempo decorrido ou uma con- tagem digital, para correlacionar a posição da viga com perfil em | 714, conforme determinado pelo sensor de posição 734, com a saída do temporizador/contador 731 de modo que o circuito de controle 710 possa determinar a posição da viga com perfil em 1 714 em um tempo específico (t) em relação a uma posição inicial ou ao tempo (t) quando a viga com perfil em | 714 está em uma posição específica em relação a uma posição inicial. O temporizador/contador 731 pode ser configu- rado para medir o tempo decorrido, contar eventos externos ou cro- nometrar eventos eternos.
[00206] Em um aspecto, o circuito de controle 710 pode ser progra- mado para controlar funções do atuador de extremidade 702 com base em uma ou mais condições do tecido. O circuito de controle 710 pode ser programado para detectar direta ou indiretamente as condições do teci- do, como espessura, conforme descrito aqui. O circuito de controle 710 pode ser programado para selecionar um programa de controle de dispa- ro ou programa de controle de fechamento com base nas condições do tecido. Um programa de controle de disparo pode descrever o movimen- to distal do membro de deslocamento. Diferentes programas de controle de disparo podem ser selecionados para melhor tratar as diferentes con- dições do tecido. Por exemplo, quando um tecido mais espesso está pre- sente, o circuito de controle 710 pode ser programado para transladar o membro de deslocamento a uma velocidade inferior e/ou com potência mais baixa. Quando um tecido mais fino está presente, o circuito de con- trole 710 pode ser programado para transladar o membro de desloca-
mento a uma velocidade mais alta e/ou com maior potência. Um progra- ma de controle de fechamento pode controlar a força de fechamento aplicada ao tecido pela bigorna 716. Outros programas de controle con- trolam a rotação do eixo de acionamento 740 e dos membros de articula- ção 742a, 742b.
[00207] Em um aspecto, o circuito de controle de motor 710 pode gerar sinais de ponto de ajuste do motor. Os sinais de ponto de ajuste do motor podem ser fornecidos para vários controladores de motor 708a a 708e. Os controladores de motor 708a a 708e podem compre- ender um ou mais circuitos configurados para fornecer sinais de acio- namento do motor para os motores 704a a 704e de modo a acionar os motores 704a a 704e, conforme descrito aqui. Em alguns exemplos, os motores 704a a 704e podem ser motores elétricos de corrente contí- nua com escovas. Por exemplo, a velocidade dos motores 704a a 704e pode ser proporcional aos respectivos sinais de acionamento do motor. Em alguns exemplos, os motores 704a a 704e podem ser moto- res elétricos CC sem escovas, e os respectivos sinais de acionamento do motor podem compreender um sinal PWM fornecido para um ou mais enrolamentos de estator dos motores 704a a 704e. Além disso, em alguns exemplos, os controladores de motor 708a a 708e podem ser omiítidos e o circuito de controle 710 pode gerar diretamente os si- nais de acionamento do motor.
[00208] Em um aspecto, o circuito de controle 710 pode operar inici- almente cada um dentre os motores 704a a 704e em uma configuração de circuito aberto para uma primeira porção de circuito aberto do curso do membro de deslocamento. Com base na resposta do instrumento ci- rúrgico robótico 700 durante a porção de circuito aberto do curso, o cir- cuito de controle 710 pode selecionar um programa de controle de dispa- ro em uma configuração de circuito fechado. A resposta do instrumento pode incluir uma tradução da distância do membro de deslocamento du-
rante a porção de circuito aberto, um tempo decorrido durante a porção de circuito aberto, a energia fornecida a um dos motores 704a a 704e durante a porção de circuito aberto, uma soma de larguras de pulso de um sinal de acionamento de motor, etc. Após a porção de circuito aberto, o circuito de controle 710 pode implementar o programa de controle de disparo selecionado para uma segunda porção do curso do membro de deslocamento. Por exemplo, durante uma porção do curso de circuito fechado, o circuito de controle 710 pode modular um dos motores 704a a 704e com base na translação dos dados que descrevem uma posição do membro de deslocamento em circuito fechado para transladar o membro de deslocamento a uma velocidade constante.
[00209] Em um aspecto, os motores 704a a 704e podem receber energia de uma fonte de energia 712. A fonte de energia 712 pode ser uma fonte de energia CC acionada por uma fonte de alimentação de corrente principal alternada, uma bateria, um super capacitor, ou qualquer outra fonte de energia adequada. Os motores 704a a 704e podem ser mecanicamente acoplados a elementos mecânicos indivi- duais móveis como a viga com perfil em | 714, a bigorna 716, o eixo de acionamento 740, a articulação 742a e a articulação 742b, através das respectivas transmissões 706a a 706e. As transmissões 706a a 706e podem incluir uma ou mais engrenagens ou outros componen- tes de ligação para acoplar os motores 704a a 704e aos elementos mecânicos móveis. Um sensor de posição 734 pode detectar uma posição da viga com perfil em | 714. O sensor de posição 734 pode ser ou pode incluir qualquer tipo de sensor que seja capaz de gerar dados de posição que indicam uma posição da viga com perfil em |
714. Em alguns exemplos, o sensor de posição 734 pode incluir um codificador configurado para fornecer uma série de pulsos ao circuito de controle 710 conforme a viga com perfil em | 714 translada distal e proximalmente. O circuito de controle 710 pode rastrear os pulsos para determinar a posição da viga com perfil em | 714. Outros senso- res de posição adequados podem ser usados, incluindo, por exemplo, um sensor de proximidade. Outros tipos de sensores de posição po- dem fornecer outros sinais que indiquem o movimento da viga com perfil em | 714. Além disso, em alguns exemplos, o sensor de posição 734 pode ser omitido. No caso de qualquer um dentre os motores 704a a 704e ser um motor de passo, o circuito de controle 710 pode rastrear a posição da viga com perfil em | 714 ao agregar o número e a direção das etapas que o motor 704 foi instruído a executar. O sen- sor de posição 734 pode estar situado no atuador de extremidade 702 ou em qualquer outra porção do instrumento. As saídas de cada um dos motores 704a a 704e incluem um sensor de torque 744a a 744e para detectar força e têm um codificador para detectar a rotação do eixo de acionamento.
[00210] Em um aspecto, o circuito de controle 710 é configurado para acionar um membro de disparo como a porção da viga com perfil em | 714 do atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708a, o qual for- nece um sinal de acionamento para o motor 704a. O eixo de acionamen- to de saída do motor 704a é acoplado a um sensor de torque 744a. O sensor de torque 744a é acoplado a uma transmissão 706a que é aco- plada à viga com perfil em | 714. A transmissão 706a compreende ele- mentos mecânicos móveis, como elementos rotativos, e um membro de disparo para controlar distal e proximalmente o movimento da viga com perfil em 1 714 ao longo de um eixo geométrico longitudinal do atuador de extremidade 702. Em um aspecto, o motor 704a pode ser acoplado ao conjunto de engrenagem de faca, que inclui um conjunto de redução de engrenagem de faca que inclui uma primeira engrenagem de acionamen- to de faca e uma segunda engrenagem de acionamento de faca. Um sensor de torque 744a fornece um sinal de retroinformação da força de disparo para o circuito de controle 710. O sinal de força de disparo repre- senta a força necessária para disparar ou deslocar a viga com perfil em |
714. Um sensor de posição 734 pode ser configurado para fornecer a posição da viga com perfil em | 714 ao longo do curso de disparo ou da posição do membro de disparo como um sinal de retroinformação ao cir- cuito de controle 710. O atuador de extremidade 702 pode incluir senso- res adicionais 738 configurados para fornecer sinais de retroinformação para o circuito de controle 710. Quando pronto para uso, o circuito de controle 710 pode fornecer um sinal de disparo ao controle do motor 708a. Em resposta ao sinal de disparo, o motor 704a pode acionar o membro de disparo distalmente ao longo do eixo geométrico longitudinal do atuador de extremidade 702 a partir de uma posição proximal inicial do curso para uma posição distal terminal do curso em relação à posição inicial de curso. À medida que o membro de deslocamento translada dis- talmente, uma viga com perfil em | 714 com um elemento de corte posi- cionado em uma extremidade distal avança distalmente para cortar o te- cido situado entre o cartucho de grampos 718 e a bigorna 716.
[00211] Em um aspecto, o circuito de controle 710 é configurado para acionar um membro de fechamento, como a porção de bigorna 716 do atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708b, que fornece um sinal de acionamento para o motor 704b. O eixo de saída do motor 704b é acoplado a um sensor de torque 744b. O sensor de torque 744b é aco- plado a uma transmissão 706b que é acoplada à bigorna 716. A trans- missão 706b compreende elementos mecânicos móveis, como elemen- tos rotativos e um membro de fechamento, para controlar o movimento da bigorna 716 entre as posições aberta e fechada. Em um aspecto, o motor 704b é acoplado a um conjunto de engrenagem de fechamento, que inclui um conjunto de engrenagem de redução de fechamento que é suportado em engate engrenado com a roda dentada de fechamento. O sensor de torque 744b fornece um sinal de retroinformação de força de fechamento para o circuito de controle 710. O sinal de retroinformação de força de fechamento representa a força de fechamento aplicada à bigor- na 716. O sensor de posição 734 pode ser configurado para fornecer a posição do membro de fechamento como um sinal de retroinformação para o circuito de controle 710. Sensores adicionais 738 no atuador de extremidade 702 podem fornecer o sinal de retroinformação de força de fechamento para o circuito de controle 710. A bigorna pivotante 716 é posicionada oposta ao cartucho de grampos 718. Quando pronto para uso, o circuito de controle 710 pode fornecer um sinal de fechamento ao controle do motor 708b. Em resposta ao sinal de fechamento, o motor 704b avança um membro de fechamento para prender o tecido entre a bigorna 716 e o cartucho de grampos 718.
[00212] Em um aspecto, o circuito de controle 710 é configurado para girar um membro de eixo de acionamento, como o eixo de acio- namento 740, para girar o atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708c, que fornece um sinal de acionamento para o motor 704c. O eixo de saída do motor 704c é acoplado a um sensor de tor- que 744c. O sensor de torque 744c é acoplado a uma transmissão 706c que é acoplada ao eixo 740. A transmissão 706c compreende elementos mecânicos móveis, como elementos rotativos, para contro- lar a rotação do eixo de acionamento 740 no sentido horário ou no sentido anti-horário até e acima de 360º. Em um aspecto, o motor 704c é acoplado ao conjunto de transmissão giratório, que inclui um segmento de engrenagem de tubo que é formado sobre (ou fixado a) a extremidade proximal do tubo de fechamento proximal para engate operável por um conjunto de engrenagem rotacional que é suportado operacionalmente na placa de montagem de ferramenta. O sensor de torque 744c fornece um sinal de retroinformação de força de rotação para o circuito de controle 710. O sinal de retroinformação da força de rotação representa a força de rotação aplicada ao eixo de aciona- mento 740. O sensor de posição 734 pode ser configurado para for- necer a posição do membro de fechamento como um sinal de retroin- formação para o circuito de controle 710. Sensores adicionais 738, como um codificador de eixo de acionamento, podem fornecer a po- sição rotacional do eixo de acionamento 740 para o circuito de con- trole 710.
[00213] Emum aspecto, o circuito de controle 710 é configurado para articular o atuador de extremidade 702. O circuito de controle 710 fornece um ponto de ajuste do motor para um controle do motor 708d, que forne- ce um sinal de acionamento para o motor 704d. O eixo de saída do motor 704d é acoplado a um sensor de torque 744d. O sensor de torque 744d é acoplado a uma transmissão 706d que é acoplada a um membro de arti- culação 742a. A transmissão 706d compreende elementos mecânicos móveis, como elementos de articulação, para controlar a articulação do atuador de extremidade 702 + 65º. Em um aspecto, o motor 704d é aco- plada a uma porca de articulação, que é assentada de modo giratório sobre a porção de extremidade proximal da porção de coluna distal e é acionada de modo giratória na mesma por um conjunto de engrenagem de articulação. O sensor de torque 744d fornece um sinal de retroinfor- mação da força de articulação para o circuito de controle 710. O sinal de retroinformação da força de articulação representa a força de articulação aplicada ao atuador de extremidade 702. Os sensores 738, como um co- dificador de articulação, pode fornecer a posição de articulação do atua- dor de extremidade 702 para o circuito de controle 710.
[00214] Em um outro aspecto, a função de articulação do sistema cirúrgico robótico 700 pode compreender dois membros de articulação, ou ligações, 742a, 742b. Esses membros de articulação 742a, 742b são acionados por discos separados na interface do robô (a cremalhei-
7T4/176 ra), que são acionados pelos dois motores 708d, 708e. Quando o mo- tor de disparo separado 704a é fornecido, cada ligação de articulação 742a, 742b pode ser antagonicamente acionada em relação à outra ligação para fornecer um movimento de retenção resistivo e uma carga à cabeça quando ela não está se movendo e para fornecer um movi- mento de articulação quando a cabeça é articulada. Os membros de articulação 742a, 742b se fixam à cabeça em um raio fixo quando a cabeça é girada. Consequentemente, a vantagem mecânica do link de empurrar e puxar se altera quando a cabeça é girada. Esta alteração na vantagem mecânica pode ser mais pronunciada com outros siste- mas de acionamento da ligação de articulação.
[00215] Emum aspecto, o um ou mais motores 704a a 704e podem compreender um motor CC escovado com uma caixa de câmbio e li- gações mecânicas a um membro de disparo, membro de fechamento ou membro de articulação. Um outro exemplo inclui motores elétricos 704a a 704e que operam os elementos mecânicos móveis como o membro de deslocamento, as ligações de articulação, o tubo de fe- chamento e o eixo de acionamento. Uma influência externa é uma in- fluência desmedida e imprevisível de coisas como tecido, corpos cir- cundantes, e atrito no sistema físico. Essa influência externa pode ser chamada de arrasto, que age em oposição a um dos motores elétricos 704a a 704e. A influência externa, como o arrasto, pode fazer com que o funcionamento do sistema físico se desvie de uma operação deseja- da do sistema físico.
[00216] Em um aspecto, o sensor de posição 734 pode ser imple- mentado como um sistema de posicionamento absoluto. Em um aspec- to, o sensor de posição 734 pode compreender um sistema de posicio- namento magnético giratório absoluto implementado como um sensor de posição magnético giratório de circuito integrado único ASSOSSEQFT, disponível junto à Austria Microsystems, AG. O sensor de posição 734 pode fazer interface com o circuito de controle 710 para fornecer um sistema de posicionamento absoluto. A posição pode incluir elementos de efeito Hall múltiplos localizados acima de um magneto e acoplado a um processador CORDIC, também conhecido como o mé- todo dígito por dígito e algoritmo de Volder, que é fornecido para imple- mentar um algoritmo simples e eficiente para calcular funções hiperbóli- cas e trigonométricas que exigem apenas operações de adição, subtra- ção, deslocamento de bits e tabela de pesquisa.
[00217] Emum aspecto, o circuito de controle 710 pode estar em co- municação com um ou mais sensores 738. Os sensores 738 podem ser posicionados no atuador de extremidade 702 e adaptados para funcionar com o instrumento cirúrgico robótico 700 para medir a vários parâmetros derivados como a distância de vão em relação ao tempo, a compressão do tecido em relação ao tempo, e deformação da bigorna em relação ao tempo. Os sensores 738 podem compreender um sensor magnético, um sensor de campo magnético, um medidor de esforço, uma célula de car- ga, um sensor de pressão, um sensor de força, um sensor de torque, um sensor indutivo como um sensor de corrente parasita, um sensor resisti- vo, um sensor capacitivo, um sensor óptico e/ou qualquer outro sensor adequado para medir um ou mais parâmetros do atuador de extremidade
702. Os sensores 738 podem incluir um ou mais sensores. Os sensores 738 podem estar situados na plataforma do cartucho de grampos 718 para determinar a localização do tecido com o uso de eletrodos segmen- tados. Os sensores de torque 744a a 744e podem ser configurados para detectar força como força de disparo, força de fechamento, e/ou força de articulação, entre outros. Consequentemente, o circuito de controle 710 pode detectar (1) a carga de fechamento experimentada pelo tubo de fechamento distal e sua posição, (2) o membro de disparo na cremalheira e sua posição, (3) qual porção do cartucho de grampos 718 tem tecido na mesma, e (4) a carga e a posição em ambas as hastes de articulação.
[00218] Em um aspecto, o um ou mais sensores 738 podem com- preender um medidor de esforço como, por exemplo, um medidor de microesforço, configurado para medir a magnitude do esforço na bi- gorna 716 durante uma condição pinçada. O medidor de tensão forne- ce um sinal elétrico cuja amplitude varia com a magnitude da tensão. Os sensores 738 podem compreender um sensor de pressão configu- rado para detectar uma pressão gerada pela presença de tecido com- primido entre a bigorna 716 e o cartucho de grampos 718. Os senso- res 738 podem ser configurados para detectar a impedância de uma seção de tecido situada entre a bigorna 716 e o cartucho de grampos 718 que é indicativa da espessura e/ou da completude do tecido situa- do entre os mesmos.
[00219] Em um aspecto, os sensores 738 podem ser implementa- das como uma ou mais chaves de limite, dispositivos eletromecânicos, chaves de estado sólido, dispositivos de efeito Hall, dispositivos mag- neto-resistivos (MR) dispositivos magneto-resistivos gigantes (GMR), magnetômetros, entre outros. Em outras implementações, os sensores 738 podem ser implementados como chaves de estado sólido que operam sob a influência da luz, como os sensores ópticos, sensores de infravermelho, sensores de ultravioleta, dentre outros. Além disso, as chaves podem ser dispositivos de estado sólido como transístores (por exemplo, FET, FET de junção, MOSFET, bipolar e similares). Em outras implementações, os sensores 738 podem incluir chaves elétri- cas sem condutor, chaves ultrassônicas, acelerômetros e sensores de inércia, entre outros.
[00220] Em um aspecto, os sensores 738 podem ser configurados para medir as forças exercidas sobre a bigorna 716 pelo sistema de acionamento de fechamento. Por exemplo, um ou mais sensores 738 podem estar em um ponto de interação entre o tubo de fechamento e a bigorna 716 para detectar as forças de fechamento aplicadas pelo tubo
TTIINT6 de fechamento na bigorna 716. As forças exercidas sobre a bigorna 716 podem ser representativas da compressão do tecido experimentada pe- la seção de tecido capturada entre a bigorna 716 e o cartucho de gram- pos 718. O um ou mais sensores 738 podem ser posicionados em vá- rios pontos de interação ao longo do sistema de acionamento de fe- chamento para detectar as forças de fechamento aplicadas à bigorna 716 pelo sistema de acionamento de fechamento. O um ou mais senso- res 738 podem ser amostrados em tempo real pelo processador do cir- cuito de controle 710 durante uma operação de preensão. O circuito de controle 710 recebe medições de amostra em tempo real para fornecer e analisar informações baseadas em tempo e avaliar, em tempo real, as forças de fechamento aplicadas à bigorna 716.
[00221] Em um aspecto, um sensor de corrente 736 pode ser usado para medir a corrente drenada por cada um dos motores 704a a 704e. A força necessária para avançar qualquer dos elementos mecânicos móveis como a viga com perfil em | 714 corresponde à corrente drena- da por um dos motores 704a a 704e. A força é convertida em um sinal digital e fornecida ao circuito de controle 710. O circuito de controle 710 pode ser configurado para simular a resposta do sistema real do instru- mento no software do controlador. Um membro de deslocamento pode ser atuado para mover uma viga com perfil em | 714 no atuador de ex- tremidade 702 em ou próximo a uma velocidade-alvo. O instrumento cirúrgico robótico 700 pode incluir um controlador de retroinformação, que pode ser um ou qualquer dos controladores de retroinformação, incluindo, mas não se limitando a, um controlador PID, retroinformação de estado, quadrático linear (LOR) e/ou um controlador adaptável, por exemplo. O instrumento cirúrgico robótico 700 pode incluir uma fonte de energia para converter o sinal do controlador de retroinformação em uma entrada física como tensão do estojo, tensão PWM, tensão modu- lada por frequência, corrente, torque e/ou força, por exemplo. Detalhes adicionais são revelados no pedido de patente US nº de série 15/636.829, intitulado CLOSED LOOP VELOCITY CONTROL TECH- NIQUES FOR ROBOTIC SURGICAL INSTRUMENT, depositado em 29 de junho de 2017, que está aqui incorporado a título de referência em sua totalidade.
[00222] A Figura 18 ilustra um diagrama de bloco de um instru- mento cirúrgico 750 programado para controlar a translação distal de um membro de deslocamento de acordo com um aspecto da presente revelação. Em um aspecto, o instrumento cirúrgico 750 é programado para controlar a translação distal de um membro de deslocamento, como a viga com perfil em | 764. O instrumento cirúrgico 750 com- preende um atuador de extremidade 752 que pode compreender uma bigorna 766, uma viga com perfil em | 764 (incluindo um gume cortan- te afiado) e um cartucho de grampos removível 768.
[00223] A posição, movimento, deslocamento e/ou a translação de um membro de deslocamento linear, como a viga com perfil em | 764, podem ser medidas por um sistema de posicionamento absoluto, dispo- sição de sensor e um sensor de posição 784. Como a viga com perfil em | 764 é acoplada a um membro de acionamento longitudinalmente móvel, a posição da viga com perfil em | 764 pode ser determinada mediante a medição da posição do membro de acionamento longitudinalmente mó- vel que emprega o sensor de posição 784. Consequentemente, na des- crição a seguir, a posição, o deslocamento e/ou a translação da viga com perfil em | 764 podem ser obtidos pelo sensor de posição 784, conforme aqui descrito. Um circuito de controle 760 pode ser programado para controlar a translação do membro de deslocamento, como a viga com perfil em | 764. O circuito de controle 760, em alguns exemplos, pode compreender um ou mais microcontroladores, microprocessadores ou outros processadores adequados para executar as instruções que fazem com que o processador ou processadores controlem o membro de des-
locamento, por exemplo, a viga com perfil em | 764, da maneira descrita. Em um aspecto, um temporizador/contador 781 fornece um sinal de saí- da, como o tempo decorrido ou uma contagem digital, ao circuito de con- trole 760 para correlacionar a posição da viga com perfil em | 764 con- forme determinado pelo sensor de posição 784 com a saída do tempori- zador/contador 781 de modo que o circuito de controle 760 possa deter- minar a posição da viga com perfil em | 764 em um momento específico (t) em relação a uma posição inicial. O temporizador/contador 781 pode ser configurado para medir o tempo decorrido, contar eventos externos, ou medir eventos eternos.
[00224] O circuito de controle 760 pode gerar um sinal de ponto de ajuste do motor 772. O sinal do ponto de ajuste do motor 772 pode ser fornecido a um controlador do motor 758. O controlador do motor 758 pode compreender um ou mais circuitos configurados para forne- cer um sinal de acionamento do motor 774 ao motor 754 para acionar o motor 754, conforme aqui descrito. Em alguns exemplos, o motor 754 pode ser um motor CC com motor elétrico CC escovado. Por exemplo, a velocidade do motor 754 pode ser proporcional ao sinal de acionamento do motor 774. Em alguns exemplos, o motor 754 po- de ser um motor elétrico CC sem escovas e o sinal de acionamento do motor 774 pode compreender um sinal PWM fornecido para um ou mais enrolamentos de estator do motor 754. Além disso, em alguns exemplos, o controlador do motor 758 pode ser omitido, e o circuito de controle 760 pode gerar o sinal de acionamento de motor 774 dire- tamente.
[00225] O motor 754 pode receber energia de uma fonte de ener- gia 762. A fonte de energia 762 pode ser ou incluir uma bateria, um super capacitor, ou qualquer outra fonte de energia adequada. O mo- tor 754 pode ser mecanicamente acoplado à viga com perfil em | 764 por meio de uma transmissão 756. A transmissão 756 pode incluir uma ou mais engrenagens ou outros componentes de ligação para acoplar o motor 754 à viga com perfil em | 764. Um sensor de posi- ção 784 pode detectar uma posição da viga com perfil em | 764. O sensor de posição 784 pode ser ou pode incluir qualquer tipo de sen- sor que seja capaz de gerar dados de posição que indicam uma posi- ção da viga com perfil em | 764. Em alguns exemplos, o sensor de posição 784 pode incluir um codificador configurado para fornecer uma série de pulsos ao circuito de controle 760 conforme a viga com perfil em | 764 translada distal e proximalmente. O circuito de controle 760 pode rastrear os pulsos para determinar a posição da viga com perfil em | 764. Outros sensores de posição adequados podem ser usados, incluindo, por exemplo, um sensor de proximidade. Outros tipos de sensores de posição podem fornecer outros sinais que indi- quem o movimento da viga com perfil em | 764. Além disso, em al- guns exemplos, o sensor de posição 784 pode ser omitido. Se o mo- tor 754 for um motor de passo, o circuito de controle 760 pode rastre- ar a posição da viga com perfil em | 764 ao agregar o número e a ori- entação das etapas que o motor 754 foi instruído a executar. O sen- sor de posição 784 pode estar situado no atuador de extremidade 752 ou em qualquer outra porção do instrumento.
[00226] O circuito de controle 760 pode estar em comunicação com um ou mais sensores 788. Os sensores 788 podem ser posicionados no atuador de extremidade 752 e adaptados para funcionar com o ins- trumento cirúrgico 750 para medir os vários parâmetros derivados, como distância de vão em relação ao tempo, compressão do tecido em relação ao tempo e tensão da bigorna em relação ao tempo. Os sensores 788 podem compreender um sensor magnético, um sensor de campo magnético, um medidor de esforço, um sensor de pressão, um sensor de força, um sensor indutivo como um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou quaisquer outros sensores adequados para medição de um ou mais parâmetros do atuador de extremidade 752. Os sensores 788 podem incluir um ou mais sensores.
[00227] Oum ou mais sensores 788 podem compreender um medi- dor de esforço, como um medidor de microesforço, configurado para medir a magnitude da tensão na bigorna 766 durante uma condição de preensão. O medidor de tensão fornece um sinal elétrico cuja amplitu- de varia com a magnitude da tensão. Os sensores 788 podem com- preender um sensor de pressão configurado para detectar uma pres- são gerada pela presença de tecido comprimido entre a bigorna 766 e o cartucho de grampos 768. Os sensores 788 podem ser configurados para detectar a impedância de uma seção de tecido situada entre a bigorna 766 e o cartucho de grampos 768 que é indicativa da espessu- ra e/ou da completude do tecido situado entre os mesmos.
[00228] Os sensores 788 podem ser configurados para medir as for- ças exercidas sobre a bigorna 766 por um sistema de acionamento de fechamento. Por exemplo, um ou mais sensores 788 podem estar em um ponto de interação entre o tubo de fechamento e a bigorna 766 para de- tectar as forças de fechamento aplicadas por um tubo de fechamento à bigorna 766. As forças exercidas sobre a bigorna 766 podem ser repre- sentativas da compressão do tecido experimentada pela seção de tecido capturada entre a bigorna 766 e o cartucho de grampos 768. O um ou mais sensores 788 podem ser posicionados em vários pontos de intera- ção ao longo do sistema de acionamento de fechamento para detectar as forças de fechamento aplicadas à bigorna 766 pelo sistema de aciona- mento de fechamento. O um ou mais sensores 788 podem ser amostra- dos em tempo real durante uma operação de preensão por um proces- sador do circuito de controle 760. O circuito de controle 760 recebe medi- ções de amostra em tempo real para fornecer e analisar informações ba- seadas em tempo e avaliar, em tempo real, as forças de fechamento aplicadas à bigorna 766.
[00229] “Um sensor de corrente 786 pode ser empregado para medir a corrente drenada pelo motor 754. A força necessária para avançar a viga com perfil em | 764 corresponde à corrente drenada pelo motor
754. A força é convertida em um sinal digital e fornecida ao circuito de controle 760.
[00230] O circuito de controle 760 pode ser configurado para simu- lar a resposta do sistema real do instrumento no software do contro- lador. Um membro de deslocamento pode ser atuado para mover uma viga com perfil em | 764 no atuador de extremidade 752 em ou próximo a uma velocidade-alvo. O instrumento cirúrgico 750 pode in- cluir um controlador de retroinformação, que pode ser um ou qualquer dos controladores de retroinformação, incluindo, mas não se limitan- do a, um controlador PID, retroinformação de estado, LOR, e/ou um controlador adaptável, por exemplo. O instrumento cirúrgico 750 pode incluir uma fonte de energia para converter o sinal do controlador de retroinformação em uma entrada física como tensão do estojo, tensão PWM, tensão modulada por frequência, corrente, torque e/ou força, por exemplo.
[00231] O sistema de acionamento real do instrumento cirúrgico 750 é configurado para acionar o membro de deslocamento, o membro de corte ou a viga com perfil em | 764, por um motor CC escovado com caixa de câmbio e ligações mecânicas a um sistema de articulação e/ou de corte. Um outro exemplo é o motor elétrico 754 que opera o membro de deslocamento e o acionador de articulação, por exemplo, de um con- junto de eixo de acionamento intercambiável. Uma influência externa é uma influência desmedida e imprevisível de coisas como tecido, corpos circundantes, e atrito no sistema físico. Essa influência externa pode ser chamada de arrasto, que age em oposição ao motor elétrico 754. A in- fluência externa, como o arrasto, pode fazer com que o funcionamento do sistema físico se desvie de uma operação desejada do sistema físi- co.
[00232] Vários aspectos exemplificadores são direcionados a um ins- trumento cirúrgico 750 que compreende um atuador de extremidade 752 com implementos cirúrgicos de grampeamento e corte acionados por motor. Por exemplo, um motor 754 pode acionar um membro de deslo- camento distal e proximalmente ao longo de um eixo geométrico longitu- dinal do atuador de extremidade 752. O atuador de extremidade 752 po- de compreender uma bigorna articulável 766 e, quando configurado para o uso, uma lâmina ultrassônica 768 posicionada no lado oposto da bigor- na 766. Um médico pode segurar o tecido entre a bigorna 766 e o cartu- cho de grampos 768, conforme aqui descrito. Quando pronto para usar o instrumento 750, o médico pode fornecer um sinal de disparo, por exem- plo, pressionando um gatilho do instrumento 750. Em resposta ao sinal de disparo, o motor 754 pode acionar o membro de deslocamento dis- talmente ao longo do eixo geométrico longitudinal do atuador de extremi- dade 752 a partir de uma posição proximal de início de curso para uma posição de fim de curso distal da posição de início de curso. À medida que o membro de deslocamento se desloca distalmente, a viga com perfil em | 764 com um elemento de corte posicionado em uma extremidade distal, pode cortar o tecido entre o cartucho de grampos 768 e a bigorna
766.
[00233] Em vários exemplos, o instrumento cirúrgico 750 pode com- preender um circuito de controle 760 programado para controlar a trans- lação distal do membro de deslocamento, como a viga com perfil em | 764, por exemplo, com base em uma ou mais condições do tecido. O circuito de controle 760 pode ser programado para detectar direta ou indiretamente as condições do tecido, como espessura, conforme des- crito aqui. O circuito de controle 760 pode ser programado para selecio- nar um programa de controle baseado nas condições do tecido. Um programa de controle de disparo pode descrever o movimento distal do membro de deslocamento. Diferentes programas de controle de disparo podem ser selecionados para melhor tratar as diferentes condições do tecido. Por exemplo, quando um tecido mais espesso está presente, o circuito de controle 760 pode ser programado para transladar o membro de deslocamento a uma velocidade inferior e/ou com potência mais bai- xa. Quando um tecido mais fino está presente, o circuito de controle 760 pode ser programado para transladar o membro de deslocamento a uma velocidade mais alta e/ou com maior potência.
[00234] Em alguns exemplos, o circuito de controle 760 pode, inici- almente, operar o motor 754 em uma configuração de circuito aberto para uma primeira porção de circuito aberto de um curso do membro de deslocamento. Com base em uma resposta do instrumento 750 du- rante a porção de circuito aberto do curso, o circuito de controle 760 pode selecionar um programa de controle de disparo. A resposta do instrumento pode incluir uma distância de translação do membro de deslocamento durante a porção de circuito aberto, um tempo decorrido durante a porção de circuito aberto, a energia fornecida ao motor 754 durante a porção de circuito aberto, uma soma de larguras de pulso de um sinal de acionamento de motor, etc. Após a porção de circuito aberto, o circuito de controle 760 pode implementar o programa de controle de disparo selecionado para uma segunda porção do curso do membro de deslocamento. Por exemplo, durante a porção de circuito fechado do curso, o circuito de controle 760 pode modular o motor 754 com base nos dados de translação que descrevem uma posição do membro de deslocamento em uma maneira de circuito fechado para transladar o membro de deslocamento em uma velocidade constante. Detalhes adicionais são revelados no pedido de patente US nº de série 15/720.852, intitulado SYSTEM AND METHODS FOR CONTROLLING A DISPLAY OF A SURGICAL INSTRUMENT, depositado em 29 de setembro de 2017, que está aqui incorporado a título de referência em sua totalidade.
[00235] A Figura 19 é um diagrama esquemático de um instrumen- to cirúrgico 790 configurado para controlar várias funções de acordo com um aspecto da presente revelação. Em um aspecto, o instru- mento cirúrgico 790 é programado para controlar a translação distal de um membro de deslocamento, como a viga com perfil em | 764. O instrumento cirúrgico 790 compreende um atuador de extremidade 792 que pode compreender uma bigorna 766, uma viga com perfil em | 764 e um cartucho de grampos removível 768 que pode ser inter- cambiado com um cartucho de RF 796 (mostrado em linha tracejada).
[00236] Em um aspecto, os sensores 788 podem ser implementados como uma chave limite, dispositivo eletromecânico, chaves de estado sólido, dispositivos de efeito Hall, dispositivos de RM, dispositivos GMR, magnetômetros, entre outros. Em outras implementações, os sensores 638 podem ser chaves de estado sólido que operam sob a influência da luz, como os sensores ópticos, sensores de infravermelho, sensores de ultravioleta, dentre outros. Além disso, as chaves podem ser dispositi- vos de estado sólido como transístores (por exemplo, FET, FET de jun- ção, MOSFET, bipolar e similares). Em outras implementações, os sen- sores 788 podem incluir chaves elétricas sem condutor, chaves ultras- sônicas, acelerômetros, sensores de inércia e, entre outros.
[00237] Em um aspecto, o sensor de posição 784 pode ser imple- mentado como um sistema de posicionamento absoluto, que compre- ende um sistema de posicionamento absoluto magnético giratório im- plementado como um sensor de posição magnético giratório de cir- cuito integrado único ASSOSSEQFT, disponível junto à Austria Mi- crosystems, AG. O sensor de posição 784 pode fazer interface com o circuito de controle 760 para fornecer um sistema de posicionamento absoluto. A posição pode incluir elementos de efeito Hall múltiplos localizados acima de um magneto e acoplado a um processador CORDIC, também conhecido como o método dígito por dígito e algo- ritmo de Volder, que é fornecido para implementar um algoritmo sim- ples e eficiente para calcular funções hiperbólicas e trigonométricas que exigem apenas operações de adição, subtração, deslocamento de bits e tabela de pesquisa.
[00238] Em um aspecto, a viga com perfil em | 764 pode ser im- plementada como o membro de corte que compreende um corpo de faca que suporta operacionalmente uma lâmina de corte de tecido e pode incluir adicionalmente abas ou recursos de engate de bigorna e recursos de engate de canal ou uma base. Em um aspecto, o cartu- cho de grampos 768 pode ser implementado como o cartucho de prendedores cirúrgicos padrão (mecânico). Em um aspecto, o cartu- cho de RF 796 pode ser implementado como um cartucho de RF. Es- tas e outras disposições de sensores são descritas no pedido de pa- tente US de propriedade comum nº 15/628.175, intitulado TECHNI-
QUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, depositado em 20 de junho de 2017, que está aqui incorporado a título de refe- rência em sua totalidade.
[00239] A posição, movimento, deslocamento e/ou a translação de um membro de deslocamento linear, como a viga com perfil em | 764, podem ser medidos por um sistema de posicionamento absoluto, dispo- Sição de sensor e sensor de posição representado como o sensor de po- sição 784. Como a viga com perfil em | 764 é acoplada ao membro de acionamento longitudinalmente móvel 120, a posição da viga com perfil em | 764 pode ser determinada mediante a medição da posição do membro de acionamento longitudinalmente móvel 120 que emprega o sensor de posição 784. Consequentemente, na descrição a seguir, a po- sição, o deslocamento e/ou a translação da viga com perfil em | 764 po-
dem ser obtidos pelo sensor de posição 784, conforme aqui descrito. Um circuito de controle 760 pode ser programado para controlar a translação do membro de deslocamento, como a viga com perfil em | 764, conforme aqui descrito. O circuito de controle 760, em alguns exemplos, pode compreender um ou mais microcontroladores, microprocessadores ou outros processadores adequados para executar as instruções que fazem com que o processador ou processadores controlem o membro de des- locamento, por exemplo, a viga com perfil em | 764, da maneira descrita. Em um aspecto, um temporizador/contador 781 fornece um sinal de saí- da, como o tempo decorrido ou uma contagem digital, ao circuito de con- trole 760 para correlacionar a posição da viga com perfil em | 764 con- forme determinado pelo sensor de posição 784 com a saída do tempori- zador/contador 781 de modo que o circuito de controle 760 possa deter- minar a posição da viga com perfil em | 764 em um momento específico (t) em relação a uma posição inicial. O temporizador/contador 781 pode ser configurado para medir o tempo decorrido, contar eventos externos, ou medir eventos eternos.
[00240] O circuito de controle 760 pode gerar um sinal de ponto de ajuste do motor 772. O sinal do ponto de ajuste do motor 772 pode ser fornecido a um controlador do motor 758. O controlador do motor 758 pode compreender um ou mais circuitos configurados para forne- cer um sinal de acionamento do motor 774 ao motor 754 para acionar o motor 754, conforme aqui descrito. Em alguns exemplos, o motor 754 pode ser um motor CC com motor elétrico CC escovado. Por exemplo, a velocidade do motor 754 pode ser proporcional ao sinal de acionamento do motor 774. Em alguns exemplos, o motor 754 po- de ser um motor elétrico CC sem escovas e o sinal de acionamento do motor 774 pode compreender um sinal PWM fornecido para um ou mais enrolamentos de estator do motor 754. Além disso, em alguns exemplos, o controlador do motor 758 pode ser omitido, e o circuito de controle 760 pode gerar o sinal de acionamento de motor 774 dire- tamente.
[00241] O motor 754 pode receber energia de uma fonte de ener- gia 762. A fonte de energia 762 pode ser ou incluir uma bateria, um super capacitor, ou qualquer outra fonte de energia adequada. O mo- tor 754 pode ser mecanicamente acoplado à viga com perfil em | 764 por meio de uma transmissão 756. A transmissão 756 pode incluir uma ou mais engrenagens ou outros componentes de ligação para acoplar o motor 754 à viga com perfil em | 764. Um sensor de posi- ção 784 pode detectar uma posição da viga com perfil em | 764. O sensor de posição 784 pode ser ou pode incluir qualquer tipo de sen- sor que seja capaz de gerar dados de posição que indicam uma posi- ção da viga com perfil em | 764. Em alguns exemplos, o sensor de posição 784 pode incluir um codificador configurado para fornecer uma série de pulsos ao circuito de controle 760 conforme a viga com perfil em | 764 translada distal e proximalmente. O circuito de controle 760 pode rastrear os pulsos para determinar a posição da viga com perfil em | 764. Outros sensores de posição adequados podem ser usados, incluindo, por exemplo, um sensor de proximidade. Outros tipos de sensores de posição podem fornecer outros sinais que indi- quem o movimento da viga com perfil em | 764. Além disso, em al- guns exemplos, o sensor de posição 784 pode ser omitido. Se o mo- tor 754 for um motor de passo, o circuito de controle 760 pode rastre- ar a posição da viga com perfil em | 764 ao agregar o número e a ori- entação das etapas que o motor foi instruído a executar. O sensor de posição 784 pode estar situado no atuador de extremidade 792 ou em qualquer outra porção do instrumento.
[00242] O circuito de controle 760 pode estar em comunicação com um ou mais sensores 788. Os sensores 788 podem ser posicionados no atuador de extremidade 792 e adaptados para funcionar com o ins-
trumento cirúrgico 790 para medir os vários parâmetros derivados, como distância de vão em relação ao tempo, compressão do tecido em relação ao tempo e tensão da bigorna em relação ao tempo. Os sensores 788 podem compreender um sensor magnético, um sensor de campo magnético, um medidor de esforço, um sensor de pressão, um sensor de força, um sensor indutivo como um sensor de correntes parasitas, um sensor resistivo, um sensor capacitivo, um sensor óptico e/ou quaisquer outros sensores adequados para medição de um ou mais parâmetros do atuador de extremidade 792. Os sensores 788 podem incluir um ou mais sensores.
[00243] Oumou mais sensores 788 podem compreender um medi- dor de esforço, como um medidor de microesforço, configurado para medir a magnitude da tensão na bigorna 766 durante uma condição de preensão. O medidor de tensão fornece um sinal elétrico cuja amplitu- de varia com a magnitude da tensão. Os sensores 788 podem com- preender um sensor de pressão configurado para detectar uma pres- são gerada pela presença de tecido comprimido entre a bigorna 766 e o cartucho de grampos 768. Os sensores 788 podem ser configurados para detectar a impedância de uma seção de tecido situada entre a bigorna 766 e o cartucho de grampos 768 que é indicativa da espessu- ra e/ou da completude do tecido situado entre os mesmos.
[00244] Os sensores 788 podem ser configurados para medir as for- ças exercidas sobre a bigorna 766 pelo sistema de acionamento de fe- chamento. Por exemplo, um ou mais sensores 788 podem estar em um ponto de interação entre o tubo de fechamento e a bigorna 766 para detectar as forças de fechamento aplicadas por um tubo de fechamento à bigorna 766. As forças exercidas sobre a bigorna 766 podem ser re- presentativas da compressão do tecido experimentada pela seção de tecido capturada entre a bigorna 766 e o cartucho de grampos 768. O um ou mais sensores 788 podem ser posicionados em vários pontos de interação ao longo do sistema de acionamento de fechamento para de- tectar as forças de fechamento aplicadas à bigorna 766 pelo sistema de acionamento de fechamento. O um ou mais sensores 788 podem ser amostrados em tempo real durante uma operação de preensão por uma porção de processador do circuito de controle 760. O circuito de contro- le 760 recebe medições de amostra em tempo real para fornecer e ana- lisar informações baseadas em tempo e avaliar, em tempo real, as for- ças de fechamento aplicadas à bigorna 766.
[00245] Um sensor de corrente 786 pode ser empregado para medir a corrente drenada pelo motor 754. A força necessária para avançar a viga com perfil em | 764 corresponde à corrente drenada pelo motor
754. A força é convertida em um sinal digital e fornecida ao circuito de controle 760.
[00246] Uma fonte de energia de RF 794 é acoplada ao atuador de extremidade 792 e é aplicada ao cartucho de RF 796 quando o cartucho de RF 796 é carregado no atuador de extremidade 792 no lugar do car- tucho de grampos 768. O circuito de controle 760 controla o fornecimento da energia de RF para o cartucho de RF 796.
[00247] Detalhes adicionais são revelados no pedido de patente US nº de série 15/636.096, intitulado SURGICAL SYSTEM COUPLA- BLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CAR- TRIDGE, AND METHOD OF USING SAME, depositado em 28 de ju- nho de 2017, que está aqui incorporado a título de referência em sua totalidade. Hardware do gerador
[00248] A Figura 20 é um diagrama de blocos simplificado de um gerador 800 configurado para fornecer sintonia sem indutor, entre ou- tros benefícios. Detalhes adicionais do gerador 800 são descritos na patente US nº 9.060.775, intitulada SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, concedida em
23 de junho 2015, que está aqui incorporada a título de referência em sua totalidade. O gerador 800 pode compreender um estágio isolado do paciente 802 em comunicação com um estágio não isolado 804 por meio de um transformador de potência 806. Um enrolamento secundá- rio 808 do transformador de potência 806 está contido no estágio iso- lado 802 e pode compreender uma configuração com derivação (por exemplo, uma configuração com derivação central ou com derivação não central) para definir as saídas de sinal de acionamento, 810a, 810b, 810c, de modo a entregar sinais de acionamento a diferentes instrumentos cirúrgicos, como um dispositivo cirúrgico ultrassônico, um instrumento eletrocirúrgico de RF e um instrumento cirúrgico multifun- cional que inclui modos de energia ultrassônica e de RF que podem ser liberados sozinhos ou simultaneamente. Em particular, as saídas de sinal de acionamento 810a e 810c podem fornecer um sinal de aci- onamento ultrassônico (por exemplo, um sinal de acionamento de va- lor quadrático médio (RMS) de 420V) a um instrumento cirúrgico ul- trassônico, e as emissões de sinal de acionamento 810b e 810c po- dem fornecer um sinal de acionamento eletrocirúrgico (por exemplo, um sinal de acionamento a 100V RMS) a um instrumento eletrocirúrgi- co de RF, sendo que a saída de sinal de acionamento 810b corres- ponde à derivação central do transformador de potência 806.
[00249] Em certas formas, os sinais de acionamento ultrassônicos e eletrocirúrgicos podem ser fornecidos simultaneamente a instrumentos cirúrgicos distintos e/ou a um único instrumento cirúrgico, como um instrumento cirúrgico multifuncional, com capacidade de fornecer tanto energia ultrassônica quanto eletrocirúrgica ao tecido. Será observado que o sinal eletrocirúrgico fornecido tanto pelo instrumento eletrocirúr- gico dedicado quanto pelo instrumento combinado multifuncional ele- trocirúrgico/ultrassônico podem ser tanto um sinal de nível terapêutico quanto subterapêutico, onde o sinal subterapêutico pode ser usado,
por exemplo, para monitorar o tecido ou as condições dos instrumen- tos e fornecer retroinformação ao gerador. Por exemplo, os sinais de RF e ultrassônico podem ser fornecidos separadamente ou simultane- amente a partir de um gerador com uma única porta de saída a fim de fornecer o sinal de saída desejado ao instrumento cirúrgico, conforme será discutido em maiores detalhes abaixo. Consequentemente, o ge- rador pode combinar as energias eletrocirúrgica de RF e ultrassônica e fornecer as energias combinadas ao instrumento eletrocirúrgi- co/ultrassônico multifuncional. Eletrodos bipolares podem ser coloca- dos em uma ou em ambas as garras do atuador de extremidade. Uma garra pode ser acionada por energia ultrassônica em adição à energia eletrocirúrgica de RF, funcionando simultaneamente. A energia ultras- sônica pode ser empregada para realizar dissecção em tecido enquan- to a energia eletrocirúrgica de RF pode ser empregada para cauteriza- ção de vasos.
[00250] O estágio não isolado 804 pode compreender um amplifi- cador de potência 812 que tem uma saída conectada a um enrolamen- to primário 814 do transformador de potência 806. Em certas formas, o amplificador de potência 812 pode compreender um amplificador "push-pull". Por exemplo, o estágio não isolado 804 pode conter adici- onalmente um dispositivo lógico 816 para fornecer uma saída digital a um circuito conversor digital para analógico (DAC, de "digital-to-analog converter") 818 que, por sua vez, fornece um sinal analógico corres- pondente a uma entrada do amplificador de potência 812. Em certas formas, o dispositivo lógico 816 pode compreender uma matriz de por- tas programável (PGA, de "programmable gate array"), uma FPGA (FPGA de "field-programmable gate array"), um dispositivo lógico pro- gramável (PLD, de "programmable logic device"), entre outros circuitos lógicos, por exemplo. O dispositivo lógico 816, pelo fato de controlar a entrada do amplificador de potência 812 através do DAC 818 pode,
portanto, controlar qualquer um dentre vários parâmetros (por exem- plo, frequência, forma de onda, amplitude da forma de onda) de sinais de acionamento aparecendo nas saídas de sinal de acionamento 810a, 810b e 810c. Em certas formas e conforme discutido abaixo, o dispositivo lógico 816, em conjunto com um processador (por exemplo, um PSD, discutido abaixo), pode implementar um certo número de al- goritmos de controle baseados em PSD e/ou outros algoritmos de con- trole para parâmetros de controle dos sinais de acionamento forneci- dos pelo gerador 800.
[00251] A potência pode ser fornecida a um trilho de alimentação do amplificador de potência 812 por um regulador de modo de chave 820, como, por exemplo, um conversor de potência. Em certas formas, o regulador de modo de chave 820 pode compreender um regulador ajustável de tensão, por exemplo. O estágio não isolado 804 pode compreender, ainda, um primeiro processador 822 que, em uma for- ma, pode compreender um processador PSD como um dispositivo analógico APSD-21469 SHARC PSD, disponível junto à Analog Devi- ces, Norwood, MA, EUA, por exemplo, embora em várias formas, qualquer processador adequado possa ser utilizado. Em certas for- mas, o processador PSD 822 pode controlar a operação do regulador de modo de chave 820 responsivo a dados de retroinformação de ten- são a partir do amplificador de potência 812 pelo processador PSD 822 através de um circuito ADC 824. Em uma forma, por exemplo, o processador PSD 822 pode receber como entrada, através do circuito ADC 824, o envelope de forma de onda de um sinal (por exemplo, um sinal de RF) sendo amplificado pelo amplificador de potência 812. O processador PSD 822 pode então controlar o regulador de modo de chave 820 (por exemplo, através de uma saída PWM) de modo que a tensão de trilho provida ao amplificador de potência 812 siga o envelo- pe de forma de onda do sinal amplificado. Modulando-se dinamica-
mente a tensão do trilho do amplificador de potência 812 com base no envelope de forma de onda, a eficiência do amplificador de potência 812 pode ser significativamente aprimorada em relação a esquemas de amplificador com tensão de trilho fixa.
[00252] Em certas formas, o dispositivo lógico 816, em conjunto com o processador PSD 822, pode implementar um circuito de síntese digital como um esquema de controle com sintetizador digital direto (DDS) para controlar a forma de onda, a frequência e/ou a amplitude dos sinais de acionamento emitidos pelo gerador 800. Em uma forma, por exemplo, o dispositivo lógico 816 pode implementar um algoritmo de controle de DDS mediante a recuperação de amostras de forma de onda armazenadas em uma tabela de pesquisa (LUT, "look-up table") atualizada dinamicamente, como uma RAM LUT que pode ser integra- da em um FPGA. Esse algoritmo de controle é particularmente útil pa- ra aplicações ultrassônicas nas quais um transdutor ultrassônico pode ser acionado por uma corrente senoidal limpa em sua frequência de ressonância. como outras frequências podem excitar ressonâncias pa- rasíticas, minimizar ou reduzir a distorção total da corrente da ramifi- cação de movimento pode correspondentemente minimizar ou reduzir os efeitos indesejáveis da ressonância. Como a forma de onda de uma saída de sinal de acionamento pelo gerador 800 sofre o impacto de várias fontes de distorção presentes no circuito de acionamento de sa- ída (por exemplo, o transformador de potência 806, o amplificador de potência 812), dados de retroinformação de tensão e corrente com ba- se no sinal de acionamento podem ser fornecidos a um algoritmo, co- mo um algoritmo para controle de erros implementado pelo processa- dor PSD 822, que compensa a distorção mediante a adequada pré- distorção ou modificação das amostras de forma de onda armazena- das na LUT de maneira dinâmica e contínua (por exemplo, em tempo real). Em uma forma, a quantidade ou o grau de pré-distorção aplicada às amostras da LUT pode ser baseada no erro entre uma corrente da ramificação de movimento computadorizada e um forma de onda de corrente desejado, sendo que o erro é determinado em uma base de amostra por amostra. Dessa maneira, as amostras da LUT pré- distorcidas, quando processadas através do circuito de acionamento, podem resultar em um sinal de acionamento da ramificação de movi- mento que tem a forma de onda desejada (por exemplo, senoidal) para acionar de maneira ótima o transdutor ultrassônico. Em tais formas, as amostras de forma de onda de LUT não irão, portanto, representar a forma de onda desejada do sinal de acionamento, mas sim a forma de onda que é necessária para, por fim, produzir a forma de onda deseja- do do sinal de acionamento da ramificação de movimento, quando são levados em conta os efeitos de distorção.
[00253] O estágio não isolado 804 pode compreender adicional- mente um primeiro circuito ADC 826 e um segundo circuito ADC 828 acoplados à saída do transformador de potência 806 por meio dos respectivos transformadores de isolamento, 830 e 832, para respecti- vamente amostrar a tensão e a corrente de sinais de acionamento emitidos pelo gerador 800. Em certas formas, os circuitos ADC 826 e 828 podem ser configurados para amostragem em altas velocidades (por exemplo, 80 mega amostras por segundo (MSPS)) para permitir a sobreamostragem dos sinais de acionamento. Em uma forma, por exemplo, a velocidade de amostragem dos circuitos ADC 826 e 828 pode permitir uma sobreamostragem de aproximadamente 200x (de- pendendo da frequência) dos sinais de acionamento. Em certas for- mas, as operações de amostragem do circuito ADC 826 e 828 podem ser realizadas por um único circuito ADC recebendo sinais de entrada de tensão e corrente por meio de um multiplexador bidirecional. O uso de amostragem em alta velocidade nas formas do gerador 800 pode permitir, entre outras coisas, o cálculo da corrente complexa que flui através da ramificação de movimento (que pode ser usada em certas formas para implementar o controle de forma de onda baseado em DDS descrito acima), a filtragem digital acurada dos sinais amostrados e o cálculo do consumo real de energia com alto grau de precisão. Os dados de retroinformação sobre tensão e corrente emitidos pelos cir- cuitos ADC 826 e 828 podem ser recebidos e processados (por exem- plo, armazenamento temporário do tipo primeira-entrada-primeira- saída (FIFO), multiplexador) pelo dispositivo lógico 816 e armazena- dos em memória de dados para subsequente recuperação, por exem- plo, pelo processador 822. Conforme observado acima, os dados de retroinformação sobre tensão e corrente podem ser usados como en- trada para um algoritmo para pré-distorção ou modificação de amos- tras de formato de onda na LUT, de maneira dinâmica e contínua. Em certas formas, isso pode requerer que cada par de dados de retroin- formação sobre tensão e corrente armazenado seja indexado com ba- se em, ou de outro modo associado a, uma amostra da LUT corres- pondente que foi fornecida pelo dispositivo lógico 816 quando o par de dados de retroinformação sobre tensão e corrente foi capturado. A sin- cronização das amostras da LUT com os dados de retroinformação sobre tensão e corrente dessa maneira contribui para a correta tempo- rização e estabilidade do algoritmo pré-distorção.
[00254] Em certas formas, os dados de retroinformação sobre ten- são e corrente podem ser usados para controlar a frequência e/ou a amplitude (por exemplo, amplitude de corrente) dos sinais de aciona- mento. Em uma forma, por exemplo, os dados de retroinformação sobre tensão e corrente podem ser usados para determinar a fase da impe- dância. A frequência do sinal de acionamento pode, então, ser controla- da para minimizar ou reduzir a diferença entre a fase da impedância determinada e um ponto de ajuste da fase da impedância (por exemplo, 0º), minimizando ou reduzindo assim os efeitos da distorção harmônica e, correspondentemente, acentuando a acurácia da medição de fase da impedância. A determinação da impedância de fase e um sinal de con- trole de frequência podem ser implementados no processador PSD 822, por exemplo, com o sinal de controle da frequência sendo fornecido como entrada a um algoritmo de controle de DDS implementado pelo dispositivo lógico 816.
[00255] Em outra forma, por exemplo, os dados de retroinformação da corrente podem ser monitorados de modo a manter a amplitude de corrente do sinal de acionamento em um ponto de ajuste da amplitude de corrente. O ponto de ajuste da amplitude de corrente pode ser especifi- cado diretamente ou determinado indiretamente com base nos pontos de ajuste especificados para amplitude de tensão e potência. Em certas formas, o controle da amplitude de corrente pode ser implementado pelo algoritmo de controle, como um algoritmo de controle proporcional- integral-derivado (PID), no processador PSD 822. As variáveis controla- das pelo algoritmo de controle para controlar adequadamente a amplitu- de de corrente do sinal de acionamento podem incluir, por exemplo, a alteração de escala das amostras de forma de onda de LUT armazenada no dispositivo lógico 816 e/ou a tensão de saída em escala total do circui- to DAC 818 (que fornece a entrada ao amplificador de potência 812) por meio de um circuito DAC 834.
[00256] O estágio não isolado 804 pode compreender adicional- mente um segundo processador 836 para fornecer, entre outras coi- sas, a funcionalidade da interface de usuário (UI). Em uma forma, o processador 836 pode compreender um processador Atmel AT91SAM9263 com um núcleo ARM 926EJ-S, disponível junto à Atmel Corporation, de San Jose, Califórnia, EUA, por exemplo. Exem- plos de funcionalidade de UI suportados pelo processador 836 podem incluir retroinformação audível e visual do usuário, comunicação com dispositivos periféricos (por exemplo, através de uma interface USB),
comunicação com a chave de pedal, comunicação com um dispositivo de entrada de dados (por exemplo, uma tela sensível ao toque) e co- municação com um dispositivo de saída (por exemplo, um alto- falante). O processador de UI 836 pode se comunicar com o proces- sador de PSD 822 e o dispositivo lógico 816 (por exemplo, através de barramentos de interface serial para periféricos (SP|, de "serial pe- ripheral interface")). Embora o processador de UI 836 possa primaria- mente suportar a funcionalidade de UI, ele pode também coordenar-se com o processador PSD 822 para implementar a mitigação de riscos em certas formas. Por exemplo, o processador 836 pode ser progra- mado para monitorar vários aspectos das entradas pelo usuário e/ou outras entradas (por exemplo, entradas pela tela sensível ao toque, entradas de chave de pedal, entradas do sensor de temperatura) e pode desabilitar a saída de acionamento do gerador 800 quando uma condição de erro é detectada.
[00257] Em certas formas, tanto o processador PSD 822 como o processador de UI 836 podem, por exemplo, determinar e monitorar o estado operacional do gerador 800. Para o processador PSD 822, o estado operacional do gerador 800 pode determinar, por exemplo, quais processos de controle e/ou diagnóstico são implementados pe- lo processador PSD 822. Para o processador de UI 836, o estado operacional do gerador 800 pode determinar, por exemplo, quais elementos de uma UI (por exemplo, telas de exibição, sons) são apresentados a um usuário. Os processadores de UI e PSD respecti- vos 822 e 836 podem manter independentemente o estado operacio- nal atual do gerador 800, bem como reconhecer e avaliar possíveis transições para fora do estado operacional atual. O processador PSD 822 pode funcionar como o mestre nessa relação, e pode determinar quando devem ocorrer as transições entre estados operacionais. O processador de UI 836 pode estar ciente das transições válidas entre estados operacionais, e pode confirmar se uma determinada transi- ção é adequada. Por exemplo, quando o processador PSD 822 instrui o processador de UI 190 a transicionar para um estado específico, o processador de UI 836 pode verificar que a transição solicitada é vá- lida. Caso uma transição solicitada entre estados seja determinada como inválida pelo processador de UI 836, o processador de UI 836 pode fazer com que o gerador 800 entre em um modo de falha.
[00258] O estágio não isolado 804 pode conter, ainda, um contro- lador 838 para monitoramento de dispositivos de entrada (por exem- plo, um sensor de toque capacitivo usado para ligar e desligar o ge- rador 800, uma tela capacitiva sensível ao toque). Em certas formas, o controlador 838 pode compreender pelo menos um processador e/ou outro dispositivo controlador em comunicação com o processa- dor de UIl 836. Em uma forma, por exemplo, o controlador 838 pode compreender um processador (por exemplo, um controlador Meg168 de 8 bits disponível junto à Atmel) configurado para monitorar as en- tradas fornecidas pelo usuário através de um ou mais sensores de toque capacitivos. Em uma forma, o controlador 838 pode compreen- der um controlador de tela sensível ao toque (por exemplo, um con- trolador de tela sensível ao toque QT5480 disponível junto à Atmel) para controlar e gerenciar a captura de dados de toque a partir de uma tela capacitiva sensível ao toque.
[00259] Em certas formas, quando o gerador 800 está em um es- tado "desligado", o controlador 838 pode continuar a receber energia operacional (por exemplo, através de uma linha de uma fonte de ali- mentação do gerador 800, como a fonte de alimentação 854 discutida abaixo). Dessa maneira, o controlador 838 pode continuar a monito- rar um dispositivo de entrada (por exemplo, um sensor de toque ca- pacitivo situado sobre um painel frontal do gerador 800) para ligar e desligar o gerador 800. Quando o gerador 800 está no estado desli-
gado, o controlador 838 pode despertar a fonte de alimentação (por exemplo, possibilitar o funcionamento de um ou mais conversores de tensão CC/CC 856 da fonte de alimentação 854), se for detectada a ativação do dispositivo de entrada "liga/desliga" por um usuário. O controlador 838 pode, portanto, iniciar uma sequência para fazer a transição do gerador 800 para um estado "ligado". Por outro lado, o controlador 838 pode iniciar uma sequência para fazer a transição do gerador 800 para o estado desligado se for detectada a ativação do dispositivo de entrada "liga/desliga", quando o gerador 800 estiver no estado ligado. Em certas formas, por exemplo, o controlador 838 po- de relatar a ativação do dispositivo de entrada "liga/desliga" ao pro- cessador 836 que, por sua vez, implementa a sequência de processo necessária para transicionar o gerador 800 ao estado desligado. Em tais formas, o controlador 838 pode não ter qualquer capacidade in- dependente para causar a remoção da potência do gerador 800 após seu estado ligado ter sido estabelecido.
[00260] Em certas formas, o controlador 838 pode fazer com que o gerador 800 forneça retroinformação audível ou outra retroinformação sensorial para alertar o usuário de que foi iniciada uma sequência de ligar ou desligar. Esse tipo de alerta pode ser fornecido no início de uma sequência de ligar ou desligar, e antes do início de outros pro- cessos associados à sequência.
[00261] Em certas formas, o estágio isolado 802 pode compreen- der um circuito de interface de instrumento 840 para, por exemplo, oferecer uma interface de comunicação entre um circuito de controle de um instrumento cirúrgico (por exemplo, um circuito de controle que compreende chaves de empunhadura) e componentes do estágio não isolado 804, como o dispositivo lógico 816, o processador PSD 822 e/ou o processador de UI 836. O circuito de interface de instrumento 840 pode trocar informações com componentes do estágio não isola-
do 804 por meio de um link de comunicação que mantém um grau adequado de isolamento elétrico entre os estágios isolados e não iso- lados 802 e 804 como, por exemplo, um link de comunicação basea- do em IR). A energia pode ser fornecida ao circuito de interface do instrumento 840 com o uso de, por exemplo, um regulador de tensão de baixas perdas alimentado por um transformador de isolamento acionado a partir do estágio não isolado 804.
[00262] Em uma forma, o circuito de interface de instrumento 840 pode compreender um circuito lógico 842 (por exemplo, um circuito lógico, um circuito lógico programável, PGA, FPGA, PLD) em comu- nicação com um circuito condicionador de sinal 844. O circuito de condicionamento de sinal 844 pode ser configurado para receber um sinal periódico do circuito lógico 842 (por exemplo, uma onda qua- drada de 2 kHz) para gerar um sinal de interrogação bipolar que tem uma frequência idêntica. O sinal de interrogação pode ser gerado, por exemplo, usando-se uma fonte de corrente bipolar alimentada por um amplificador diferencial. O sinal de interrogação pode ser comunicado a um circuito de controle de instrumento cirúrgico (por exemplo, me- diante o uso de um par condutor em um cabo que conecta o gerador 800 ao instrumento cirúrgico) e monitorado para determinar um esta- do ou configuração do circuito de controle. O circuito de controle po- de compreender inúmeras chaves, resistores e/ou diodos para modi- ficar uma ou mais características (por exemplo, amplitude, retificação) do sinal de interrogação de modo que um estado ou configuração do circuito de controle seja discernível, de modo inequívoco, com base nessa uma ou mais características. Em uma forma, por exemplo, o circuito condicionador de sinal 844 pode compreender um circuito ADC para geração de amostras de um sinal de tensão aparecendo entre entradas do circuito de controle, resultando da passagem do sinal de interrogação através do mesmo. O instrumento lógico 842
(ou um componente do estágio não isolado 804) pode, então, deter- minar o estado ou a configuração do circuito de controle com base nas amostras de circuitos ADC.
[00263] Em uma forma, o circuito de interface de instrumento 840 po- de compreender uma primeira interface de circuito de dados 846 para possibilitar a troca de informações entre o circuito lógico 842 (ou outro elemento do circuito de interface de instrumento 840) e um primeiro cir- cuito de dados disposto em um instrumento cirúrgico ou de outro modo associado ao mesmo. Em certas formas, por exemplo, um primeiro circui- to de dados pode ser disposto em um fio integralmente fixado a uma em- punhadura do instrumento cirúrgico ou em um adaptador para fazer a interface entre um tipo ou modelo específico de instrumento cirúrgico e o gerador 800. O primeiro circuito de dados pode ser implementado de qualquer maneira adequada e pode se comunicar com o gerador de acordo com qualquer protocolo adequado, incluindo, por exemplo, con- forme descrito aqui com relação ao primeiro circuito de dados. Em certas formas, o primeiro circuito de dados pode compreender um dispositivo de armazenamento não volátil, como um dispositivo EEPROM. Em certas formas, a primeira interface de circuito de dados 846 pode ser implemen- tada separadamente do circuito lógico 842 e compreende um conjunto de circuitos adequado (por exemplo, dispositivos lógicos distintos, um pro- cessador) para permitir a comunicação entre o circuito lógico 842 e o primeiro circuito de dados. Em outras formas, a primeira interface de cir- cuito de dados 846 pode ser integral ao circuito lógico 842.
[00264] Em certas formas, o primeiro circuito de dados pode armaze- nar informações relacionadas ao instrumento cirúrgico específico com o qual está associado. Essas informações podem incluir, por exemplo, um número de modelo, um número de série, um número de operações nas quais o instrumento cirúrgico foi usado, e/ou quaisquer outros tipos de informações. Essas informações podem ser lidas pelo circuito de interfa-
ce do instrumento 840 (por exemplo, pelo dispositivo lógico 842), transfe- ridas para um componente do estágio não isolado 804 (por exemplo, pa- ra o dispositivo lógico 816, processador PSD 822 e/ou processador de UI 836) para apresentação a um usuário por meio de um dispositivo de saí- da e/ou para controlar uma função ou operação do gerador 800. Adicio- nalmente, qualquer tipo de informação pode ser comunicado ao primeiro circuito de dados para armazenamento através da primeira interface do circuito de dados 846 (por exemplo, usando-se o circuito lógico 842). Es- sas informações podem compreender, por exemplo, um número atuali- zado de operações nas quais o instrumento cirúrgico foi usado e/ou a datas e/ou horários de seu uso.
[00265] Conforme discutido anteriormente, um instrumento cirúrgico pode ser removível de uma empunhadura (por exemplo, o instrumento cirúrgico multifuncional pode ser removível da empunhadura) para pro- mover a intercambialidade e/ou a descartabilidade do instrumento. Nes- ses casos, geradores convencionais podem ser limitados em sua capaci- dade para reconhecer configurações de instrumento específicas sendo usadas, bem como para otimizar os processos de controle e diagnóstico conforme necessário. A adição de circuitos de dados legíveis a instru- mentos cirúrgicos para resolver essa questão é problemática de um pon- to de vista de compatibilidade, porém. Por exemplo, projetar um instru- mento cirúrgico para que permaneça retrocompatível com geradores desprovidos da indispensável funcionalidade de leitura de dados pode ser pouco prático devido, por exemplo, a esquemas de sinalização dife- rentes, complexidade do design e custo. As formas de instrumentos aqui discutidas contemplam essas preocupações mediante o uso de circuitos de dados que podem ser implementados em instrumentos cirúrgicos existentes, economicamente e com mínimas alterações de design para preservar a compatibilidade dos instrumentos cirúrgicos com as platafor- mas de gerador atuais.
[00266] Adicionalmente, as formas do gerador 800 podem permitir comunicação com circuitos de dados baseados em instrumento. Por exemplo, o gerador 800 pode ser configurado para comunicar-se com um segundo circuito de dados contido em um instrumento (por exem- plo, o instrumento cirúrgico multifuncional). Em algumas formas, o segundo circuito de dados pode ser implementado de maneira similar àquela do primeiro circuito de dados aqui descrito. O circuito de inter- face de instrumento 840 pode compreender uma segunda interface de circuito de dados 848 para possibilitar essa comunicação. Em uma forma, a segunda interface de circuito de dados 848 pode compreen- der uma interface digital de três estados, embora outras interfaces também possam ser utilizadas. Em certas formas, o segundo circuito de dados pode ser geralmente qualquer circuito para transmissão e/ou recepção de dados. Em uma forma, por exemplo, o segundo cir- cuito de dados pode armazenar informações relacionadas ao instru- mento cirúrgico específico com o qual está associado. Essas infor- mações podem incluir, por exemplo, um número de modelo, um nú- mero de série, um número de operações nas quais o instrumento ci- rúrgico foi usado, e/ou quaisquer outros tipos de informações.
[00267] Em algumas formas, o segundo circuito de dados pode arma- zenar informações sobre as propriedades elétricas e/ou ultrassônicas de um transdutor ultrassônico associado, de um atuador de extremidade ou de um sistema de acionamento ultrassônico. Por exemplo, o primeiro cir- cuito de dados pode indicar um coeficiente angular de frequência de ini- cialização, conforme descrito aqui. Adicional ou alternativamente, qual- quer tipo de informação pode ser comunicado ao segundo circuito de da- dos para armazenamento através da segunda interface de circuito de dados 848 (por exemplo, usando-se o circuito lógico 842). Essas infor- mações podem compreender, por exemplo, um número atualizado de operações nas quais o instrumento cirúrgico foi usado e/ou a datas e/ou horários de seu uso. Em certas formas, o segundo circuito de dados po- de transmitir dados capturados por um ou mais sensores (por exemplo, um sensor de temperatura baseado em instrumento). Em certas formas, o segundo circuito de dados pode receber do gerador 800 e fornecer uma indicação a um usuário (por exemplo, uma indicação por LED ou outra indicação visível) com base nos dados recebidos.
[00268] Em certas formas, o segundo circuito de dados e a segunda interface de circuito de dados 848 podem ser configurados de modo que a comunicação entre o circuito lógico 842 e o segundo circuito de dados possa ser efetuada sem a necessidade de fornecer condutores adicio- nais para esse propósito (por exemplo, condutores dedicados de um cabo conectando uma empunhadura ao gerador 800). Em uma forma, por exemplo, as informações podem ser comunicadas para, e a partir de, o segundo circuito de dados com o uso de um esquema de comuni- cação por barramento de um fio, implementado na fiação existente, co- mo um dos condutores utilizados transmitindo sinais de interrogação a partir do circuito condicionador de sinal 844 para um circuito de controle em uma empunhadura. Dessa maneira, são minimizadas ou reduzidas as alterações ou modificações ao design do dispositivo cirúrgico que possam, de outro modo, ser necessárias. Além disso, devido ao fato de que diferentes tipos de comunicações implementados em um canal físi- co comum podem ser separados com base em frequência, a presença de um segundo circuito de dados pode ser "invisível" a geradores que não têm a indispensável funcionalidade de leitura de dados, o que, por- tanto, permite a retrocompatibilidade do instrumento cirúrgico.
[00269] Em certas formas, o estágio isolado 802 pode compreender ao menos um capacitor de bloqueio 850-1 conectado à saída do sinal de acionamento 810b para impedir a passagem de corrente contínua para um paciente. Um único capacitor de bloqueio pode ser necessário para estar de acordo com os regulamentos e padrões médicos, por exemplo.
Embora falhas em designs com um só capacitor sejam relativamente in- comuns, esse tipo de falha pode, ainda assim, ter consequências negati- vas. Em uma forma, um segundo capacitor de bloqueio 850-2 pode ser colocado em série com o capacitor de bloqueio 850-1, com a dispersão de corrente de um ponto entre os capacitores de bloqueio 850-1 e 850-2 sendo monitorada, por exemplo, por um circuito ADC 852 para amostra- gem de uma tensão induzida pela corrente de dispersão. As amostras podem ser recebidas, por exemplo, pelo circuito lógico 842. Com base nas alterações na corrente de dispersão (conforme indicado pelas amos- tras de tensão), o gerador 800 pode determinar quando ao menos um dentre os capacitores de bloqueio 850-1, 850-2 falhou, fornecendo, des- sa forma, um benefício em relação a designs de um único capacitor que têm um único ponto de falha.
[00270] Em certas formas, o estágio não isolado 804 pode compre- ender uma fonte de alimentação 854 para entregar potência em CC com tensão e corrente adequadas. A fonte de alimentação pode com- preender, por exemplo, uma fonte de alimentação de 400 W para entre- gar uma tensão do sistema de 48 VDC. A fonte de alimentação 854 po- de compreender adicionalmente um ou mais conversores de tensão CC/CC 856 para receber a saída da fonte de alimentação para gerar saídas de CC nas tensões e correntes exigidas pelos vários componen- tes do gerador 800. Conforme discutido acima em relação ao controla- dor 838, um ou mais dentre os conversores de tensão CC/CC 856 po- dem receber uma entrada do controlador 838 quando a ativação do dis- positivo de entrada "liga/desliga" por um usuário é detectada pelo con- trolador 838, para habilitar o funcionamento ou o despertar dos conver- sores de tensão CC/CC 856.
[00271] A Figura 21 ilustra um exemplo de um gerador 900, que é uma forma do gerador 800 (Figura 20). O gerador 900 é configurado para fornecer múltiplas modalidades de energia a um instrumento ci-
rúrgico. O gerador 900 fornece sinais ultrassônicos e de RF para for- necer energia a um instrumento cirúrgico, independentemente ou si- multaneamente. Os sinais ultrassônicos e de RF podem ser forneci- dos sozinhos ou em combinação e podem ser fornecidos simultane- amente. Conforme indicado acima, ao menos uma saída de gerador pode fornecer múltiplas modalidades de energia (por exemplo, ultras- sônica, bipolar ou monopolar de RF, de eletroporação irreversível e/ou reversível, e/ou energia de micro-ondas, entre outras) através de uma única porta, e esses sinais podem ser fornecidos separadamen- te ou simultaneamente ao atuador de extremidade para tratar tecido.
[00272] O gerador 900 compreende um processador 902 acoplado a um gerador de forma de onda 904. O processador 902 e o gerador de forma de onda 904 são configurados para gerar diversas formas de onda de sinal com base em informações armazenadas em uma memó- ria acoplada ao processador 902, não mostrada a título de clareza da revelação. As informações digitais associadas a uma forma de onda são fornecidas ao gerador de forma de onda 904 que inclui um ou mais circuitos DAC para converter a entrada digital em uma saída ana- lógica. A saída analógica é alimentada a um amplificador 1106 para condicionamento e amplificação de sinal. A saída condicionada e am- plificada do amplificador 906 é acoplada a um transformador de potên- cia 908. Os sinais são acoplados pelo transformador de potência 908 ao lado secundário, que é no lado de isolamento de paciente. Um pri- meiro sinal de uma primeira modalidade de energia é fornecido ao ins- trumento cirúrgico entre os terminais identificados como ENERGIA1 e RETORNO. Um segundo sinal de uma segunda modalidade de ener- gia é acoplado por um capacitor 910 e é fornecido ao instrumento ci- rúrgico entre os terminais identificados como ENERGIA? e RETORNO. Será reconhecido que mais do que duas modalidades de energia po- dem ser emitidas e, portanto, o subscrito "n" pode ser usado para de-
signar que até n terminais ENERGIAn podem ser fornecidos, em que n é um número inteiro positivo maior que 1. Também será reconhecido que até "n" trajetórias de retorno, RETORNOn podem ser fornecidas sem que se afaste do escopo da presente revelação.
[00273] Um primeiro circuito de detecção de tensão 912 é acoplado através dos terminais identificados como ENERGIA1 e a trajetória de RETORNO para medir a tensão de saída entre eles. Um segundo circui- to de detecção de tensão 924 é acoplado através dos terminais identifi- cados como ENERGIA? e a trajetória de RETORNO para medir a ten- são de saída entre eles. Um circuito de detecção de corrente 914 é dis- posto em série com o ramo RETORNO do lado secundário do transfor- mador de potência 908, conforme mostrado, para medir a corrente de saída para qualquer modalidade de energia. Se diferentes trajetórias de retorno são fornecidas para cada modalidade de energia, então um cir- cuito de detecção de corrente separado seria fornecido em cada ramo de retorno. As saídas do primeiro e segundo circuitos de detecção de tensão 912, 924 são fornecidas aos respectivos transformadores de iso- lamento 916, 922 e a saída do circuito de detecção de corrente 914 é fornecida a outro transformador de isolamento 918. As saídas dos trans- formadores de isolamento 916, 928, 922 no lado primário do transfor- mador de potência 908 (lado não isolado do paciente) são fornecidas a um ou mais circuitos ADC 926. A saída digitalizada do circuito ADC 926 é fornecida para o processador 902 para processamento adicional e computação. As tensões de saída e as informações de realimentação de corrente de saída podem ser empregadas para ajustar a tensão de saída e a corrente fornecida para o instrumento cirúrgico, e para compu- tar a impedância de saída, entre outros parâmetros. As comunicações de entrada/saída entre o processador 902 e os circuitos isolados do pa- ciente são fornecidas através de um circuito de interface 920. Os senso- res podem, também, estar em comunicação elétrica com o processador
902 por meio do circuito de interface 920.
[00274] Em um aspecto, a impedância pode ser determinada pelo processador 902 dividindo a saída do primeiro circuito de detecção de tensão 912 acoplado aos terminais identificados como ENER- GIAI/RETORNO ou do segundo circuito de detecção de tensão 924 acoplado aos terminais identificados como ENERGIA2/RETORNO, pela saída do circuito de detecção de corrente 914 disposto em série com o ramo de RETORNO do lado secundário do transformador de potência 908. As saídas do primeiro e segundo circuitos de detecção de tensão 912, 924 são fornecidas para separar os isolamentos trans- formadores 916, 922 e a saída do circuito de detecção de corrente 914 é fornecida para um outro transformador de isolamento 916. As medições de detecção de tensão e corrente digitalizadas do circuito ADC 926 são fornecidas ao processador 902 para computar a impe- dância. Como um exemplo, a primeira modalidade de energia ENERGIA1 pode ser a energia ultrassônica e a segunda modalidade de energia ENERGIA? pode ser a energia de RF. No entanto, além das modalidades de energia de RF ultrassônica e bipolar ou monopo- lar, outras modalidades de energia incluem eletroporação irreversível e/ou reversível e/ou energia de micro-ondas, entre outras. Além dis- so, embora o exemplo ilustrado na Figura 21 mostre uma única traje- tória de retorno RETORNO que pode ser fornecida para duas ou mais modalidades de energia, em outros aspectos, várias trajetórias de retorno RETORNOn podem ser fornecidas para cada modalidade de energia ENERGIAn. Assim, como aqui descrito, a impedância do transdutor ultrassônico pode ser medida dividindo-se a saída do pri- meiro circuito de detecção de tensão 912 pelo circuito de detecção de corrente 914, e a impedância de tecido pode ser medida dividindo-se a saída do segundo circuito de detecção de tensão 924 pelo circuito de detecção de corrente 914.
[00275] Conforme mostrado na Figura 21, o gerador 900 compreen- dendo ao menos uma porta de saída pode incluir um transformador de potência 908 com uma única saída e com múltiplas derivações para for- necer potência sob a forma de uma ou mais modalidades de energia, como ultrassônica, RF bipolar ou monopolar, eletroporação irreversível e/ou reversível, e/ou energia de micro-ondas, entre outros, por exemplo ao atuador de extremidade dependendo do tipo de tratamento de tecido sendo executado. Por exemplo, o gerador 900 pode fornecer energia com maior tensão e menor corrente para conduzir um transdutor ultras- sônico, com menor tensão e maior corrente para conduzir eletrodos de RF para vedar o tecido ou com uma forma de onda de coagulação para coagulação pontual usando eletrodos eletrocirúrgicos RF monopolar ou bipolar. A forma de onda de saída do gerador 900 pode ser orientada, chaveada ou filtrada para fornecer a frequência ao atuador de extremida- de do instrumento cirúrgico. A conexão de um transdutor ultrassônico à saída do gerador 900 é, de preferência, localizada entre a saída identifi- cada como ENERGIA e o RETORNO, conforme mostrado na Figura 21. Em um exemplo, uma conexão de eletrodos de RF bipolares à saída do gerador 900 seria, de preferência, situada entre a saída identificada como ENERGIA? e o RETORNO. No caso de saída monopolar, as conexões preferenciais seriam eletrodo ativo (por exemplo, feixe luminoso ou outra sonda) para a saída ENERGIA? e um bloco de retorno adequado conec- tada à saída RETORNO.
[00276] Detalhes adicionais são revelados na publicação de pedido de patente US nº 2017/0086914 intitulada TECHNIQUES FOR OPERA-
TING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS, que foi publi- cada em 30 de março de 2017, que está aqui incorporado a título de refe- rência em sua totalidade.
[00277] Conforme usado ao longo desta descrição, o termo "sem fio" e seus derivados podem ser usados para descrever circuitos, dis- positivos, sistemas, métodos, técnicas, canais de comunicação etc., que podem comunicar dados através do uso de radiação eletromagné- tica modulada através de um meio não sólido. O termo não implica que os dispositivos associados não contêm quaisquer fios, embora em al- guns aspectos eles podem não ter. O módulo de comunicação pode implementar qualquer de uma série de padrões ou protocolos de co- municação sem fio e com fio, incluindo, mas não se limitando a, Wi-Fi (família IEEE 802.11), WiMAX (família IEEE 802.16), IEEE 802.20, evolução de longo prazo (LTE, "long-term evolution"), Ev-DO, HSPAr, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Blue- tooth, derivados de Ethernet dos mesmos, bem como quaisquer outros protocolos sem fio e com fio que são designados como 3G, 4G, 5G, e além. O módulo de computação pode incluir uma pluralidade de módu- los de comunicação. Por exemplo, um primeiro módulo de comunica- ção pode ser dedicado a comunicações sem fio de curto alcance como Wi-Fi e Bluetooth, e um segundo módulo de comunicação pode ser dedicado a comunicações sem fio de alcance mais longo como GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, e outros.
[00278] “Como usado aqui, um processador ou unidade de proces- samento é um circuito eletrônico que executa operações em alguma fonte de dados externa, geralmente a memória ou algum outro fluxo de dados. O termo é usado aqui para se referir ao processador cen- tral (unidade de processamento central) em um sistema ou sistemas de computador (especificamente sistemas em um chip (SoCs)) que combinam vários "processadores" especializados.
[00279] Como usado aqui, um sistema em um chip ou sistema no chip (SoC ou SOC) é um circuito integrado (também conhecido como um "IC" ou "chip") que integra todos os componentes de um computa- dor ou outros sistemas eletrônicos. Pode conter funções digitais, ana-
lógicas, misturadas e frequentemente de radiofrequência — todos so- bre um único substrato. Um SoC integra um microcontrolador (ou mi- croprocessador) com periféricos avançados como unidade de proces- samento gráfico (GPU), módulo Wi-Fi, ou coprocessador. Um SoC po- de ou não conter memória interna.
[00280] “Como usado aqui, um microcontrolador ou controlador é um sistema que integra um microprocessador com circuitos periféri- cos e memória. Um microcontrolador (ou MCU para unidade do mi- crocontrolador) pode ser implementado como um computador peque- no em um único circuito Integrado. Pode ser similar a um SoC; um SoC pode incluir um microcontrolador como um de seus componen- tes. Um microcontrolador pode conter uma ou mais unidades de pro- cessamento de núcleo (CPUs) juntamente com memória e periféricos de entrada/saída programáveis. A memória do programa na forma de RAM ferroelétrica, NOR flash ou ROM OTP também é muitas vezes incluída no chip, bem como uma pequena quantidade de RAM. Os microcontroladores podem ser usados para aplicações integradas, em contraste com os microprocessadores usados em computadores pessoais ou outras aplicações de propósitos gerais que consiste em vários circuitos integrados distintos.
[00281] Como usado aqui, o termo "controlador" ou "microcontro- lador" pode ser um dispositivo de chip ou IC (circuito integrado) inde- pendente que faz interface com um dispositivo periférico. Essa pode ser uma ligação entre duas partes de um computador ou um contro- lador em um dispositivo externo que gerencia a operação de (e cone- xão com) daquele dispositivo.
[00282] “Qualquer um dos processadores ou microcontrolador aqui descritos pode ser qualquer implementado por qualquer processador de núcleo único ou de múltiplos núcleos, como aqueles conhecidos sob o nome comercial de ARM Cortex pela Texas Instruments. Em um aspec-
to, o processador pode ser um processador Core Cortex-M4F LM4F230H5QR ARM, disponível junto à Texas Instruments, por exem- plo, que compreende uma memória integrada de memória flash de ciclo único de 256 KB, ou outra memória não volátil, até 40 MHz, um buffer de busca antecipada para otimizar o desempenho acima de 40 MHz, uma memória de acesso aleatório seriada de ciclo único de 32 KB (SRAM), uma memória só de leitura interna (ROM) carregada com o programa StellarisWareO, memória só de leitura programável e apagá- vel eletricamente (EEPROM) de 2 KB, um ou mais módulos de modula- ção por largura de pulso (PWM), uma ou mais análogos de entradas de codificador de quadratura (QEI), um ou mais conversores analógico pa- ra digital (ADC) de 12 bits com 12 canais de entrada analógica, detalhes dos quais estão disponíveis para a folha de dados do produto.
[00283] Em um aspecto, o processador pode compreender um con- trolador de segurança que compreende duas famílias com base em con- trolador, como TMS570 e RM4x, conhecidas sob o nome comercial de Hercules ARM Cortex R4, também pela Texas Instruments. O controla- dor de segurança pode ser configurado especificamente para as aplica- ções críticas de segurança IEC 61508 e ISO 26262, dentre outras, para fornecer recursos avançados de segurança integrada enquanto fornece desempenho, conectividade e opções de memória escalonáveis.
[00284] Os dispositivos modulares incluem os módulos (conforme descrito em conexão com Figuras 3 e 9, por exemplo) que são recebí- veis dentro de um controlador cirúrgico central e os dispositivos ou ins- trumentos cirúrgicos que podem ser conectados aos vários módulos a fim de conectar ou parear com o controlador cirúrgico central corres- pondente. Os dispositivos modulares incluem, por exemplo, instrumen- tos cirúrgicos inteligentes, dispositivos de imageamento médicos, dis- positivos de sucção/irrigação, evacuadores de fumaça, geradores de energia, ventiladores, insufladores e exibições. Os dispositivos modu-
lares aqui descritos podem ser controlados por algoritmos de controle. Os algoritmos de controle podem ser executados no próprio dispositivo modular, no controlador cirúrgico central com o qual o dispositivo mo- dular específico está pareado, ou tanto no dispositivo modular como no controlador cirúrgico central (por exemplo, através de uma arquite- tura de computação distribuída). Em algumas exemplificações, os al- goritmos de controle dos dispositivos modulares controlam os disposi- tivos com base nos dados detectados pelo próprio dispositivo modular (isto é, por sensores em, sobre ou conectados ao dispositivo modular). Esses dados podem ser relacionados ao paciente sendo operado (por exemplo, propriedades de tecido ou pressão de insuflação) ou ao dis- positivo modular em si (por exemplo, a taxa na qual uma faca está sendo avançada, a corrente do motor, ou os níveis de energia). Por exemplo, um algoritmo de controle para um instrumento de grampea- mento e corte cirúrgico pode controlar a taxa na qual o motor do ins- trumento aciona sua faca através do tecido de acordo com a resistên- cia encontrada pela faca à medida que avança. Reconhecimento situacional
[00285] — Reconhecimento situacional é a capacidade de alguns aspec- tos de um sistema cirúrgico para determinar ou inferir informações relaci- onadas a um procedimento cirúrgico a partir de dados recebidos de ba- ses de dados e/ou de instrumentos. As informações podem incluir o tipo de procedimento sendo realizado, o tipo de tecido sendo operado ou a cavidade do corpo que é objeto do procedimento. Com as informações contextuais relacionadas ao procedimento cirúrgico, o sistema cirúrgico pode, por exemplo, melhorar a maneira pela qual este controla os dispo- sitivos modulares (por exemplo, um braço robótico e/ou instrumento ci- rúrgico robótico) que são conectados a ele e fornecer informações ou sugestões contextualizadas ao cirurgião durante o curso do procedimen- to cirúrgico.
[00286] — Agora com referência à Figura 56, é mostrada uma linha de tempo 5200 representando o reconhecimento situacional de um contro- lador central, como o controlador cirúrgico central 106 ou 206, por exemplo. A linha de tempo 5200 é um procedimento cirúrgico ilustrativo e as informações contextuais que o controlador cirúrgico central 106, 206 pode derivar dos dados recebidos das fontes de dados em cada etapa do procedimento cirúrgico. A linha de tempo 5200 representa as etapas típicas que seriam tomadas pelos enfermeiros, cirurgiões, e ou- tro pessoal médico durante o curso de um procedimento de segmentec- tomia pulmonar, começando com a configuração da sala de operação e terminando com a transferência do paciente para uma sala de recupe- ração no pós-operatório.
[00287] O controlador cirúrgico central com reconhecimento situa- cional 106, 206 recebe dados das origens de dados durante todo o curso do procedimento cirúrgico, incluindo os dados gerados cada vez que o pessoal médico utiliza um dispositivo modular que é parea- do com o controlador cirúrgico central 106, 206. O controlador cirúrgi- co central 106, 206 pode receber esses dados a partir dos dispositi- vos modulares pareados e de outras fontes de dados e continuamen- te derivar inferências (isto é, informações contextuais) sobre o proce- dimento em curso conforme novos dados são recebidos, como qual etapa do procedimento está sendo realizada em qualquer dado mo- mento. O sistema de reconhecimento situacional do controlador cirúr- gico central 106, 206 é capaz de, por exemplo, registrar dados refe- rentes ao procedimento para gerar relatórios, verificar as etapas sen- do tomadas pelo pessoal médico, fornecer dados ou avisos (por exemplo, através de uma tela de exibição) que pode ser pertinente para a etapa específica do procedimento, ajustar os dispositivos mo- dulares com base no contexto (por exemplo, ativar monitores, ajustar o campo de visão (FOV) do dispositivo de imageamento médico, ou alterar o nível de energia de um instrumento cirúrgico ultrassônico ou instrumento eletrocirúrgico de RF), e assumir qualquer outra ação descrita acima.
[00288] Na primeira etapa 5202, neste procedimento ilustrativo, os membros da equipe hospital recuperam o registro médico eletrônico (RME) do paciente a partir da base de dados de RMEs do hospital. Com base nos dados de seleção do paciente no RME, o controlador cirúrgico central 106, 206 determina que o procedimento a ser realizado é um pro- cedimento torácico.
[00289] Na segunda etapa 5204, os membros da equipe escanei- am a entrada dos suprimentos médicos para o procedimento. O con- trolador cirúrgico central 106, 206 faz a referência cruzada dos su- primentos escaneados com uma lista de suprimentos que são utiliza- dos em vários tipos de procedimentos e confirma que a mistura dos suprimentos corresponde a um procedimento torácico. Adicionalmen- te, o controlador cirúrgico central 106, 206 também é capaz de de- terminar que o procedimento não é um procedimento de ressecção em cunha (porque os suprimentos de entrada têm uma ausência de certos suprimentos que são necessários para um procedimento de ressecção em cunha torácico ou, caso contrário, que os suprimentos de entrada não correspondem a um procedimento de ressecção em cunha torácico).
[00290] Na terceira etapa 5206, o pessoal médico escaneia a ban- da do paciente com um escâner que é conectado em comunicação com o controlador cirúrgico central 106, 206. O controlador cirúrgico central 106, 206 pode então confirmar a identidade do paciente com base nos dados escaneados.
[00291] Na quarta etapa 5208, o pessoal médico liga o equipamento auxiliar. Os equipamentos auxiliares sendo utilizados podem variar de acordo com o tipo de procedimento cirúrgico e as técnicas a serem usa-
das pelo cirurgião, mas neste caso ilustrativo eles incluem um evacuador de fumaça, um insuflador e um dispositivo de imageamento médico. Quando ativados, os equipamentos auxiliares que são dispositivos modu- lares podem parear automaticamente com o controlador cirúrgico central 106, 206 que está situado em uma vizinhança específica dos dispositivos modulares como parte de seu processo de inicialização. O controlador cirúrgico central 106, 206 pode então derivar informações contextuais sobre o procedimento cirúrgico por meio da detecção dos tipos de dispo- sitivos modulares pareados com o mesmo durante essa fase pré- operatória ou de inicialização. Neste exemplo em particular, o controlador cirúrgico central 106, 206 determina que o procedimento cirúrgico é um procedimento VATS (cirurgia torácica vídeo-assistida) baseado nesta combinação específica de dispositivos modulares pareados. Com base na combinação dos dados do registro médico eletrônico (RME) do paci- ente, na lista de suprimentos médicos a serem usados no procedimento e no tipo de dispositivos modulares que se conectam ao controlador cen- tral, o controlador cirúrgico central 106, 206 pode, em geral, inferir o pro- cedimento específico que a equipe cirúrgica irá realizar. Depois que o controlador cirúrgico central 106, 206 reconhece qual procedimento es- pecífico está sendo realizado, o controlador cirúrgico central 106, 206 pode então recuperar as etapas desse processo a partir de uma memória ou a partir da nuvem e então cruzar os dados que subsequentemente recebe das fontes de dados conectadas (por exemplo, dispositivos modu- lares e dispositivos de monitoramento do paciente) para inferir qual etapa do procedimento cirúrgico a equipe cirúrgica está realizando.
[00292] Na quinta etapa 5210, os membros da equipe fixam os ele- trodos do eletrocardiograma (ECG) e outros dispositivos de monito- ramento de paciente no paciente. Os eletrodos do ECG e outros dis- positivos de monitoramento de paciente são capazes de parear com o controlador cirúrgico central 106, 206. Conforme o controlador ci-
rúrgico central 106, 206 começa a receber dados dos dispositivos de monitoramento do paciente, o controlador cirúrgico central 106, 206 dessa forma confirma que o paciente está na sala de operação.
[00293] Na sexta etapa 5212, o pessoal médico induzi a anestesia no paciente. O controlador cirúrgico central 106, 206 pode inferir que o paciente está sob anestesia com base nos dados dos dispositivos modulares e/ou dos dispositivos de monitoramento de paciente, inclu- indo os dados de ECG, dados de pressão sanguínea (PS), dados do ventilador, ou combinações dos mesmos, por exemplo. Após a con- clusão da sexta etapa 5212, a porção do pré-operatório do procedi- mento de segmentectomia do pulmão é concluído e a porção opera- tória se inicia.
[00294] Na sétima etapa 5214, o pulmão do paciente que está sen- do operado é retraído (enquanto a ventilação é chaveada para o pul- mão contralateral). O controlador cirúrgico central 106, 206 pode inferir a partir dos dados de ventilador que o pulmão do paciente foi retraído, por exemplo. O controlador cirúrgico central 106, 206 pode inferir que a porção operatória do procedimento se iniciou quando ele pode com- parar a detecção do colapso do pulmão do paciente nas etapas espe- radas do procedimento (que podem ser acessadas ou recuperadas anteriormente) e assim determinar que o retraimento do pulmão é a primeira etapa operatória nesse procedimento específico.
[00295] Na oitava etapa 5216, o dispositivo de imageamento médico (por exemplo, um dispositivo de visualização) é inserido e o vídeo a partir do dispositivo de imageamento médico é iniciado. O controlador cirúrgico central 106, 206 recebe os dados do dispositivo de imageamento médico (isto é, os dados de vídeo ou imagens) através de sua conexão com o dispositivo de imageamento médico. Após o recebimento dos dados do dispositivo de imageamento médico, o controlador cirúrgico central 106, 206 pode determinar qual porção do procedimento cirúrgico laparoscópi-
co foi iniciada.
Adicionalmente, o controlador cirúrgico central 106, 206 pode determinar que o procedimento específico sendo realizado é uma segmentectomia, em vez de uma lobectomia (note que um procedimento de ressecção em cunha já foi descartado pelo controlador cirúrgico cen- tral 106, 206 com base nos dados recebidos na segunda etapa 5204 do procedimento). Os dados do dispositivo de imageamento médico 124 (Figura 2) podem ser utilizados para determinar informações contextuais sobre o tipo de procedimento sendo realizado de várias maneiras diferen- tes, incluindo através da determinação do ângulo no qual o dispositivo de imageamento médico é orientado em relação à visualização da anatomia do paciente, monitoramento do número ou dos dispositivos de imagea- mento médicos sendo utilizados (isto é, que são ativados e pareados com o centro cirúrgico central 106, 206), e monitoramento dos tipos de dispositivos de visualização utilizados.
Por exemplo, uma técnica para realizar uma lobectomia VATS coloca a câmera no canto anterior inferior da cavidade torácica do paciente acima do diafragma, enquanto uma técnica para executar uma segmentectomia VATS coloca a câmera em uma posição intercostal anterior em relação à fissura do segmento.
Com o uso de técnicas padrão de reconhecimento ou de aprendizado de má- quina, por exemplo, o sistema de reconhecimento situacional pode ser treinado para reconhecer o posicionamento do dispositivo de imagea- mento médico de acordo com a visualização da anatomia do paciente.
Como um outro exemplo, uma técnica para realizar uma lobectomia VATS utiliza um único dispositivo de imageamento médico, enquanto que uma outra técnica para executar uma segmentectomia VATS utiliza múl- tiplas câmeras.
Como ainda um outro exemplo, uma técnica para execu- tar uma segmentectomia VATS utiliza uma fonte de luz infravermelha (que pode ser acoplada em comunicação com o controlador cirúrgico central como parte do sistema de visualização) para visualizar a fissura do segmento, que não é utilizada em uma lobectomia VATS.
Através do rastreamento de qualquer um ou todos dentre esses dados a partir do dispositivo de imageamento médico, o controlador cirúrgico central 106, 206 pode assim determinar o tipo específico de procedimento cirúrgico sendo realizado e/ou a técnica sendo usada para um tipo específico de procedimento cirúrgico.
[00296] Na nona etapa 5218 do procedimento, a equipe cirúrgica inicia a etapa de dissecção. O controlador cirúrgico central 106, 206 pode inferir que o cirurgião está no processo de dissecação para mo- bilizar o pulmão do paciente porque ele recebe dados do gerador de RF ou ultrassônico que indicam que um instrumento de energia está sendo disparado. O controlador cirúrgico central 106, 206 pode cruzar os dados recebidos com as etapas recuperadas do procedimento ci- rúrgico para determinar que um instrumento de energia sendo dispa- rado nesse ponto no processo (isto é, após a conclusão das etapas anteriormente discutidas do procedimento) corresponde à etapa de dissecção. Em certos casos, o instrumento de energia pode ser uma ferramenta de energia montada em um braço robótico de um sistema cirúrgico robótico.
[00297] Na décima etapa 5220 do procedimento, a equipe cirúrgica prossegue até a etapa de ligação. O controlador cirúrgico central 106, 206 pode inferir que o cirurgião está ligando as artérias e veias porque ele recebe os dados do instrumento de grampeamento e corte cirúrgico indicando que o instrumento está sendo disparado. De modo similar à etapa anterior, o controlador cirúrgico central 106, 206 pode derivar essa inferência ao cruzar os dados de recepção do instrumento de grampea- mento e corte cirúrgico com as etapas recuperadas no processo. Em cer- tos casos, o instrumento cirúrgico pode ser uma ferramenta cirúrgico montado em um braço robótico de um sistema cirúrgico robótico.
[00298] Na décima primeira etapa 5222, a porção de segmentec- tomia do procedimento é realizada. O controlador cirúrgico central
106, 206 pode inferir que o cirurgião está transeccionando o parên- quima com base nos dados do instrumento de grampeamento e corte cirúrgico, incluindo os dados de seu cartucho. Os dados do cartucho podem corresponder ao tamanho ou tipo de grampo sendo disparo pelo instrumento, por exemplo. Como diferentes tipos de grampos são utilizados para diferentes tipos de tecidos, os dados do cartucho podem dessa forma indicar o tipo de tecido que está sendo grampea- do e/ou transectado. Nesse caso, o tipo de grampo que é disparado é utilizado para a parênquima (ou outros tipos similares de tecido), que permite que o controlador cirúrgico central 106, 206 infira qual porção de segmentectomia do procedimento está sendo realizada.
[00299] Na décima segunda etapa 5224, a etapa de dissecção do nó é então realizada. O controlador cirúrgico central 106, 206 pode inferir que a equipe cirúrgica está dissecando o nó e realizando um teste de vazamento com base nos dados recebidos do gerador que indica qual instrumento ultrassônico ou de RF está sendo disparado. Para esse procedimento específico, um instrumento de RF ou ultras- sônico sendo utilizado depois que o parênquima foi transectado cor- responde à etapa de dissecção do nó, que permite que o controlador cirúrgico central 106, 206 faça essa inferência. Deve ser observado que os cirurgiões regularmente alternam entre os instrumentos de grampeamento cirúrgico/corte e os instrumentos de energia cirúrgica (isto é, de RF ou ultrassônica) dependendo da etapa específica no procedimento porque diferentes instrumentos são melhor adaptados para tarefas específicas. Portanto, a sequência específica na qual os instrumentos de corte/grampeamento e os instrumentos de energia cirúrgica são usados pode indicar qual etapa do procedimento o ci- rurgião é realizada. Além disso, em certos casos, ferramentas robóti- cas podem ser utilizadas para uma ou mais etapas em um procedi- mento cirúrgico e/ou instrumentos cirúrgicos de mão podem ser utili-
zados para uma ou mais etapas no procedimento cirúrgico. O cirur- gião pode alternar entre ferramentas robóticas e instrumentos cirúrgi- cos de mão e/ou pode usar os dispositivos simultaneamente, por exemplo. Após a conclusão da décima segunda etapa 5224, as inci- sões são fechadas e a porção do pós-operatório do processo se ini- cia.
[00300] Na décima terceira etapa 5226, a anestesia do paciente é revertida. O controlador cirúrgico central 106, 206 pode inferir que o paciente está emergindo da anestesia com base nos dados de ventila- dor (isto é, a frequência respiratória do paciente começa a aumentar), por exemplo.
[00301] Finalmente, na décima quarta etapa 5228 é que o pessoal médico remove os vários dispositivos de monitoramento de paciente do paciente. O controlador cirúrgico central 106, 206 pode, dessa forma, in- ferir que o paciente está sendo transferido para uma sala de recuperação quando o controlador central perde os dados de ECG, pressão sanguí- nea e outros dados dos dispositivos de monitoramento de paciente. Co- mo pode ser visto a partir da descrição deste procedimento ilustrativo, o controlador cirúrgico central 106, 206 pode determinar ou inferir quando cada etapa de um dado procedimento cirúrgico está ocorrendo de acordo com os dados recebidos das várias fontes de dados que estão acopladas em comunicação com o controlador cirúrgico central 106, 206.
[00302] O reconhecimento situacional é adicionalmente descrito no pedido de patente provisório US nº de série 62/611.341, intitulado INTE- RACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, que está aqui incorporado a título de referência em sua totalidade. Em certos casos, a operação de um sistema cirúrgico robótico, incluindo os vários sistemas cirúrgicos robóticos aqui revelados, por exemplo, pode ser controlada pelo controlador central 106, 206 com base em seu reco- nhecimento situacional e/ou nas retroinformações fornecidas por seus componentes e/ou com base nas informações provenientes da nuvem
104. Sistemas robóticos
[00303] Os sistemas cirúrgicos robóticos podem ser usados em pro- cedimentos médicos minimamente invasivos. Durante tais procedimen- tos médicos, um paciente pode ser colocado sobre uma plataforma ad- jacente a um sistema cirúrgico robótico e um cirurgião se posicionar em um console que é remoto em relação à plataforma e/ou ao robô. Por exemplo, o cirurgião pode se posicionar fora do campo estéril que cir- cunda o sítio cirúrgico. O cirurgião fornece entrada a uma interface de usuário usando um dispositivo de entrada no console para manipular uma ferramenta cirúrgica acoplada a um braço do sistema robótico. Os dispositivos de entrada podem ser dispositivos de entrada mecânica, como empunhaduras de controle ou joystick, por exemplo, ou dispositi- vos de entrada sem contato, como sensores ópticos de gesto, por exemplo.
[00304] O sistema cirúrgico robótico pode incluir uma torre robótica que suporta um ou mais braços robóticos. Pelo menos uma ferramenta cirúrgica (por exemplo um atuador de extremidade e/ou endoscópio) pode ser montada no braço robótico. A uma ou mais ferramentas ci- rúrgicas podem ser configuradas para se articular em relação ao res- pectivo braço robótico através de um conjunto de punho de articulação e/ou para transladar em relação ao braço robótico através de um me- canismo deslizante linear, por exemplo. Durante o procedimento cirúr- gico, a ferramenta cirúrgica pode ser inserida em uma pequena incisão em um paciente através de uma cânula ou trocarte, por exemplo, ou em um orifício natural do paciente para posicionar a extremidade distal da ferramenta cirúrgica no sítio cirúrgico dentro do corpo do paciente. Adicional ou alternativamente, o sistema cirúrgico robótico pode ser usado em um procedimento cirúrgico aberto em certos casos.
[00305] Um esquema do sistema cirúrgico robótico 15000 é mostrado na Figura 22. O sistema cirúrgico robótico 15000 inclui uma unidade de controle central 15002, um console do cirurgião 15012, um robô 15022 incluindo um ou mais braços robóticos 15024 e uma tela principal 15040 operacionalmente acoplada à unidade de controle 15002. O console do cirurgião 15012 inclui uma tela 15014 e pelo menos um dispositivo de entrada manual 15016 (por exemplo, chaves, botões, telas sensíveis ao toque, joysticks, gimbals, etc.) que permitem ao cirurgião telemanipular os braços robóticos 15024 do robô 15022. O leitor entenderá que disposi- tivos de entrada adicionais e alternativos podem ser empregados.
[00306] A unidade de controle central 15002 inclui um processador 15004 operacionalmente acoplado a uma memória 15006. O processa- dor 15004 inclui uma pluralidade de entradas e saídas para fazer interfa- ce com os componentes do sistema cirúrgico robótico 15000. O proces- sador 15004 pode ser configurado para receber sinais de entrada e/ou gerar sinais de saída para controlar um ou mais dos vários componentes (por exemplo, um ou mais motores, sensores e/ou telas) do sistema ci- rúrgico robótico 15000. Os sinais de saída podem incluir, e/ou podem ser baseados em, instruções de algorítmico que podem ser pré-programadas e/ou inseridas pelo cirurgião ou outro médico. O processador 15004 pode ser configurado para aceitar uma pluralidade de entradas de um usuário, como do cirurgião junto ao console 15012, e/ou pode fazer a interface com um sistema remoto. A memória 15006 pode ser direta e/ou indire- tamente acoplada ao processador 15004 para armazenar instruções e/ou bases de dados.
[00307] O robô 15022 inclui um ou mais braços robóticos 15024. Cada braço robótico 15024 inclui um ou mais motores 15026 e cada motor 15026 é acoplado a um ou mais acionadores de motor 15028. Por exemplo, os motores 15026, que podem ser atribuídos a diferentes acionadores e/ou mecanismos, podem ser alojados em um conjunto transportador ou alojamento. Em certos casos, uma transmissão in- termediária entre um motor 15026 e um ou mais acionadores 15028 pode permitir o acoplamento e o desacoplamento do motor 15026 com um ou mais acionadores 15028. Os acionadores 15028 podem ser configurados para implementar uma ou mais funções cirúrgicas. Por exemplo, um ou mais acionadores 15028 podem ser encarregados de mover um braço robótico 15024 por meio da rotação do braço robótico 15024 e/ou de uma ligação e/ou articulação do mesmo. Adicionalmen- te, um ou mais acionadores 15028 podem ser acoplados a uma ferra- menta cirúrgica 15030 e podem implementar funções como articular, girar, prender, vedar, grampear, energizar, disparar, cortar e/ou abrir, por exemplo. Em certos casos, as ferramentas cirúrgicas 15030 po- dem ser intercambiáveis e/ou substituíveis. Exemplos de sistemas ci- rúrgicos robóticos e ferramentas cirúrgicas são descritos em detalhe mais adiante.
[00308] O |leitorentenderá prontamente que o sistema cirúrgico inte- rativo implementado por computador 100 (Figura 1) e o sistema cirúr- gico interativo implementado por computador 200 (Figura 9) podem incorporar o sistema cirúrgico robótico 15000. Adicional ou alternati- vamente, o sistema cirúrgico robótico 15000 pode incluir várias carac- terísticas e/ou componentes dos sistemas cirúrgicos interativos imple- mentados por computador 100 e 200.
[00309] Em uma exemplificação, o sistema cirúrgico robótico 15000 pode abranger o sistema robótico 110 (Figura 2), que inclui o console do cirurgião 118, o robô cirúrgico 120 e o controlador central robótico
122. Adicional ou alternativamente, o sistema cirúrgico robótico 15000 pode se comunicar com outro controlador central, como o controlador cirúrgico central 106, por exemplo. Em um caso, o sistema cirúrgico robótico 15000 pode ser incorporado em um sistema cirúrgico, como o sistema cirúrgico interativo implementado por computador 100 (Figura
1) ou o sistema cirúrgico interativo implementado por computador 200 (Figura 9), por exemplo. Em tais casos, o sistema cirúrgico robótico 15000 pode interagir com a nuvem 104 ou a nuvem 204, respectiva- mente, e com o controlador cirúrgico central 106 ou o controlador ci- rúrgico central 206, respectivamente. Em certos casos, um controlador central robótico ou um controlador cirúrgico central podem incluir a unidade de controle central 15002 e/ou a unidade de controle central 15002 pode se comunicar com uma nuvem. Em outros casos, um con- trolador cirúrgico central pode incorporar uma unidade distinta que é separada da unidade de controle central 15002 e que pode se comuni- car com a unidade de controle central 15002.
[00310] Um outro sistema cirúrgico robótico é o sistema cirúrgico ro- bótico VERSIUSO da Cambridge Medical Robots Ltd. de Cambridge, Inglaterra. Um exemplo de tal sistema é representado na Figura 23. Com referência à Figura 23, o robô cirúrgico inclui um braço 14400 que se estende a partir de uma base 14401. O braço 14400 inclui uma série de segmentos rígidos 14402 que são acoplados por articulações de re- volução 14403. O segmento mais proximal 14402a é acoplado à base 14401 por uma articulação 14403a. O segmento mais proximal 14402a e os outros segmentos (por exemplo segmentos 14402b e 14402c) são acoplados em série a segmentos adicionais nas articulações 14403. Um punho 14404 pode ser composto por até quatro articulações de revolu- ção individuais. O punho 14404 acopla um segmento (por exemplo, um segmento 14402b) ao segmento mais distal (por exemplo, o segmento 14402c na Figura 23) do braço 14400. O segmento mais distal 14402c tem um anexo 14405 para uma ferramenta cirúrgica 14406. Cada articu- lação 14403 do braço 14400 tem um ou mais motores 14407, que po- dem ser operados para causar movimento giratório nas respectivas arti- culações, e um ou mais sensores de posição e/ou torque 14408, que fornecem informações sobre a carga e/ou configuração atual da articu-
lação 14403. Os motores 14407 podem ser dispostos proximalmente às articulações 14403 cujo movimento eles acionam, de modo a otimizar a distribuição do peso, por exemplo. Para fins de clareza, apenas alguns dos motores e sensores são mostrados na Figura 23. O braço 14400 pode ser conforme descrito de maneira geral no pedido de patente PCT/GB2014/053523 e na publicação de pedido de patente internacio- nal nº WO 2015/025140, intitulada DISTRIBUTOR APPARATUS WITH A PAIR OF INTERMESHING SCREW ROTORS, depositada em 18 de agosto de 2014 e publicada em 26 de fevereiro de 2015, e que está aqui incorporada por referência em sua totalidade. A detecção do torque é adicionalmente descrita na publicação de pedido de patente US nº 2016/0331482 intitulada TORQUE SENSING IN A SURGICAL ROBO- TIC WRIST, depositada em 13 de maio de 2016 e publicada em 17 de novembro de 2016, que está aqui incorporada a título de referência em sua totalidade.
[00311] O braço 14400 termina no anexo 14405 para fazer interface com o instrumento cirúrgico 14406. O anexo 14405 inclui um conjunto de acionamento para acionar a articulação da ferramenta cirúrgica
14406. Os elementos de interface móveis de um conjunto de aciona- mento interagem mecanicamente para se engatarem aos elementos de interface móveis correspondentes da interface de ferramenta para transferir os movimentos de acionamento do braço robótico 14400 pa- ra a ferramenta cirúrgica 14406. Uma ferramenta cirúrgica pode ser trocada por outra ferramenta cirúrgica uma ou mais vezes durante uma operação típica. A ferramenta cirúrgica 14406 pode ser fixável e remo- vível do braço robótico 14400 durante a operação. Recursos da inter- face do conjunto de acionamento e da interface de ferramenta podem auxiliar em seu alinhamento quando colocadas em engate entre si, de modo a reduzir a exatidão com a qual elas precisam ser alinhadas pelo usuário. Uma barra para guiar o engate de um braço robótico com uma ferramenta cirúrgica é descrita com mais detalhes na publicação de pedido de patente US nº 2017/0165012, intitulada GUIDING ENGA- GEMENT OF A ROBOT ARM AND SURGICAL INSTRUMENT, depo- sitada em 9 de dezembro de 2016 e publicada em 15 de junho de 2017, que está aqui incorporada a título de referência, em sua totali- dade.
[00312] A ferramenta cirúrgica 14406 inclui adicionalmente um atua- dor de extremidade para executar uma operação. O atuador de extremi- dade pode assumir qualquer forma adequada. Por exemplo, o atuador de extremidade pode incluir garras lisas, garras serrilhadas, uma pinça, um par de tesouras, uma agulha para sutura, uma câmera, um laser, uma faca, um grampeador, um ou mais eletrodos, uma lâmina ultrassônica, um cauterizador e/ou um dispositivo de sucção. Atuadores de extremida- de alternativos são adicionalmente descritos aqui. A ferramenta cirúrgica 14406 pode incluir uma junção de articulação entre o eixo de acionamen- to e o atuador de extremidade, que pode permitir que o atuador de ex- tremidade se mova em relação ao eixo geométrico da ferramenta. As ar- ticulações na junção de articulação podem ser atuadas por elementos de acionamento, como cabos de polia. Disposições de polias para articula- ção da ferramenta cirúrgica 14406 são descritas na publicação de pedido de patente US nº 2017/0172553, intitulada PULLEY ARRANGEMENT FOR ARTICULATING A SURGICAL INSTRUMENT, depositada em 9 de dezembro de 2016 e publicada em 22 de junho de 2017, que está aqui incorporada a título de referência em sua totalidade. Os elementos de acionamento para articular a ferramenta cirúrgica 14406 são presos a elementos de interface da interface de ferramenta. Dessa forma, o braço robótico 14400 pode transferir os movimentos de acionamento ao atua- dor de extremidade da seguinte forma: o movimento de um elemento da interface do conjunto de acionamento move um elemento da interface de ferramenta, que move um elemento de acionamento na ferramenta
14406, que move uma articulação da junção de articulação, e que move o atuador de extremidade. O controle de um braço robótico e de uma fer- ramenta, como o braço 14400 e a ferramenta 14406, é descrito com mais detalhes na publicação de pedido de patente US nº 2016/0331482, intitu- lada TORQUE SENSING IN A SURGICAL ROBOTIC WRIST, deposita- da em 13 de maio de 2016 e publicada em 17 de novembro de 2016, e na publicação de pedido de patente internacional WO 2016/116753, inti- tulada ROBOT TOOL RETRACTION, depositada em 21 de janeiro de 2016 e publicada em 28 de julho de 2016, que estão, cada uma das quais, aqui incorporadas a título de referência em sua totalidade.
[00313] Os controladores para os motores 14407 e os sensores 14408 (por exemplo, sensores de torque e codificadores) são distribuí- dos dentro do braço robótico 14400. Os controladores são conectados através de um barramento de comunicação a uma unidade de controle
14409. Exemplos de vias de comunicação em um braço robótico, como o braço 14400, são descritos com mais detalhes na publicação de pedi- do de patente US nº 2017/0021507, intitulada DRIVE MECHANISMS FOR ROBOT ARMS e na publicação de pedido de patente US nº 2017/0021508, intitulada GEAR PACKAGING FOR ROBOTIC ARMS, ambas depositadas em 22 de julho de 2016 e publicadas em 26 de ja- neiro de 2017, que estão, cada uma das quais, aqui incorporadas a títu- lo de referência em sua totalidade. A unidade de controle 14409 inclui um processador 14410 e uma memória 14411. A memória 14411 pode armazenar um software de forma não transitória, que é executável pelo processador 14410 para controlar a operação dos motores 14407 para fazer com que o braço 14400 opere da maneira aqui descrita. Em parti- cular, o software pode controlar o processador 14410 para fazer com que os motores 14407 (por exemplo, através de controladores distribuí- dos) sejam acionados dependendo das entradas fornecidas pelos sen- sores 14408 e a partir uma interface de comando do cirurgião 14412.
[00314] A unidade de controle 14409 é acoplada aos motores 14407 para acioná-los de acordo com as saídas geradas pela execu- ção do software. A unidade de controle 14409 é acoplada aos senso- res 14408 para receber as entradas detectadas pelos sensores 14408, e à interface de comando 14412 para receber dados da dita interface. Os respectivos acoplamentos podem, por exemplo, ser cada um por meio de cabos ópticos ou elétricos e/ou podem ser fornecidos por uma conexão sem fio. A interface de comando 14412 inclui um ou mais dis- positivos de entrada através dos quais um usuário pode solicitar o mo- vimento do atuador de extremidade conforme desejado. Os dispositi- vos de entrada poderiam ser, por exemplo, dispositivos de entrada mecânicos operados manualmente, como empunhaduras de controle ou joysticks, ou dispositivos de entrada sem contato, como sensores ópticos de gesto. O software armazenado na memória 14411 é confi- gurado para responder a essas entradas e fazer com que as articula- ções do braço 14400 e da ferramenta 14406 se movam de acordo, em conformidade com uma estratégia de controle predeterminada. A es- tratégia de controle pode incluir recursos de segurança que moderam o movimento do braço 144400 e da ferramenta 14406 em resposta às entradas de comando. Em resumo, um cirurgião na interface de co- mando 14412 pode controlar a ferramenta cirúrgica 14406 para movê- la para executar um procedimento cirúrgico desejado. A unidade de controle 14409 e/ou a interface de comando 14412 podem ser remotas em relação ao braço 14400.
[00315] Recursos e operações adicionais de um sistema de robô cirúrgico, como o sistema cirúrgico robótico representado na Figura 23, são adicionalmente descritos nas seguintes referências, cada uma das quais está aqui incorporada a título de referência em sua totalidade:
[00316] e Publicação de pedido de patente internacional nº WO 2016/116753, intitulada ROBOT TOOL RETRACTION, depositada em
21 de janeiro de 2016 e publicada em 28 de julho de 2016;
[00317] e Publicação de pedido de patente US nº 2016/0331482, intitulada METHOD FOR MAKING A SURGICAL STAPLER, deposi- tada em 13 de maio de 2016 e publicada em 17 de novembro de 2016;
[00318] e Publicação de pedido de patente US nº 2017/0021507, intitulada DRIVE MECHANISMS FOR ROBOT ARMS, depositada em 22 de julho de 2016 e publicada em 27 de janeiro de 2017;
[00319] e Publicação de pedido de patente US nº 2017/0021508 intitu- lada GEAR PACKAGING FOR ROBOTIC ARMS, depositada em 22 de julho 2016 e publicada em 27 de janeiro de 2017;
[00320] e Publicação de pedido de patente US nº 2017/0165012, inti- tulada GUIDING ENGAGEMENT OF A ROBOT ARM AND SURGICAL INSTRUMENT, depositada em 9 de dezembro de 2016 e publicada em de junho de 2017; e
[00321] e Publicação de pedido de patente US nº 2017/0172553, inti- tulada PULLEY ARRANGEMENT FOR ARTICULATING A SURGICAL INSTRUMENT, depositada em 9 de dezembro de 2016 e publicada em 22 de junho de 2017.
[00322] Em uma instância, os sistemas cirúrgicos robóticos e recur- sos aqui revelados podem ser empregados com o sistema cirúrgico robótico VERSIUSO e/ou o sistema cirúrgico robótico da Figura 23. O leitor entenderá ainda que os vários sistemas e/ou recursos aqui reve- lados aqui podem ser empregados também com sistemas cirúrgicos alternativos incluindo o sistema cirúrgico interativo implementado por computador 100, o sistema cirúrgico interativo implementado por com- putador 200, o sistema cirúrgico robótico 110, o controlador central ro- bótico 122, o controlador central robótico 222 e/ou o sistema cirúrgico robótico 15000, por exemplo.
[00323] Em vários casos, um sistema cirúrgico robótico pode incluir uma torre de controle robótico, que pode alojar a unidade de controle do sistema. Por exemplo, a unidade de controle 14409 do sistema cirúrgico robótico representado na Figura 23 pode ser alojada no interior de uma torre de controle robótico. A torre de controle robótico pode incluir um controlador central robótico, como um controlador central robótico 122 (Figura 2) ou o controlador central robótico 222 (Figura 9), por exemplo. Tal controlador central robótico pode incluir uma interface modular para acoplamento com um ou mais geradores, como um gerador ultrassônico e/ou um gerador de radiofrequência, e/ou um ou mais módulos, como um módulo de imageamento, um módulo de sucção, um módulo de irrigação, um módulo de evacuação de fumaça e/ou um módulo de comunicação, por exemplo.
[00324] O leitor entenderá prontamente que o sistema cirúrgico intera- tivo implementado por computador 100 (Figura 1) e o sistema cirúrgico interativo implementado por computador 200 (Figura 9) aqui revelados podem incorporar o braço robótico 14400. Adicional ou alternativamente, o sistema cirúrgico robótico representado na Figura 23 pode incluir vários recursos e/ou componentes dos sistemas cirúrgicos interativos imple- mentados por computador 100 e 200.
[00325] Um controlador central robótico pode incluir um módulo de reconhecimento situacional, que pode ser configurado para sintetizar dados recebidos de várias fontes para determinar uma resposta ade- quada a um evento cirúrgico. Por exemplo, um módulo de reconheci- mento situacional pode determinar o tipo de procedimento cirúrgico, a etapa no procedimento cirúrgico, o tipo de tecido e/ou características do tecido, conforme adicionalmente descrito no presente documento. Além disso, tal módulo pode recomendar um curso específico de ação ou escolhas possíveis para o sistema robótico com base nos dados sintetizados. Em vários casos, um sistema de detecção que abrange uma pluralidade de sensores distribuídos por todo o sistema robótico pode fornecer dados, imagens e/ou outras informações para o módulo de reconhecimento situacional. Tal módulo de reconhecimento situaci- onal pode ser incorporado a uma unidade de controle, como a unidade de controle 14409, por exemplo. Em vários casos, o módulo de reco- nhecimento situacional pode obter dados e/ou informações de um con- trolador cirúrgico central não robótico e/ou uma nuvem, como o contro- lador cirúrgico central 106, o controlador cirúrgico central 206, a nuvem 104 e/ou a nuvem 204, por exemplo. O reconhecimento situacional de um sistema cirúrgico é adicionalmente revelado aqui e no pedido de patente provisório US nº de série 62/611.341, intitulado INTERACTIVE SURGICAL PLATFORM, depositado em 28 de dezembro de 2017, e no pedido de patente provisório US nº. de série 62/611340, intitulado CLOUD-BASED MEDICAL ANALYTICS, depositado em 28 de dezem- bro de 2017, que estão, cada um dos quais, aqui incorporados a título de referência em sua totalidade.
[00326] “Novamente com referência à Figura 23, o braço robótico 14400 não inclui um mecanismo deslizante linear para mover a ferramen- ta cirúrgica fixada 14406 ao longo de um eixo geométrico longitudinal da ferramenta 14406. Em vez disso, os segmentos 14402 do braço 14400 são configurados para girar em torno de várias articulações 14403 do braço 14400 para mover a ferramenta cirúrgica 14406. Em outras pala- vras, mesmo o movimento da ferramenta cirúrgica 14406 ao longo de seu eixo geométrico longitudinal Ar exige a articulação de vários seg- mentos 14402. Por exemplo, para mover a ferramenta cirúrgica 14406 ao longo do eixo geométrico longitudinal Ar, o braço robótico 14400 se mo- veria em múltiplas articulações de revolução 14403 da mesma. Com efei- to, o deslocamento linear da ferramenta 14406 para estender o atuador de extremidade através de um trocarte, retrair o atuador de extremidade do trocarte e/ou para deslocamentos localizados da ferramenta cirúrgica 14406 ao longo do eixo geométrico longitudinal Ar, como durante um processo de sutura, por exemplo, exigiria a atuação de múltiplas articula- ções de revolução 14403 e o movimento correspondente de múltiplas porções de segmentos rígidos 14402 do braço 14400.
[00327] Nos casos em que um sistema cirúrgico robótico é despro- vido de um mecanismo deslizante linear, conforme aqui descrito, sis- temas de detecção inteligente, vias de comunicação adicionais e/ou telas interativas podem permitir um controle mais preciso do braço robótico que inclui a aplicação de movimentos de controle que envol- vem um deslocamento linear da ferramenta cirúrgica ao longo de um eixo geométrico da mesma. Por exemplo, para assegurar o posicio- namento preciso da ferramenta 14406 e para evitar colisões involun- tárias dentro de uma sala de operação, pode ser desejável incluir sis- temas adicionais no sistema robótico para determinar a posição de um instrumento cirúrgico 14406 e/ou porções do braço robótico 14400, para reposicionamento do braço robótico 14400 a partir de dentro do campo estéril, para informar a posição da ferramenta cirúr- gica 14406 em relação ao sítio cirúrgico, para visualizar a ferramenta cirúrgica 14406 no sítio cirúrgico e/ou para manipular a ferramenta cirúrgica 14406 pelo sítio cirúrgico, por exemplo.
[00328] Em um aspecto, um sistema cirúrgico robótico pode incluir um mecanismo de controle primário para posicionar a ferramenta e um meio secundário para medir, diretamente e/ou independentemente, a posição da ferramenta. Em um aspecto, um sistema de detecção redundante ou secundário pode ser configurado para determinar e/ou verificar uma po- sição de um braço robótico e/ou de uma ferramenta cirúrgica fixada ao braço robótico. O sistema de detecção secundário pode ser independen- te de um sistema de detecção primário.
[00329] Em um caso,o mecanismo de controle primário pode se ba- sear na retroalimentação de circuito fechado para calcular a posição da ferramenta. Por exemplo, uma unidade de controle de um sistema cirúr-
gico robótico pode emitir movimentos de controle para o braço robótico, incluindo os vários motores e/ou de acionadores dos mesmos para mo- ver porções do braço robótico em um espaço tridimensional, conforme descrito adicionalmente no presente documento. Tal unidade de controle pode determinar a posição e/ou a orientação das porções do braço robó- tico com base em sensores de torque nos motores e/ou sensores de des- locamento nos acionadores, por exemplo. Em tais casos, as posições da ferramenta cirúrgica, do atuador de extremidade e/ou dos componentes da mesma podem ser determinadas por sensores localizados proximal- mente. Os sensores localizados proximalmente podem estar situados em um gabinete proximal ou porção de montagem da ferramenta e/ou do braço robótico. Em um caso, tais sensores localizados proximalmente podem ser posicionados fora do campo estéril, por exemplo. A posição de uma ferramenta cirúrgica montada em um braço robótico pode ser determinada medindo-se o(s) ângulo(s) de cada articulação do braço, por exemplo. A unidade de controle e os sensores em comunicação com a mesma, que determinam a posição do braço com base nos movimentos de controle aplicados ao mesmo, podem ser considerados um primeiro sistema de detecção ou um sistema de detecção primário do sistema ci- rúrgico robótico.
[00330] Em adição a um sistema de detecção primário, conforme aqui descrito, um sistema de detecção redundante ou secundário pode ser empregado pelo sistema cirúrgico robótico. O sistema de detecção secundário pode incluir um ou mais sensores localizados distalmente. Os sensores localizados distalmente podem ser posicionados dentro do campo estéril e/ou no atuador de extremidade, por exemplo. Os sensores localizados distalmente são distais aos sensores localizados proximalmente do sistema de detecção primário, por exemplo. Em um exemplo, os sensores localizados distalmente podem ser sensores "lo- cais" pois estão próximos ao campo estéril e/ou ao sítio cirúrgico, e os sensores proximalmente localizados podem ser sensores "remotos" pois estão afastados do campo estéril e/ou do sítio cirúrgico.
[00331] Agora com referência à Figura 31, são representadas es- quematicamente porções de um sistema cirúrgico robótico 14300. O sistema cirúrgico 14300 é similar, em muitos aspectos, ao sistema robótico cirúrgico da Figura 23. Por exemplo, o sistema cirúrgico ro- bótico 14300 inclui uma pluralidade de componentes móveis 14302. Em um aspecto, os componentes móveis 14302 são segmentos rígi- dos que são mecanicamente acoplados em série nas articulações de revolução. Tais componentes móveis 14302 podem formar um braço robótico, similar ao braço robótico 14440 (Figura 23), por exemplo. O componente mais distal 14302 inclui um anexo para fixar de modo liberável as ferramentas cirúrgicas intercambiáveis, como a ferramen- ta cirúrgica 14306, por exemplo. Cada componente 14302 do braço robótico tem um ou mais motores 14307 e acionadores de motor 14314, que podem ser operados para afetar o movimento giratório nas respectivas articulações.
[00332] Cada componente 14302 inclui um ou mais sensores 14308, que podem ser sensores de posição e/ou sensores de torque, por exem- plo. Os sensores 14308 podem fornecer informações sobre a configura- ção atual e/ou carga nas respectivas articulações entre os componentes
14402. Os motores 14307 podem ser controlados por uma unidade de controle 14309, que é configurada para receber entradas dos sensores 14308 e/ou de uma interface de comando cirúrgico, como a interface de comando cirúrgico 14412 (Figura 23), por exemplo.
[00333] Um sistema de detecção primário 14310 é incorporado à unidade de controle 14309. Em um aspecto, o sistema de detecção primário 14310 pode ser configurado para detectar a posição de um ou mais componentes 14302. Por exemplo, o sistema de detecção primá- rio 14310 pode incluir os sensores 14308 para os motores 14307 e/ou os acionadores 14314. Tais sensores 14308 são afastados do pacien- te P e situados fora do campo estéril. Embora localizado fora do cam- po estéril, o sistema de detecção primário 14310 pode ser configurado para detectar as respectivas posições do um ou mais componentes 14302 e/ou da ferramenta 14306 no campo estéril, como na posição da extremidade distal do braço robótico e/ou da porção de fixação do mesmo. Com base na posição do braço robótico 14302 e dos seus componentes, a unidade de controle 14309 pode extrapolar a posição da ferramenta cirúrgica 14306, por exemplo.
[00334] O sistema cirúrgico robótico 14300 da Figura 31 inclui também um sistema de detecção secundário 14312 para rastrear di- retamente a posição e/ou orientação ou várias partes do sistema ci- rúrgico robótico 14300 e/ou partes de um sistema não robótico asso- ciado, como instrumentos cirúrgicos de mão 14350. Ainda com refe- rência à Figura 31, o sistema de detecção secundário 14312 inclui um emissor de campo magnético 14320 que é configurado para emitir um campo magnético próximo a um ou mais sensores magnéticos para detectar suas posições. Os componentes 14302 do braço robótico incluem sensores magnéticos 14322, que podem ser usados para determinar e/ou verificar a posição dos respectivos componentes
14302. Os sensores magnéticos 14322 são remotos aos motores 14307 e aos acionadores 14308, por exemplo. Em qualquer caso, o torque no motor e/ou o deslocamento de um acionador pode não afe- tar a saída dos sensores magnéticos. Consequentemente, os siste- mas de detecção são independentes.
[00335] Em certos casos, os sensores magnéticos 14322 podem ser posicionados dentro do campo estéril. Por exemplo, a ferramenta cirúrgica 14306 pode incluir o sensor magnético 14324, que pode ser usado para determinar e/ou verificar a posição da ferramenta cirúrgi- ca 14306 fixada ao braço robótico e/ou para determinar e/ou verificar a posição de um componente da ferramenta cirúrgica 14306, como um elemento de disparo, por exemplo. Adicional ou alternativamente, um ou mais sensores de paciente 14326 podem ser posicionados no interior do paciente P para medir o local e/ou a orientação anatômica do paciente. Adicional ou alternativamente, um ou mais sensores de trocarte 14328 podem ser posicionados em um trocarte 14330 para medir a localização e/ou a orientação do trocarte, por exemplo.
[00336] Com referência novamente ao braço robótico 14400 repre- sentado na Figura 23, a ferramenta cirúrgica 14406 é fixada à porção de fixação 14405 na extremidade distal do braço robótico 14400. Quando a ferramenta cirúrgica 14406 é posicionada dentro de um trocarte, o siste- ma cirúrgico robótico pode estabelecer um pivô virtual que pode ser fixa- do pelo sistema cirúrgico robótico, de modo que o braço 14400 e/ou a ferramenta cirúrgica 14406 possam ser manipulados ao seu redor para evitar e/ou minimizar a aplicação de forças laterais ao trocarte. Em certos casos, a aplicação de força(s) ao trocarte pode danificar o tecido circun- dante, por exemplo. Dessa forma, para evitar danos involuntários ao te- cido, o braço robótico 14400 e/ou o instrumento cirúrgico 14406 podem ser configurados para se mover ao redor do eixo de pivô virtual do trocar- te sem perturbar a posição do mesmo e, dessa forma, sem perturbar a posição correspondente do trocarte. Mesmo quando se aplica um deslo- camento linear da ferramenta cirúrgica 14406 para entrar ou sair do tro- carte, o pivô virtual pode permanecer inalterado.
[00337] Em um aspecto, o(s) sensor(es) de trocarte 14328 na Figura 31A pode(m) ser posicionado(s) em um eixo de pivô virtual 14332 no tro- carte 14330. Em outras instâncias, os sensores de trocarte 14328 podem ser adjacentes ao pivô virtual 14332. A colocação dos sensores de tro- carte 14328 no, e/ou adjacente ao, seu pivô virtual 14332, permite rastre- ar a posição do trocarte 14330 e do pivô virtual 14332, e ajuda a garantir que o trocarte 14330 não se irá se mover durante o deslocamento da fer-
ramenta cirúrgica 14306, por exemplo. Em tais casos, sem fisicamente engatar ou segurar o trocarte 14330, o sistema cirúrgico robótico 14300 pode confirmar e/ou manter o local do trocarte 14330. Por exemplo, o sistema de detecção secundário 14312 pode confirmar a localização do pivô virtual 14332 do trocarte 14330 e da ferramenta cirúrgica 14306 em relação ao mesmo.
[00338] Adicional ou alternativamente, um ou mais sensores 14352 podem ser posicionados em um ou mais instrumentos cirúrgicos de mão 14350, que podem ser empregados durante um procedimento cirúrgico em combinação com as ferramentas cirúrgicas 14306 utiliza- das pelo sistema cirúrgico robótico 14300.O sistema de detecção se- cundário 14312 é configurado para detectar a posição e/ou orientação de um ou mais instrumentos cirúrgicos de mão 14350 dentro do campo ci- rúrgico, por exemplo, dentro da sala de operação e/ou do campo estéril. Tais instrumentos cirúrgicos de mão 14350 podem incluir unidades de controle autônomas, que podem não ser controladas roboticamente, por exemplo. Conforme mostrado na Figura 31, os instrumentos cirúrgicos de mão 14350 podem incluir sensores 14352, que podem ser detectados pelo emissor de campo magnético 14320, por exemplo, de modo que a posição e/ou a localização dos instrumentos cirúrgicos de mão 14350 possam ser verificadas pelo sistema cirúrgico robótico 14300. Em outras instâncias, os componentes dos instrumentos cirúrgicos de mão 14350 podem fornecer uma saída detectável. Por exemplo, um motor e/ou uma bateria podem ser detectáveis por um sensor na sala de operação.
[00339] Em um aspecto, o emissor de campo magnético 14320 pode ser incorporado em uma torre robótica principal. Os sensores 14322, 14324, 14326, 14328 e/ou 14352 dentro do campo estéril po- dem refletir o campo magnético de volta para a torre robótica princi- pal para identificar as posições dos mesmos. Em vários casos, os dados do emissor de campo magnético 14320 podem ser comunica-
dos para uma tela 14340, de modo que as posições dos vários com- ponentes do robô cirúrgico, ferramenta cirúrgica 14302, trocarte 14330, paciente P e/ou instrumentos cirúrgicos de mão 14350 pos- sam ser sobrepostas em uma visualização em tempo real do sítio ci- rúrgico, como as vistas obtidas por um endoscópio no sítio cirúrgico. Por exemplo, a tela 14340 pode estar em comunicação de sinal com a unidade de controle do sistema cirúrgico robótico e/ou com um con- trolador central robótico, como o controlador central 106, o controla- dor central robótico 122, o controlador central 206 e/ou o controlador central robótico 222 (Figura 9), por exemplo.
[00340] Em outros casos, o emissor de campo magnético 14320 pode ser externo à torre de controle robótico. Por exemplo, o emissor de campo magnético 14320 pode ser incorporado em um controlador central.
[00341] De modo similar ao sistema de detecção secundário 14312, o qual inclui o emissor de campo magnético 14320, em certos casos, os sensores ToF ("time-of-flight", ou tempo de voo) podem ser posicionados em um ou mais dentre: componentes de robôs 14302, ferramentas cirúrgicas 14306, pacientes P, trocartes 14328 e/ou ins- trumentos cirúrgicos de mão 14350 para fornecer uma matriz de dis- tâncias entre os pontos emissores e refletores. Tais sensores ToF podem fornecer detecção primária ou secundária (por exemplo, re- dundante) da posição dos componentes de robô 14302, ferramentas cirúrgicas 14306, pacientes P, trocartes 14328 e/ou instrumentos ci- rúrgicos de mão 14350, por exemplo. Em um caso, os sensores ToF podem empregar um pulso de luz infravermelha para fornecer o ma- peamento de distância e/ou facilitar o imageamento 3D dentro do campo estéril.
[00342] Em um caso, o sistema de detecção secundário 14312 pode incluir um sistema de detecção redundante que é configurado para con-
firmar a posição dos componentes e/ou ferramentas robóticos. Adicional ou alternativamente, o sistema de detecção secundário 14312 pode ser usado para calibrar o sistema de detecção primário 14310. Adicional ou alternativamente, o sistema de detecção secundário 14312 pode ser con- figurado para evitar entrelaçamento e/ou colisões involuntárias entre os braços robóticos e/ou componentes de um sistema cirúrgico robótico.
[00343] Novamente com referência à Figura 31, em um caso, os componentes 14302 do sistema cirúrgico robótico 14300 podem cor- responder a braços robóticos distintos, como os braços robóticos 15024 no sistema cirúrgico robótico 15000 (Figura 22) e/ou os braços robóticos representados na Figura 2, por exemplo. O sistema de de- tecção secundário 14312 pode ser configurado para detectar a posi- ção dos braços robóticos e/ou porções dos mesmos, à medida que os múltiplos braços são manipulados na sala de cirurgia. Em certos ca- sos, se um ou mais braços forem comandados para se mover em di- reção a uma possível colisão, o sistema de detecção secundário 14312 pode alertar o cirurgião através de um alarme e/ou uma indi- cação no console do cirurgião para evitar tal colisão involuntária dos braços.
[00344] Agora com referência à Figura 32, é mostrado um fluxo- grama para um sistema cirúrgico robótico. O fluxograma pode ser uti- lizado pelo sistema cirúrgico robótico 14300 (Figura 31), por exemplo. Em vários casos, dois sistemas de detecção independentes podem ser configurados para detectar a localização e/ou a orientação de um componente cirúrgico, como uma porção de um braço robótico e/ou uma ferramenta cirúrgica. O primeiro sistema de detecção, ou siste- ma de detecção primário, pode se basear nos sensores de carga e/ou de torque nos motores e/ou acionadores de motor do braço robótico. O segundo sistema de detecção, ou sistema de detecção secundário, pode se basear nos sensores ToF e/ou magnéticos do braço robótico e/ou da ferramenta cirúrgica. O primeiro e o segundo sistemas de de- tecção são configurados para operar de forma independente e em paralelo. Por exemplo, na etapa 14502, o primeiro sistema de detec- ção determina a localização e a orientação de um componente robó- tico e, na etapa 14504, ele comunica a localização e a orientação de- tectadas para uma unidade de controle. Simultaneamente, na etapa 14506, o segundo sistema de detecção determina a localização e a orientação do componente robótico e, na etapa 14508, ele comunica a localização e a orientação detectadas para a unidade de controle.
[00345] As localizações e as orientações determinadas de modo in- dependente do componente robótico são comunicadas a uma unidade de controle central na etapa 14510, como a unidade de controle robótica 14309, e/ou a um controlador cirúrgico central. Mediante comparação das localizações e/ou orientações, os movimentos de controle do com- ponente robótico podem ser otimizados na etapa 14512. Por exemplo, discrepâncias entre as posições determinadas de modo independente podem ser usadas para melhorar a exatidão e a precisão dos movimen- tos de controle. Em certos casos, a unidade de controle pode calibrar os movimentos de controle com base na retroinformação fornecida pelo sis- tema de detecção secundário. Os dados provenientes dos sistemas de detecção primário e secundário podem ser agregados por um controlador central, como o controlador central 106 ou o controlador central 206, por exemplo, e/ou armazenados em uma nuvem, como a nuvem 104 ou a nuvem 204, por exemplo, para otimizar adicionalmente os movimentos de controle do sistema cirúrgico robótico.
[00346] Em certos casos, o sistema robótico 14300 pode estar em comunicação de sinal com um controlador central, como o controlador central 106 ou o controlador central 206, por exemplo. O controlador cen- tral 106, 206 pode incluir um módulo de reconhecimento situacional, con- forme adicionalmente descrito no presente documento. Em um aspecto,
ao menos um dentre o primeiro sistema de detecção 14310 e o segundo sistema de detecção 14312 é uma fonte de dados para o módulo de re- conhecimento situacional. Por exemplo, os sistemas de detecção 14310 e 14312 podem fornecer dados de posição para o módulo de reconheci- mento situacional. Adicionalmente, o controlador central 106, 206 pode ser configurado para otimizar e/ou calibrar os movimentos de controle do braço robótico 14300 e/ou da ferramenta cirúrgica 14306 com base nos dados provenientes dos sistemas de detecção em combinação com o reconhecimento situacional, por exemplo. Em um aspecto, um sistema de detecção, como o sistema de detecção secundário 14312 pode infor- mar o controlador central 106, 206 e o módulo de reconhecimento situa- cional do mesmo quando um instrumento cirúrgico de mão 14350 entrou na sala de operação ou sala de cirurgia e/ou quando um atuador de ex- tremidade foi disparado, por exemplo. Com base nessa informação, o controlador central 106, 206 pode determinar e/ou confirmar o procedi- mento cirúrgico particular e/ou sua etapa.
[00347] O leitor entenderá que vários sistemas de detecção inde- pendentes e redundantes aqui revelados podem ser utilizados por um sistema cirúrgico robótico para otimizar a exatidão dos movimentos de controle, especialmente quando a ferramenta cirúrgica é movida ao longo de um eixo geométrico longitudinal sem depender de um mecanismo deslizante linear, por exemplo.
[00348] Em um aspecto, o controlador cirúrgico central inclui um processador e uma memória acoplada em comunicação com o pro- cessador, conforme aqui descrito. A memória armazena instruções executáveis pelo processador para detectar uma posição de um com- ponente controlado roboticamente independente de um sistema de de- tecção primário, conforme descrito acima.
[00349] Em vários aspectos, a presente revelação fornece um cir- cuito de controle configurado para detectar uma posição de um com-
ponente controlado roboticamente independente de um sistema de detecção primário, conforme descrito acima. Em vários aspectos, a presente revelação fornece uma mídia não transitória legível por computador que armazena instruções legíveis por computador que, quando executadas, fazem com que uma máquina detecte uma posi- ção de um componente controlado roboticamente independente de um sistema de detecção primário, conforme descrito acima.
[00350] Em um aspecto, um sistema cirúrgico robótico pode ser configurado para se comunicar por meio de conexão sem fio com uma ou mais ferramentas cirúrgicas inteligentes montadas em um braço robótico do mesmo. A unidade de controle do sistema robótico pode se comunicar com a uma ou mais ferramentas cirúrgicas inteligentes através de uma conexão sem fio, por exemplo. Adicional ou alternati- vamente, o sistema cirúrgico robótico pode incluir um controlador cen- tral robótico, que pode se comunicar por meio de conexão sem fio com a(s) ferramenta(s) cirúrgica(s) inteligente(s) montada(s) no(s) braço(s) robótico(s). Em ainda outros casos, um controlador cirúrgico central não robótico pode se comunicar por meio de conexão sem fio com a(s) ferramenta(s) cirúrgica(s) inteligente(s) montada(s) em um braço robó- tico. Em certos casos, informações e/ou comandos podem ser forneci- dos para a(s) ferramenta(s) cirúrgica(s) inteligente(s) a partir da unida- de de controle através da conexão sem fio. Por exemplo, certas fun- ções de uma ferramenta cirúrgica podem ser controladas através de dados recebidos através de um link de comunicação sem fio na ferra- menta cirúrgica. De modo similar, em um aspecto, a retroinformação de circuito fechado pode ser fornecida ao sistema cirúrgico robótico através de dados recebidos através do link de comunicação sem fio da ferramenta cirúrgica.
[00351] Com referência principalmente às Figuras 28 a 30, uma ferramenta cirúrgica 14206 é montada em um braço robótico 14000 de um robô cirúrgico. O braço robótico 14000 é similar, em muitos aspectos, ao braço robótico 14400 da Figura 23. Por exemplo, o bra- ço 14000 inclui uma pluralidade de componentes móveis 14002. Em um aspecto, os componentes móveis 14002 são segmentos rígidos que são mecanicamente acoplados em série nas articulações de re- volução 14003. Tais componentes móveis 14002 formam o braço ro- bótico 14400, similar ao braço 14400 (Figura 23), por exemplo. Um componente mais distal 14002c do braço robótico 14400 inclui um anexo 14005 para fixar de modo liberável ferramentas cirúrgicas in- tercambiáveis, como a ferramenta cirúrgica 14206. Cada componente 14002 do braço 14000 tem um ou mais motores e acionadores de motor, que podem ser operados para afetar o movimento giratório na respectiva articulação 14003.
[00352] Cada componente 14002 inclui um ou mais sensores, que podem ser sensores de posição e/ou sensores de torque, por exemplo, e podem fornecer informações sobre a configuração e/ou carga atual nas respectivas articulações entre os componentes 14002. Os motores podem ser controlados pela unidade de controle, como a unidade de controle 14409 (Figura 23), que é configurada para receber entradas dos sensores 14008 e/ou de uma interface de comando, como o con- sole de comando do cirurgião 14412 (Figura 23), por exemplo.
[00353] A ferramenta cirúrgica 14206 é um grampeador linear que inclui um módulo de comunicação sem fio 14208 (Figura 29). O grampeador linear pode ser um grampeador linear inteligente e pode incluir um cartucho de prendedores inteligente, um atuador de extre- midade inteligente e/ou um eixo de acionamento inteligente, por exemplo. Os componentes cirúrgicos inteligentes podem ser configu- rados para determinar várias propriedades do tecido, por exemplo. Em um exemplo, uma ou mais funções avançadas de atuador de ex- tremidade podem ser implementadas com base nas propriedades de tecido detectadas. O atuador de extremidade cirúrgico pode incluir um ou mais sensores para determinar espessura, compressão e/ou impedância do tecido, por exemplo. Além disso, certos parâmetros detectados podem indicar variações no tecido, como a localização de um tumor, por exemplo. Dispositivos cirúrgicos inteligentes para de- tectar várias propriedades do tecido são adicionalmente apresenta- dos nas seguintes referências:
[00354] e Patente US nº 9.757.128, depositada em 5 de setembro de 2014, intitulada MULTIPLE SENSORS WITH ONE SENSOR AF- FECTING A SECOND SENSOR'S OUTPUT OR INTERPRETATION, concedida em 12 de setembro de 2017;
[00355] e Pedido de patente US nº 14/640.935, intitulado OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, depositado em 6 de março de 2015, agora publicação de pedido de patente US nº 2016/0256071, pu- blicado em 8 de setembro de 2016;
[00356] e Pedido de patente US nº 15/382.238, intitulado MODULAR
BATTERY POWERED HANDHELD SURGICAL INSTRUMENT WITH SELECTIVE APPLICATION OF ENERGY BASED ON TISSUE CHA- RACTERIZATION, depositado em 16 de dezembro de 2016, agora publi- cação de pedido de patente 2017/0202591, publicado em 20 de julho de 2017;e
[00357] e Pedido de patente US nº 15/237.753, intitulado CON- TROL OF ADVANCEMENT RATE AND APPLICATION FORCE BA- SED ON MEASURED FORCES, depositado em 16 de agosto de 2016, agora publicação de pedido de patente US nº 2018/0049822, publicado em 22 de fevereiro de 2018;
[00358] que estão, cada um dos quais, aqui incorporados por refe- rência em sua totalidade.
[00359] — Conforme representado na Figura 28, um link de comunica-
ção sem fio 14210 é fornecido entre a ferramenta cirúrgica 14206 e um controlador central 14212. O controlador central 14212 é um controlador cirúrgico central, como o controlador central 106 ou o controlador central 206, por exemplo. Em outros casos, o controlador central 14212 pode ser um controlador central robótico, como o controlador central robótico 122 ou o controlador central robótico 222, por exemplo. Na Figura 28, o mó- dulo de comunicação sem fio 14208 inclui um transmissor de sinal sem fio que está situado próximo à extremidade distal do atuador de extremi- dade da ferramenta cirúrgica 14206. Em outros casos, o transmissor sem fio pode ser posicionado em uma porção proximal do atuador de extremi- dade ou sobre o eixo de acionamento da ferramenta cirúrgica 14206.
[00360] O linkde comunicação sem fio 14212 entre a ferramenta cirúrgica 14206 e o controlador cirúrgico central 14212 possibilita a transferência de dados em tempo real através de uma barreira estéril
14230. Adicional ou alternativamente, o módulo de comunicação sem fio 14208 pode ser configurado para se comunicar com uma torre de controle robótico e/ou a unidade de controle, que emite os movimentos de controle para o braço robótico 14000 e atuações para a ferramenta cirúrgica 14206 com base nas entradas no console de comando do cirurgião. Em certos casos, a unidade de controle para o braço robóti- co 14000 pode ser incorporada ao controlador cirúrgico central 14212 e/ou um controlador central robótico, como o controlador central robó- tico 122 (Figura 2) ou o controlador central robótico 222 (Figura 9), por exemplo.
[00361] Em certos casos, pode ser difícil confirmar a posição da fer- ramenta cirúrgica 14206 dentro da sala de cirurgia, pelo sítio cirúrgico e/ou em relação ao tecido-alvo. Por exemplo, o deslocamento lateral da ferramenta cirúrgica 14206 pode ser restringido por uma separação físi- ca, como um trocarte que se estende longitudinalmente, por exemplo. Em tais casos, o deslocamento lateral da ferramenta cirúrgica 14206 po-
de ser determinado por uma força de resistência exercida pelo trocarte ou sobre ele. Por outro lado, o deslocamento linear da ferramenta cirúrgi- ca 14206 pode não ser restringido por separações físicas do sistema ci- rúrgico. Em tais casos, quando a unidade de controle direciona o deslo- camento linear da ferramenta cirúrgica 14206 ou uma porção da mesma, e as várias ligações móveis 14002 e articulações 14003 se articulam pa- ra afetar o deslocamento linear, pode ser difícil determinar e/ou confirmar a posição da ferramenta cirúrgica 14206 e das respectivas porções da mesma.
[00362] Quando a ferramenta cirúrgica 14206 é movida ao longo do eixo geométrico longitudinal da ferramenta Ar (Figura 29), que é coline- ar com o eixo de acionamento da ferramenta cirúrgica 14206, pode ser difícil determinar e/ou confirmar a posição exata da ferramenta cirúrgica
14206. Em certos casos, conforme aqui fornecido, o sistema cirúrgico robótico pode incluir um sistema de detecção secundário, que é configu- rado para detectar a posição da ferramenta cirúrgica 14206. Por exem- plo, o módulo de comunicação sem fio 14208 pode estar em comunica- ção de sinal com um sistema de detecção secundário, como o sistema de detecção secundário 14312 (Figura 31) do sistema e/ou um sensor do mesmo. Além disso, o módulo de comunicação sem fio 14208 pode comunicar a posição da ferramenta cirúrgica 14206, conforme detecta- da pelo sistema de detecção secundário 14312, para o controlador ci- rúrgico central 14212 através do link de comunicação sem fio 14210. Adicional ou alternativamente, o módulo de comunicação sem fio 14208 pode comunicar informações de vários sensores e/ou sistemas da fer- ramenta cirúrgica inteligente 14206 para o controlador cirúrgico central
14212. O controlador cirúrgico central 14212 pode disseminar as infor- mações para exibição dentro da sala de operação ou telas externas, para uma nuvem e/ou para um ou mais controladores centrais e/ou uni- dades de controle usadas em conexão com o procedimento cirúrgico.
[00363] Com referência principalmente à Figura 29, em uma instân- cia, a ferramenta cirúrgica 14206 pode ser usada para remover um tumor canceroso 14242 de um tecido T do paciente. Para assegurar a remoção completa do tumor 14242 e ao mesmo tempo minimizar a remoção do tecido saudável, uma zona de margem predefinida 14240 pode ser definida em torno do tumor 14242. A zona de margem pode ser determinada pelo cirurgião com base nos dados do paciente, da- dos agregados recebidos de um controlador central e/ou de uma nu- vem, e/ou dados detectados por um ou mais componentes inteligentes do sistema cirúrgico, por exemplo. Durante a operação, a ferramenta cirúrgica 14206 pode transeccionar o tecido T ao longo da zona de margem 14240 de modo que a zona de margem 14240 seja removida juntamente com o tumor 14242. Os sistemas de detecção primário e secundário 14310 e 14312 (Figura 31) podem determinar a posição da ferramenta cirúrgica 14206 em relação à zona de margem, por exem- plo. Além disso, o módulo de comunicação sem fio 14208 pode comu- nicar a(s) posição(ões) detectada(s) à unidade de controle.
[00364] Em certos casos, o sistema robótico das Figuras 28 a 30 po- de ser configurado para atuar (por exemplo, disparar) a ferramenta cirúr- gica 14206 quando a ferramenta cirúrgica 14206 se move no interior da zona de margem 14240. Por exemplo, com referência principalmente à Figura 30, é mostrada um gráfico 14250 de distância e força para fechar plotado em função do tempo para o grampeador linear 14206 durante o procedimento cirúrgico da Figura 28. Conforme a ferramenta cirúrgica 14206 se aproxima da zona de margem 14240 no tempo ti, a força para fechar (FTC) aumenta indicando que a ferramenta cirúrgica 14206 está sendo presa ao tecido T em torno do tumor 14242 entre o tempo tr e o tempo t2. Mais especificamente, a ferramenta cirúrgica 14206 é presa quando movida para a posição a uma distância entre as distâncias D, e D2. A distância D; pode se referir ao contorno externo da zona de mar-
gem 14240 em torno do tumor 14242, por exemplo, e a distância Dz pode se referir ao contorno interno da zona de margem 14240, que pode ser presumida como o contorno do tumor 14242, por exemplo.
[00365] Em vários casos, a unidade de controle e o processador da mesma podem automaticamente afetar o movimento de preensão quando a ferramenta cirúrgica 14206 é posicionada a uma distância adequada com base na entrada recebida um sistema de detecção pri- mário e/ou de um sistema de detecção secundário. Em outros casos, a unidade de controle e o processador da mesma podem automatica- mente alertar o cirurgião de que a ferramenta cirúrgica 14206 está po- sicionada em uma distância adequada. De modo similar, em certos casos, o processador pode disparar automaticamente a ferramenta cirúrgica 14206 e/ou sugerir ao cirurgião que a ferramenta cirúrgica 14206 pode ser disparada com base na(s) posição(ões) detectada(s) da ferramenta cirúrgica 14206. O leitor irá prontamente perceber que outros movimentos de atuação podem ser contemplados, como ener- gizar uma ferramenta de energia e/ou articular um atuador de extremi- dade articulável, por exemplo.
[00366] Em certos casos, o controlador central 14212 pode incluir um sistema de reconhecimento situacional, conforme descrito adicio- nalmente no presente documento. Em um aspecto, a posição do tu- mor 14242 e/ou a zona de margem 14240 em torno do mesmo pode ser determinada pelo módulo ou sistema de reconhecimento situacio- nal do controlador central 14212. Em certos casos, o módulo de co- municação sem fio 14208 pode estar em comunicação de sinal com o módulo de reconhecimento situacional do controlador central 14212. Por exemplo, novamente com referência à Figura 33, os dados do grampeador e/ou os dados do cartucho fornecidos nas etapas 5220 e 5222 podem ser fornecidos através do módulo de comunicação sem fio 14208 da ferramenta de grampeamento 14206, por exemplo.
[00367] Em um aspecto, sensores posicionados na ferramenta cirúr- gica 14206 podem ser utilizados para determinar e/ou confirmar a posi- ção da ferramenta cirúrgica 14206 (por exemplo, um sistema de detec- ção secundário). Além disso, a posição detectada do grampeador linear pode ser comunicada ao controlador cirúrgico central 14212 através do link de comunicação sem fio 14210, conforme adicionalmente descrito no presente documento. Em tais casos, o controlador cirúrgico central 14212 pode obter em tempo real, ou quase tempo real, informações sobre a posição da ferramenta cirúrgica 14206 em relação ao tumor 14242 e à zona de margem 14240 com base nos dados comunicados através do link de comunicação sem fio 14230. Em vários casos, o sistema cirúrgico robótico pode também determinar a posição da ferramenta cirúrgica 14206 com base nos algoritmos de controle de motor utilizados para po- sicionar o braço robótico 14000 na sala de cirurgia (por exemplo, um sis- tema de detecção primário).
[00368] Em um aspecto, um sistema cirúrgico robótico pode ser inte- grado com um sistema de imageamento. As alimentações em tempo real do sítio cirúrgico, que são obtidas pelo sistema de imageamento, podem ser comunicadas ao sistema cirúrgico robótico. Por exemplo, novamente com referência às Figuras 2 e 3, as alimentações em tempo real do mó- dulo de imageamento 138 no controlador central 106 podem ser comuni- cadas ao sistema cirúrgico robótico 110. Por exemplo, as alimentações em tempo real podem ser comunicadas ao controlador central robótico
122. Em vários casos, a alimentação em tempo real pode ser sobreposta em uma ou mais telas robóticas ativas, como as alimentações no console de comando do cirurgião 118. Imagens sobrepostas podem ser forneci- das a uma ou mais telas na sala de cirurgia, como as telas 107, 109 e 119, por exemplo.
[00369] Em certos casos, a sobreposição das alimentações em tempo real em uma tela robótica pode permitir que as ferramentas cirúrgicas possam ser controladas precisamente dentro de um siste- ma de eixos que é definido pela ferramenta cirúrgica e/ou seu(s) atu- ador(es) de extremidade, como visualizado pelo sistema de imagea- mento em tempo real. Em vários casos, a cooperação entre o sistema cirúrgico robótico 110 e o sistema de imageamento 138 pode fornecer triangulação e mapeamento de instrumento das ferramentas cirúrgi- cas dentro do campo de visualização, o que pode permitir um contro- le preciso dos ângulos das ferramentas e/ou avanços das mesmas. Além disso, o controle de mudança de um sistema de coordenadas cartesianas fixas padrão de múltiplos eixos para o eixo definido pela ferramenta montada atualmente e/ou para o atuador de extremidade da mesma pode permitir que o cirurgião emita comandos ao longo de planos e/ou eixos claros. Por exemplo, um processador do sistema cirúrgico robótico pode direcionar um deslocamento de uma ferra- menta cirúrgica ao longo do eixo geométrico do eixo de acionamento alongado da ferramenta cirúrgica ou uma rotação da ferramenta ci- rúrgica em um ângulo específico a partir da posição atual com base em um ponto selecionado em torno do qual girar. Em uma exemplifi- cação, a alimentação sobreposta de uma ferramenta cirúrgica pode incorporar um sistema de detecção secundário ou redundante, con- forme aqui descrito adicionalmente, para determinar a localização e/ou a orientação da ferramenta cirúrgica.
[00370] Em certos casos, um braço robótico, como o braço robótico 14400 (Figura 23) pode ser significativamente pesado. Por exemplo, o peso de um braço robótico pode ser tal que levantá-lo ou reposicioná-lo manualmente seria difícil para a maioria dos médicos fisicamente capa- zes. Além disso, os motores e os mecanismos de acionamento do braço robótico somente podem ser controlados por um sistema de controle pri- mário situado na unidade de controle com base nas entradas do console de comando do cirurgião. Em outras palavras, um sistema cirúrgico robó-
tico, como o sistema representado na Figura 23, por exemplo, pode não incluir um sistema de controle secundário para o braço robótico 14400 que está próximo ao braço robótico 14400 e dentro do campo estéril.
[00371] Um braço robótico em um sistema cirúrgico robótico pode ser propenso a colisões involuntárias com equipamentos e/ou pessoas den- tro do campo estéril. Por exemplo, durante um procedimento cirúrgico, um ou mais cirurgiões, enfermeiros e/ou assistentes médicos posiciona- dos dentro do campo estéril podem se mover pelo campo estéril e/ou ao redor dos braços robóticos. Em certos casos, o um ou mais cirurgiões, enfermeiros e/ou assistentes médicos, por exemplo, podem reposicionar equipamentos dentro do campo estéril, como mesas e/ou carrinhos, por exemplo. Quando um cirurgião posicionado fora do campo estéril está controlando o braço robótico, um outro cirurgião, enfermeiro e/ou assis- tente médico dentro do campo estéril também pode querer manualmente mover e/ou ajustar a posição de um ou mais braços robóticos para evitar uma possível colisão com o(s) braço(s), entrelaçamento do braço com outros equipamentos e/ou outros braços, e/ou para substituir, recarregar e/ou reconfigurar uma ferramenta cirúrgica montada no braço. No entan- to, para reposicionar o braço robótico, o cirurgião pode precisar desligar o sistema cirúrgico robótico para permitir que o médico no campo estéril reposicione manualmente o braço robótico. Em tais casos, pode ser ne- cessário que o médico carregue o peso significativo do braço robótico desligado.
[00372] Emum exemplo, um sistema cirúrgico robótico pode incluir uma tela interativa que é local à área esterilizada e/ou ao(s) braço(s) robótico(s). Tal tela local pode facilitar a manipulação e/ou o posicio- namento do(s) braço(s) por um médico dentro do campo estéril. Em outras palavras, um operador que não seja o cirurgião junto ao con- sole de comando pode controlar a posição do(s) braço(s) robótico(s).
[00373] Agora com referência à Figura 24, um médico aplica uma força ao braço robótico 14000 para manualmente ajustar a posição do braço robótico 14000. Em certos casos, o sistema cirúrgico robóti- co que utiliza o braço robótico 14000 pode empregar um modo de assistência de energia passiva, no qual o braço robótico 14400 pode ser facilmente reposicionado por um médico dentro do campo estéril. Por exemplo, embora o braço robótico 14000 seja alimentado e con- trolado por uma unidade de controle remoto, o médico pode ajustar manualmente a posição do braço robótico 14000 sem a necessidade de carregar todo o peso do braço robótico 14000. O médico pode pu- xar e/ou empurrar o braço robótico 14000 para ajustar a posição do braço. No modo de assistência de energia passiva, a energia para o braço robótico 14000 pode ser restringida e/ou limitada para permitir o reposicionamento passivo pelo médico.
[00374] Agora com referência à Figura 25, é mostrada um gráfico 14050 de força plotado em função do tempo para o braço robótico 14000 (Figura 24) em um modo de assistência de energia passiva. No modo de assistência de energia passiva, um médico pode aplicar uma força ma- nual ao braço robótico 14000 para iniciar o reposicionamento do braço robótico 14000. O médico pode estar dentro do campo estéril. Em certos casos, o modo de assistência de energia passiva pode ser ativado quan- do o braço robótico 14000 detecta uma manipulação manual.
[00375] Conforme representado na Figura 25, a força manual exer- cida por um médico pode aumentar até exceder um limite predefinido, como o limite de 11,34 kg (25 lb) indicado na Figura 25, por exemplo, para afetar o reposicionamento do braço robótico 14000. Em certos casos, o limite predefinido pode corresponder à força máxima que um auxiliar apto fisicamente pode facilmente exercer sobre o braço robóti- co 14000 sem causar tensão ou deformação. Em outros casos, o limite predefinido pode corresponder a um limite mínimo de força sobre o braço robótico 14000 para evitar fornecer uma assistência energizada a contatos não intencionais ou involuntários com o braço robótico
14000.
[00376] Quando o usuário exerce uma força sobre o braço robótico 14000 acima do limite predefinido, um ou mais motores (por exemplo, os motores 14407 na Figura 23) do sistema cirúrgico robótico podem aplicar uma força auxiliar ao braço robótico 14000 para ajudar a reposicionar o braço robótico 14000 na direção indicada pela força do operador sobre o braço robótico 14000. Em tais casos, o operador pode facilmente mani- pular a posição do braço para evitar colisões e/ou entrelaçamentos invo- luntários e, quando a força do operador exceder um limite de força con- fortável, os motores podem auxiliar ou colaborar no reposicionamento do braço. A assistência de energia passiva fornecida pelos motores do sis- tema cirúrgico robótico pode compensar o peso do braço robótico 14000. Em outros casos, a força auxiliar pode ser menor que o peso do braço robótico 14000. Em certos casos, a força auxiliar pode ser limitada a uma força máxima, como o limite de 2,27 kg (5 |b) indicado na Figura 25, por exemplo. O limite da força auxiliar pode assegurar que o braço robótico 14000 não colida fortemente com uma pessoa, equipamento cirúrgico e/ou outro braço robótico na sala de cirurgia.
[00377] Emum aspecto, o modo de assistência de energia passiva pode ser desativado ou travado durante porções de um procedimento cirúrgico. Por exemplo, quando uma ferramenta cirúrgica é posicio- nada no sítio cirúrgico ou dentro de um raio predefinido do sítio cirúr- gico e/ou no tecido-alvo, o modo de assistência de energia passiva pode ser travado. Adicional ou alternativamente, durante certas eta- pas de um procedimento cirúrgico, o modo de assistência de energia passiva pode ser travado. O reconhecimento situacional pode ser configurado para determinar se o modo de assistência de energia passiva deve ser travado. Por exemplo, com base nas informações de que um controlador central tem sobre a etapa do procedimento cirúrgico (consulte, por exemplo, a Figura 33), um modo de assistên- cia de energia passiva pode ser mal aconselhado pelo módulo de re- conhecimento situacional. De modo similar, o modo de assistência de energia passiva pode ser ativado durante certas porções da linha de tempo cirúrgica mostrada na Figura 33.
[00378] Em um aspecto, a unidade de controle para operar um braço robótico inclui um processador e uma memória acoplada em comunica- ção com o processador, conforme aqui descrito. A memória armazena instruções executáveis pelo processador para operar em um modo de assistência de energia passiva, no qual o processador está configurado para processar uma força manual aplicada ao braço robótico e, se a for- ça manual exceder um limite predefinido, direcionar um ou mais motores do braço robótico para fornecer uma força auxiliar para reposicionar o braço robótico na direção indicada pela força manual.
[00379] Em vários aspectos, a presente revelação fornece um circuito de controle configurado para operar em um modo de assistência de energia passiva, conforme descrito acima. Em vários aspectos, a presen- te revelação fornece uma mídia não transitória legível por computador que armazena instruções legíveis por computador que, quando executa- das, fazem com que uma máquina opere um modo de assistência de energia passiva, conforme descrito acima.
[00380] Agora com referência às Figuras 26 e 27, um médico den- tro do campo estéril utiliza um módulo de controle 14160 dentro de um local do campo estéril para afetar o reposicionamento de um bra- ço robótico 14100. O braço robótico 14100 é similar, em muitos as- pectos, ao braço robótico 14400 da Figura 23. Por exemplo, o braço robótico 14100 inclui uma pluralidade de componentes móveis 14102. Os componentes móveis 14102 são segmentos rígidos que são me- canicamente acoplados em série nas articulações de revolução
14103. Os componentes móveis 14102 formam o braço robótico
14100, similar ao braço robótico 14400 (Figura 23), por exemplo. Um componente mais distal 14102c inclui um anexo 14105 para fixar de modo liberável as ferramentas cirúrgicas intercambiáveis, como a fer- ramenta cirúrgica 14106, por exemplo. Cada componente 14102 do braço robótico 14100 tem um ou mais motores e acionadores de mo- tor, que podem ser operados para afetar o movimento giratório na respectiva articulação 14103.
[00381] Cada componente 14102 inclui um ou mais sensores, que podem ser sensores de posição e/ou sensores de torque, por exemplo, e podem fornecer informações sobre a configuração e/ou carga atual nas respectivas articulações entre os componentes 14102. Os motores po- dem ser controlados pela unidade de controle, como a unidade de con- trole 14409 (Figura 23), que é configurada para receber entradas dos sensores e/ou de uma interface de comando cirúrgico, como a interface de comando cirúrgico 14412 (Figura 23), por exemplo.
[00382] O módulo de controle local 14160 inclui uma tela interativa 14164 e uma tela sensível ao toque 14166 que é configurada para acei- tar entradas, como entradas a partir de um dedo e/ou uma caneta 14168, por exemplo. O módulo de controle local 14160 é um dispositivo eletrônico digital móvel portátil. Por exemplo, o módulo de controle local 14160 pode ser um tablet iPadO& ou outro tablet móvel ou smartphone, por exemplo. Em uso, o médico fornece instruções de reposicionamento para o braço robótico 14100 através da tela 14164 e/ou da tela sensível ao toque 14166 do módulo de controle local 14160. O módulo de con- trole local 14160 é um módulo de comunicação sem fio 14162 de modo que as entradas fornecidas pelo médico podem ser comunicadas para o braço robótico 14140 para afetar os movimentos de controle do braço. O módulo de controle local 14140 pode se comunicar por meio de co- nexão sem fio com o braço robótico 14140 e/ou uma unidade de contro- le (por exemplo, a unidade de controle 14409 na Figura 23) do sistema robótico através de uma conexão Wi-Fi, por exemplo.
[00383] O braço robótico 14100 inclui seis graus de liberdade indica- dos pelas seis setas na Figura 26. Os graus proximais de liberdade po- dem ser controlados pelo módulo de controle local 14160 e os graus dis- tais de liberdade podem ser controlados pelo módulo de controle remoto. Em uma instância, os três graus de liberdade mais proximais (articulação em torno das duas articulações mais proximais 14103 e rotação do seg- mento intermediário 14102 ao redor do eixo geométrico das mesmas) podem ser controlados pelo módulo de controle local, e os três graus de liberdade mais distais (articulação em torno da articulação mais distal 14103, a rotação do segmento mais distal 14102c ao redor do eixo geo- métrico da mesma, e deslocamento da ferramenta cirúrgica 14106 ao longo do eixo geométrico da mesma) podem ser controlados pelo módulo de controle remoto. Em tais casos, o médico no campo estéril pode afetar os movimentos mais grosseiros de controle do braço robótico, como os movimentos de controle dos braços e/ou articulações proximais. Por exemplo, o médico no campo estéril pode rápida e facilmente mover um braço robótico para uma posição geral, como uma posição pré- operacional, posição de troca de ferramenta e/ou uma posição de recar- regamento através do módulo de controle local 14160. Em tais casos, o módulo de controle local 14160 é um sistema de controle secundário pa- ra o braço robótico 14100. O cirurgião fora do campo estéril pode afetar os movimentos de controle do braço robótico mais localizados ou preci- Sos através de entradas na interface de comando do cirurgião 14412 (Fi- gura 23). Em tais casos, a interface de comando do cirurgião 14412 fora do campo estéril é o sistema de controle primário.
[00384] O |leitorirá apreciar prontamente que um número menor ou maior que seis graus de liberdade está contemplado na presente in- venção. Outros graus de liberdade alternativos também estão con- templados. Além disso, diferentes graus de liberdade podem ser atri-
buídos ao módulo de controle local 14160 e/ou ao módulo de controle remoto. Em certos casos, um ou mais graus de liberdade podem ser atribuídos tanto ao módulo de controle local 14106 quanto ao módulo de controle remoto.
[00385] Com referência principalmente à Figura 27, é mostrada um gráfico 14150 de força plotado em função do tempo para o braço robóti- co 14100. Do tempo O ao tempo t1, forças em campo localmente acio- nadas são aplicadas ao braço robótico 14100 por um médico dentro do campo estéril para ajustar a posição geral do braço robótico 14100. Em certos casos, a força atribuível às entradas provenientes do módulo de controle local 14160 pode ser limitada em uma primeira força máxima (por exemplo, o limite de 22,7 kg (50 lb) indicado na Figura 27). Usando o módulo de controle local 14160, o médico dentro do campo estéril po- de reposicionar rapidamente o braço robótico 14100 para trocar e/ou recarregar a ferramenta cirúrgica 14160, por exemplo. O intervalo entre o tempo O e o tempo t; pode corresponder a um modo de acionamento local. O ajuste ativo ou o tempo de recarregamento em um procedimen- to cirúrgico pode ocorrer durante o modo de acionamento local. Por exemplo, durante o modo de acionamento local, o braço robótico 14100 pode ficar fora do contato com o tecido do paciente e/ou fora de um contorno predefinido no sítio cirúrgico, por exemplo.
[00386] Depois disso, o cirurgião junto ao console de comando do cirurgião pode adicionalmente atuar o braço robótico 14100. Por exem- plo, do tempo t2 ao tempo t3, as forças atuadas remotamente são atribu- íveis a entradas do console de comando do cirurgião. As forças atuadas remotamente podem ser limitadas em uma segunda força máxima (por exemplo, o limite de 2,27 kg (5 lb) indicado na Figura 27), que é menor que a primeira força máxima. Ao limitar a segunda força máxima, um cirurgião é menos suscetível de provocar uma colisão de alto impacto ou de alta velocidade no campo estéril, enquanto a primeira força má-
xima maior permite que o braço robótico 14100 seja rapidamente repo- sicionado em certos casos. O intervalo entre o tempo t2 e o tempo t3 po- de corresponder a um modo de acionamento remoto durante um proce- dimento cirúrgico, que pode incluir quando a ferramenta robótica 14106 está manipulando ativamente o tecido (segurando, puxando, exploran- do, transeccionando, vedando, etc.), e/ou quando o braço robótico 14100 e/ou a ferramenta cirúrgica 14106 do mesmo estão dentro do contorno predefinido ao redor do sítio cirúrgico.
[00387] Emum aspecto, o modo de acionamento local e/ou o modo de acionamento remoto pode ser desativado ou travado durante por- ções de um procedimento cirúrgico. Por exemplo, o modo de aciona- mento local pode ser travado quando o instrumento cirúrgico está inte- ragindo com tecido ou está de outro modo posicionado no sítio cirúrgi- co. O reconhecimento situacional pode ser configurado para determi- nar se o modo de acionamento local deve ser travado. Por exemplo, com base nas informações de que um controlador central tem sobre a etapa do procedimento cirúrgico (consulte, por exemplo, a Figura 33), um modo de atuação local pode ser mal aconselhado pelo módulo de reconhecimento situacional. De modo similar, o modo de acionamento remoto pode ser mal aconselhado durante outras porções do procedi- mento cirúrgico.
[00388] Em um aspecto, a unidade de controle para operar um braço robótico inclui um processador e uma memória acoplada em comunicação com o processador, conforme aqui descrito. A memória armazena instruções executáveis pelo processador para fornecer movimentos de controle ao braço robótico com base nas informações recebidas de um módulo de controle local durante a(s) porção(ões) de um procedimento cirúrgico e para fornecer movimentos de contro- le ao braço robótico com base nas informações recebidas de um mó- dulo de controle remoto durante a(s) porção(ões) do procedimento cirúrgico. A primeira força máxima pode limitar os movimentos de controle a partir do módulo de controle local e uma segunda força máxima pode limitar os movimentos de controle a partir do módulo de controle remoto.
[00389] Em vários aspectos, a presente revelação fornece um cir- cuito de controle configurado para operar um braço robótico através de um módulo de controle local e um módulo de controle remoto, con- forme descrito acima. Em vários aspectos, a presente revelação for- nece uma mídia não transitória legível por computador que armazena instruções legíveis por computador que, quando executadas, fazem com que uma máquina opere um braço robótico através de um módu- lo de controle local e um módulo de controle remoto, conforme des- crito acima.
[00390] A totalidade das revelações de:
[00391] e Patente US nº 9.072.535, depositada em 27 de maio de 2011, intitulada SURGICAL STAPLING INSTRUMENTS WITH ROTA- TABLE STAPLE DEPLOYMENT ARRANGEMENTS, concedida em 7 de julho de 2015;
[00392] e Patente US nº 9.072.536, depositada em 28 de junho de 2012, intitulada DIFFERENTIAL LOCKING ARRANGEMENTS FOR RO- TARY POWERED SURGICAL INSTRUMENTS, concedida em 7 de julho de 2015;
[00393] e Patente US nº 9.204.879, depositada em 28 de junho de 2012, intitulada FLEXIBLE DRIVE MEMBER, concedida em 8 de dezem- bro de 2015;
[00394] e. Patente US nº 9.561.038, depositada em 28 de junho de 2012, intitulada INTERCHANGEABLE CLIP APPLIER, concedida em 7 de fevereiro de 2017;
[00395] e Patente US nº 9.757.128, depositada em 5 de setembro de 2014, intitulada MULTIPLE SENSORS WITH ONE SENSOR AF-
FECTING A SECOND SENSOR'S OUTPUT OR INTERPRETATION, concedida em 12 de setembro de 2017;
[00396] e Pedido de patente US nº 14/640.935, intitulado OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, depositado em 6 de março de 2015, agora publicação de pedido de patente US nº 2016/0256071, pu- blicado em 8 de setembro de 2016;
[00397] e Pedido de patente US nº 15/382.238, intitulado MODULAR
BATTERY POWERED HANDHELD SURGICAL INSTRUMENT WITH SELECTIVE APPLICATION OF ENERGY BASED ON TISSUE CHA- RACTERIZATION, depositado em 16 de dezembro de 2016, agora publi- cação de pedido de patente 2017/0202591, publicado em 20 de julho de 2017;e
[00398] e Pedido de patente US nº 15/237.753, intitulado CON- TROL OF ADVANCEMENT RATE AND APPLICATION FORCE BA- SED ON MEASURED FORCES, depositado em 16 de agosto de 2016, agora publicação de pedido de patente US nº 2018/0049822, publicado em 22 de fevereiro de 2018;
[00399] que estão, cada um dos quais, aqui incorporados por refe- rência em sua totalidade. Exemplos
[00400] Vários aspectos da matéria descrita no presente documento são definidos nos exemplos numerados a seguir.
[00401] Exemplo 1. Um sistema cirúrgico compreendendo: um sis- tema robótico, que compreende: uma unidade de controle; um braço robótico compreendendo uma porção de fixação; e um primeiro siste- ma de detecção em comunicação de sinal com a dita unidade de con- trole, sendo que o dito primeiro sistema de detecção é configurado pa- ra detectar uma posição da dita porção de fixação. O sistema cirúrgico compreende adicionalmente uma ferramenta cirúrgica fixada de modo removível à dita porção de fixação. O sistema cirúrgico compreende adicionalmente um segundo sistema de detecção configurado para detectar uma posição da dita ferramenta cirúrgica, sendo que o dito sistema de detecção secundário é independente do dito primeiro sis- tema de detecção.
[00402] “Exemplo 2. O sistema cirúrgico do Exemplo 1, em que o dito segundo sistema de detecção compreende: um emissor de cam- po magnético e um sensor de campo magnético incorporados na dita ferramenta cirúrgica.
[00403] “Exemplo 3.0O sistema cirúrgico de qualquer um dos Exem- plos 1 e 2, que compreende adicionalmente um instrumento cirúrgico de mão alimentado por bateria que compreende um sensor de instru- mento, sendo que o dito segundo sistema de detecção é configurado para detectar uma posição do dito sensor de instrumento.
[00404] “Exemplo 4. O sistema cirúrgico do Exemplo 3, que com- preende adicionalmente uma tela em tempo real configurada para mostrar a posição da dita ferramenta cirúrgica e a posição do dito sensor de instrumento com base em dados fornecidos pelo dito se- gundo sistema de detecção.
[00405] Exemplo 5. O sistema cirúrgico de qualquer um dos Exemplos 3 e 4, em que o dito instrumento cirúrgico de mão alimen- tado por bateria compreende uma unidade de controle autônoma.
[00406] Exemplo 6. O sistema cirúrgico de qualquer um dos Exem- plos 1 a 5, que compreende adicionalmente um trocarte que compreende um sensor de trocarte, sendo que o dito segundo sistema de detecção é configurado para detectar uma posição do dito sensor de trocarte.
[00407] Exemplo 7. O sistema cirúrgico do Exemplo 6, que com- preende adicionalmente uma tela em tempo real configurada para mostrar a posição da dita ferramenta cirúrgica e a posição do dito tro- carte com base em dados fornecidos pelo dito segundo sistema de detecção.
[00408] Exemplo 8. O sistema cirúrgico de qualquer um dos Exem- plos 1 a 7, que compreende adicionalmente uma pluralidade de sensores de paciente aplicados a um paciente, sendo que o dito segundo sistema de detecção é configurado para detectar a posição dos ditos sensores de paciente.
[00409] “Exemplo 9. O sistema cirúrgico do Exemplo 8, que com- preende adicionalmente uma tela em tempo real configurada para mostrar a posição da dita ferramenta cirúrgica e a posição do dito sensor de paciente com base em dados fornecidos pelo dito segundo sistema de detecção.
[00410] Exemplo 10. Um sistema cirúrgico compreendendo: um sis- tema robótico, que compreende: uma unidade de controle; um braço robótico compreendendo uma primeira porção, uma segunda porção e uma articulação entre as ditas primeira e segunda porções; um primei- ro sistema de detecção configurado para detectar uma posição da dita primeira porção e da dita segunda porção do dito braço robótico; e um sistema de detecção redundante configurado para detectar uma posi- ção da dita primeira porção e da dita segunda porção do dito braço robótico.
[00411] Exemplo 11. O sistema cirúrgico do Exemplo 10, em que o dito braço robótico compreende um motor, e sendo que o dito primeiro sistema de detecção compreende um sensor de torque no dito motor.
[00412] Exemplo 12. O sistema cirúrgico dos Exemplos 10 e 11, em que o dito sistema de detecção redundante compreende um emissor de campo magnético e uma pluralidade de sensores magnéticos posiciona- dos no dito braço robótico.
[00413] Exemplo 13. O sistema cirúrgico de qualquer um dos Exemplos 10 a 12, em que a dita unidade de controle compreende um processador e uma memória acoplada em comunicação com o pro-
cessador, sendo que a dita memória armazena instruções executáveis pelo dito processador para comparar a posição detectada pelo dito primeiro sistema de detecção com a posição detectada pelo dito sis- tema de detecção redundante para otimizar os movimentos de controle do dito braço robótico.
[00414] Exemplo 14. O sistema cirúrgico de qualquer um dos Exemplos 10 a 13, que compreende adicionalmente um circuito de controle configurado para comparar a posição detectada pelo dito primeiro sistema de detecção com a posição detectada pelo dito sis- tema de detecção redundante para otimizar os movimentos de con- trole do dito braço robótico.
[00415] Exemplo 15. Um sistema cirúrgico compreendendo: um robô cirúrgico, que compreende: uma unidade de controle; e um bra- ço robótico que compreende um motor. O sistema cirúrgico compre- ende adicionalmente uma ferramenta cirúrgica fixada de modo remo- vível ao dito braço robótico; O sistema cirúrgico compreende ainda um primeiro sistema de detecção em comunicação de sinal com a dita unidade de controle, sendo que o dito primeiro sistema de detec- ção compreende um sensor de torque no dito motor, e sendo que o dito primeiro sistema de detecção é configurado para detectar uma posição da dita ferramenta cirúrgica. O sistema cirúrgico compreende adicionalmente um segundo sistema de detecção configurado para detectar de modo independente uma posição da dita ferramenta ci- rúrgica.
[00416] Exemplo 16.O sistema cirúrgico do Exemplo 15, em que o dito segundo sistema de detecção compreende: um emissor de cam- po magnético e um sensor de campo magnético incorporados na dita ferramenta cirúrgica.
[00417] Exemplo 17. O sistema cirúrgico de qualquer um dos Exemplos 15 e 16, que compreende adicionalmente um instrumento cirúrgico de mão alimentado por bateria que compreende um sensor de instrumento, sendo que o dito segundo sistema de detecção é configurado para detectar uma posição do dito sensor de instrumento.
[00418] Exemplo 18. O sistema cirúrgico de qualquer um dos Exem- plos 15 a 17, que compreende adicionalmente um trocarte que compre- ende um sensor de trocarte, sendo que o dito segundo sistema de detec- ção é configurado para detectar uma posição do dito sensor de trocarte.
[00419] Exemplo 19. O sistema cirúrgico de qualquer um dos Exemplos 15 a 18, que compreende adicionalmente uma pluralidade de sensores de paciente aplicados ao tecido do paciente, sendo que o dito segundo sistema de detecção é configurado para detectar a posi- ção dos ditos sensores de paciente.
[00420] Exemplo 20. O sistema cirúrgico de qualquer um dos Exem- plos 15 a 19, que compreende adicionalmente uma tela em tempo real configurada para mostrar uma ou mais posições da dita ferramenta cirúr- gica com base em dados fornecidos pelo dito primeiro sistema de detec- ção e pelo dito segundo sistema de detecção.
[00421] Exemplo 21. O sistema cirúrgico de qualguer um dos Exemplos 15 a 20, que compreende adicionalmente um controlador central que compreende um sistema de reconhecimento situacional, sendo que o dito primeiro sistema de detecção e o dito segundo sis- tema de detecção compreendem fontes de dados para o dito sistema de reconhecimento situacional.
[00422] “Embora várias formas tenham sido ilustradas e descritas, não é intenção do requerente restringir ou limitar o escopo das reivin- dicações anexadas a tal detalhe. Numerosas modificações, variações, alterações, substituições, combinações e equivalentes destas formas podem ser implementadas e ocorrerão aos versados na técnica sem se que afaste do escopo da presente revelação. Além disso, a estrutu- ra de cada elemento associado com a forma pode ser alternativamente descrita como um meio para fornecer a função realizada pelo elemen- to. Além disso, onde forem revelados materiais para determinados componentes, outros materiais podem ser usados. Deve-se compre- ender, portanto, que a descrição precedente e as reivindicações em anexo pretendem cobrir todas essas modificações, combinações e va- riações abrangidas pelo escopo das modalidades apresentadas. As reivindicações em anexo se destinam a cobrir todas essas modifica- ções, variações, alterações, substituições, modificações e equivalen- tes.
[00423] A descrição detalhada precedente apresentou várias for- mas dos dispositivos e/ou processos por meio do uso de diagramas de blocos, fluxogramas e/ou exemplos. Embora esses diagramas de blo- co, fluxogramas e/ou exemplos contenham uma ou mais funções e/ou operações, será compreendido pelos versados na técnica que cada função e/ou operação dentro desses diagramas de bloco, fluxogramas e/ou exemplos pode ser implementada, individual e/ou coletivamente, através de uma ampla gama de hardware, software, firmware ou prati- camente qualquer combinação destes. Os versados na técnica reco- nhecerão, contudo, que alguns aspectos dos aspectos aqui revelados, no todo ou em parte, podem ser implementados de modo equivalente em circuitos integrados, como um ou mais programas de computador executados em um ou mais computadores (por exemplo, como um ou mais programas executados em um ou mais sistemas de computador), como um ou mais programas executados em um ou mais processado- res (por exemplo, como um ou mais programas executados em um ou mais microprocessadores), como firmware, ou virtualmente como qualquer combinação dos mesmos, e que projetar o conjunto de circui- tos e/ou escrever o código para o software e firmware estaria dentro do âmbito de prática do versado na técnica, à luz desta revelação. Além disso, os versados na técnica entenderão que os mecanismos do assunto aqui descrito podem ser distribuídos como um ou mais produ- tos de programa em uma variedade de formas e que uma forma ilus- trativa do assunto aqui descrito é aplicável independentemente do tipo específico de meio de transmissão de sinais utilizado para efetivamen- te realizar a distribuição.
[00424] As instruções usadas para programar a lógica para executar vários aspectos revelados podem ser armazenadas em uma memória no sistema, como memória de acesso aleatório dinâmica (DRAM), ca- che, memória flash ou outro armazenamento. Além disso, as instruções podem ser distribuídas através de uma rede ou por meio de outras mií- dias legíveis por computador. Dessa forma uma mídia legível por má- quina pode incluir qualguer mecanismo para armazenar ou transmitir informações em uma forma legível por uma máquina (por exemplo, um computador), mas não se limita a, disquetes, discos ópticos, disco com- pacto de memória só de leitura (CD-ROMs), e discos óptico-dínamos discos, memória só de leitura (ROM), memória de acesso aleatório (RAM), memória só de leitura programável apagável (EPROM), memó- ria só de leitura programável apagável eletricamente (EEPROM), car- tões magnéticos ou ópticos, memória flash, ou uma mídia tangível de armazenamento legíveis por máquina usada na transmissão de infor- mações pela Internet através de um cabo elétrico, óptico, acústico ou outras formas de sinais de propagados (por exemplo, ondas portadoras, sinal de infravermelho, sinais digitais, etc.). Consequentemente, a mídia não transitória legível por computador inclui qualquer tipo de mídia legí- vel por máquina adequada para armazenar ou transmitir instruções ou informações eletrônicas em uma forma legível por uma máquina (por exemplo, um computador).
[00425] Como usado em qualquer aspecto da presente invenção, o termo "circuito de controle" pode se referir a, por exemplo, um conjunto de circuitos com fio, circuitos programáveis (por exemplo, um processa-
dor de computador que compreende um ou mais núcleos de processa- mento de instrução individuais, unidade de processamento, processador, microcontrolador, unidade do microcontrolador, controlador, processador de sinal digital (PSD), dispositivo lógico programável (PLD), matriz lógica programável (PLA), ou arranjo de portas programável em campo (FPGA)), circuitos de máquinas de estado, firmware que armazena ins- truções executadas pelo circuito programável, e qualquer combinação dos mesmos. O circuito de controle pode, coletiva ou individualmente, ser incorporado como circuito elétrico que é parte de um sistema maior, por exemplo, um circuito integrado (IC), um circuito integrado específico de aplicação (ASIC), um sistema on-chip (SoC), computadores desktop, computadores laptop, computadores tablet, servidores, fones inteligen- tes, etc. Consequentemente, como usado aqui, "circuito de controle" in- clui, mas não se limita a, circuitos elétricos que tenham ao menos um circuito elétrico discreto, circuitos elétricos que tenham ao menos um cir- cuito integrado, circuitos elétricos que tenham ao menos um circuito inte- grado para aplicação específica, circuitos elétricos que formem um dis- positivo de computação para finalidades gerais configurado por um pro- grama de computador (por exemplo, um computador para finalidades gerais configurado por um programa de computador que ao menos par- cialmente execute processos e/ou dispositivos aqui descritos, ou um mi- croprocessador configurado por um programa de computador que ao menos parcialmente execute os processos e/ou dispositivos aqui descri- tos), circuitos elétricos que formem um dispositivo de memória (por exemplo, formas de memória de acesso aleatório), e/ou circuitos elétricos que formem um dispositivo de comunicações (por exemplo, um modem, chave de comunicação, ou equipamento óptico-elétrico). Os versados na técnica reconhecerão que o assunto aqui descrito pode ser implementa- do de modo analógico ou digital, ou em alguma combinação destes.
[00426] Como usado em qualquer aspecto da presente invenção, o termo "lógico" pode se referir a um aplicativo, software, firmware e/ou cir- cuito configurado para executar qualquer das operações anteriormente mencionadas. O software pode ser incorporado como um pacote de sof- tware, um código, instruções, conjuntos de instruções e/ou dados regis- tados na mídia de armazenamento não transitório legível por computa- dor. O firmware pode ser incorporado como código, instruções ou conjun- tos de instruções e/ou dados que são codificados rigidamente (por exemplo, não voláteis) em dispositivos de memória.
[00427] Como usado em qualquer aspecto da presente invenção, os termos "componente", "sistema", "módulo" e similares podem se referir a uma entidade relacionada a computador, seja hardware, uma combina- ção de hardware e software, software ou software em execução.
[00428] “Como aqui usado em um aspecto da presente revelação, um "algoritmo" se refere à sequência autoconsistente de etapas que levam ao resultado desejado, onde uma "etapa" se refere à manipulação de quantidades físicas e/ou estados lógicos que podem, embora não ne- cessariamente precisem, assumir a forma de sinais elétricos ou magné- ticos que possam ser armazenados, transferidos, combinados, compa- rados e manipulados de qualquer outra forma. É uso comum chamar esses sinais de bits, valores, elementos, símbolos, caracteres, termos, números ou congêneres. Esses termos e termos similares podem estar associados às grandezas físicas apropriadas e são identificações me- ramente convenientes aplicadas a essas quantidades e/ou estados.
[00429] “Uma rede pode incluir uma rede comutada de pacotes. Os dispositivos de comunicação podem ser capazes de se comunicar uns com os outros com o uso de um protocolo de comunicações de rede comutada de pacotes selecionado. Um protocolo de comunica- ções exemplificador pode incluir um protocolo de comunicações Ethernet que pode ser capaz de permitir a comunicação com o uso de um protocolo de controle de transmissão/protocolo de Internet
(TCP/IP). O protocolo Ethernet pode se conformar ou ser compatível com o padrão Ethernet publicado pelo Institute of Electrical and Elec- tronics Engineers (IEEE) intitulado "IEEE 802.3 Standard", publicado em dezembro de 2008 e/ou versões posteriores deste padrão. Alter- nativamente ou adicionalmente, os dispositivos de comunicação po- dem ser capazes de se comunicar uns com os outros com o uso de um protocolo de comunicações X.25. O protocolo de comunicações X.25 pode se conformar ou ser compatível com um padrão promulga- do pelo International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternativamente ou adicionalmente, os dispositivos de comunicação podem ser capazes de se comunicar uns com os outros com o uso de um protocolo de comunicações fra- me-relay. O protocolo de comunicações frame-relay pode se confor- mar ou ser compatível com um padrão promulgado pelo Consultative Committee for International Telegraph and Telephone (CCITT) e/ou o American National Standards Institute (ANSI). Alternativamente ou adicionalmente, os transceptores podem ser capazes de se comuni- car uns com os outros com o uso de um protocolo de comunicação ATM ("asynchronous transfer mode", modo de transferência assín- crono). O protocolo de comunicação ATM pode se conformar ou ser compatível com um padrão ATM publicado pelo fórum ATM intitulado "ATM-MPLS Network Interworking 2.0" publicado em agosto de 2001, e/ou versões posteriores desse padrão. Obviamente, protocolos de comunicação de rede orientados por conexão diferentes e/ou pós- desenvolvidos são igualmente contemplados na presente invenção.
[00430] Salvo afirmação expressa em contrário, e como tornado evidente pela revelação supracitada, deve-se entender que, ao longo da dita revelação, as discussões que usam termos como "processa- mento", ou "computação", ou "cálculo", ou "determinação", ou "exibi- ção", ou similares, se referem à ação e aos processos de um compu-
tador, ou dispositivo de computação eletrônica similar, que manipula e transforma dados representados sob a forma de grandezas físicas (eletrônicas) nos registros e nas memórias do computador em outros dados representados de modo similar sob a forma de grandezas físi- cas nos registros ou nas memórias do computador, ou de outros dis- positivos similares de armazenamento, transmissão ou exibição de in- formações.
[00431] Um ou mais componentes podem ser chamados na presen- te revelação de "configurado para", "configurável para", "operá- vel/operacional para", "adaptado/adaptável para", "capaz de", "confor- mável/conformado para", etc. Os versados na técnica reconhecerão que "configurado para" pode, de modo geral, abranger componentes em estado ativo e/ou componentes em estado inativo e/ou componen- tes em estado de espera, exceto quando o contexto determinar o con- trário.
[00432] Os termos "proximal" e "distal" são aqui utilizados com re- ferência a um médico que manipula a porção de empunhadura do instrumento cirúrgico. O termo "proximal" se refere à porção mais próxima ao médico, e o termo "distal" se refere à porção situada na direção oposta ao médico. Também será entendido que, por uma questão de conveniência e clareza, termos espaciais como "vertical", "horizontal", "para cima" e "para baixo" podem ser usados na presen- te revelação com relação aos desenhos. Entretanto, instrumentos ci- rúrgicos podem ser usados em muitas orientações e posições, e es- ses termos não se destinam a ser limitadores e/ou absolutos.
[00433] As pessoas versadas na técnica reconhecerão que, em ge- ral, os termos usados aqui, e principalmente nas reivindicações em anexo (por exemplo, corpos das reivindicações em anexo) destinam- se geralmente como termos "abertos" (por exemplo, o termo "incluin- do" deve ser interpretado como "incluindo, mas não se limitando a", o termo "tendo" deve ser interpretado como "tendo, ao menos", o termo "inclui" deve ser interpretado como "inclui, mas não se limita a", etc.). Será ainda entendido pelos versados na técnica que, quando um nú- mero específico de uma menção de reivindicação introduzida for pre- tendido, tal intenção será expressamente mencionada na reivindicação e, na ausência de tal menção, nenhuma intenção estará presente. Por exemplo, como uma ajuda para a compreensão, as seguintes reivindi- cações em anexo podem conter o uso das frases introdutórias "ao me- nos um" e "um ou mais" para introduzir menções de reivindicação. En- tretanto, o uso de tais frases não deve ser interpretado como implican- do que a introdução de uma menção da reivindicação pelos artigos indefinidos "um, uns" ou "uma, umas" limita qualquer reivindicação es- pecífica contendo a menção da reivindicação introduzida a reivindica- ções que contêm apenas uma tal menção, mesmo quando a mesma reivindicação inclui as frases introdutórias "um ou mais" ou "ao menos um" e artigos indefinidos, como "um, uns" ou "uma, umas" (por exem- plo, "um, uns" e/ou "uma, umas" deve tipicamente ser interpretado co- mo significando "ao menos um" ou "um ou mais"); o mesmo vale para o uso de artigos definidos usados para introduzir as menções de rei- vindicação.
[00434] Além disso, mesmo se um número específico de uma men- ção de reivindicação introduzida for explicitamente mencionado, os versados na técnica reconhecerão que essa menção precisa ser tipi- camente interpretada como significando ao menos o número mencio- nado (por exemplo, a mera menção de "duas menções", sem outros modificadores, tipicamente significa ao menos duas menções, ou duas ou mais menções). Além disso, em casos onde é usada uma conven- ção análoga a "pelo menos um dentre A, B e C, etc.", em geral essa construção se destina a ter o sentido no qual a convenção seria en- tendida por (por exemplo, "um sistema que tem ao menos um dentre
A, B e C" incluiria, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C juntos, etc.). Em casos nos quais é usada uma convenção aná- loga a "pelo menos um dentre A, B ou C, etc.", em geral essa constru- ção se destina a ter o sentido no qual a convenção seria entendida por (por exemplo, "um sistema que tem ao menos um dentre A, B e C" in- cluiria, mas não se limitaria a, sistemas que têm A sozinho, B sozinho, C sozinho, A e B juntos, A e C juntos, B e C juntos, e/ou A, B e C jun- tos, etc.). Será adicionalmente entendido pelos versados na técnica que tipicamente uma palavra e/ou uma frase disjuntiva apresentando dois ou mais termos alternativos, quer na descrição, nas reivindica- ções ou nos desenhos, deve ser entendida como contemplando a pos- sibilidade de incluir um dos termos, qualquer um dos termos ou ambos os termos, exceto quando o contexto determinar indicar algo diferente. Por exemplo, a frase "A ou B" será tipicamente entendida como inclu- indo as possibilidades de "A" ou "B"ou"AeB".
[00435] Com respeito às reivindicações em anexo, os versados na técnica entenderão que as operações mencionadas nas mesmas po- dem, de modo geral, ser executadas em qualquer ordem. Além disso, embora vários diagramas de fluxos operacionais sejam apresentados em uma ou mais sequências, deve-se compreender que as várias operações podem ser executadas em outras ordens diferentes da- quelas que estão ilustradas, ou podem ser executadas simultanea- mente. Exemplos dessas ordenações alternativas podem incluir or- denações sobrepostas, intercaladas, interrompidas, reordenadas, in- crementais, preparatórias, suplementares, simultâneas, inversas ou outras ordenações variantes, exceto quando o contexto determinar em contrário. Ademais, termos como "responsivo a", "relacionado a" ou outros particípios adjetivos não pretendem de modo geral excluir essas variantes, exceto quando o contexto determinar em contrário.
[00436] Vale notar que qualquer referência a "um (1) aspecto", "um aspecto", "uma exemplificação" ou "uma (1) exemplificação”", e simila- res significa que um determinado recurso, estrutura ou característica descrito em conexão com o aspecto está incluído em ao menos um aspecto. Dessa forma, o uso de expressões como "em um (1) aspec- to", "em um aspecto", "em uma exemplificação", "em uma (1) exem- plificação", em vários locais ao longo deste relatório descritivo não se refere necessariamente ao mesmo aspecto. Além disso, os recursos, estruturas ou características específicos podem ser combinados de qualquer maneira adequada em um ou mais aspectos.
[00437] Qualquer pedido de patente, patente, publicação não de pa- tente ou outro material de descrição mencionado neste relatório descriti- vo e/ou mencionado em qualquer folha de dados de pedido está aqui in- corporado a título de referência, até o ponto em que os materiais incorpo- rados não são inconsistentes com isso. Desse modo, e na medida do necessário, a revelação como explicitamente aqui apresentada substitui qualquer material conflitante incorporado à presente invenção a título de referência. Qualquer material, ou porção do mesmo, tido como aqui in- corporado a título de referência, mas que entre em conflito com as defini- ções, declarações, ou outros materiais de revelação existentes aqui apresentados estará aqui incorporado apenas até o ponto em que não haja conflito entre o material incorporado e o material de revelação exis- tente.
[00438] Em suma, foram descritos numerosos benefícios que re- sultam do emprego dos conceitos descritos no presente documento. A descrição anteriormente mencionada de uma ou mais modalidades foi apresentada para propósitos de ilustração e descrição. Essa des- crição não pretende ser exaustiva nem limitar a invenção à forma precisa revelada. Modificações ou variações são possíveis à luz dos ensinamentos acima. Uma ou mais modalidades foram escolhidas e descritas com a finalidade de ilustrar os princípios e a aplicação práti- ca para, assim, permitir que o versado na técnica use as várias mo- dalidades e com várias modificações, conforme sejam convenientes ao uso específico contemplado.
Pretende-se que as reivindicações apresentadas em anexo definam o escopo global.
Claims (21)
1. Sistema cirúrgico, caracterizado por compreender: um sistema robótico que compreende: uma unidade de controle; um braço robótico compreendendo uma porção de fixação; e um primeiro sistema de detecção em comunicação de sinal com a dita unidade de controle, sendo que o dito primeiro sistema de detecção é configurado para detectar uma posição da dita porção de fixação; e uma ferramenta cirúrgica fixada de modo removível à dita porção de fixação; e um segundo sistema de detecção configurado para detectar uma posição da dita ferramenta cirúrgica, sendo que o dito sistema de detecção secundário é independente do dito primeiro sistema de detec- ção.
2. Sistema cirúrgico, de acordo com a reivindicação 1, ca- racterizado por o dito segundo sistema de detecção compreender: um emissor de campo magnético; e um sensor de campo magnético incorporados na dita ferra- menta cirúrgica.
3. Sistema cirúrgico, de acordo com a reivindicação 2, ca- racterizado por compreender adicionalmente um instrumento cirúrgico portátil alimentado por bateria que compreende um sensor de instru- mento, sendo que o dito segundo sistema de detecção é configurado para detectar uma posição do dito sensor de instrumento.
4, Sistema cirúrgico, de acordo com a reivindicação 3, carac- terizado por compreender adicionalmente uma tela em tempo real confi- gurada para mostrar a posição da dita ferramenta cirúrgica e a posição do dito sensor de instrumento com base em dados fornecidos pelo dito segundo sistema de detecção.
5. Sistema cirúrgico, de acordo com a reivindicação 4, ca- racterizado por o dito instrumento cirúrgico portátil alimentado por ba- teria compreender uma unidade de controle autônoma.
6. Sistema cirúrgico, de acordo com a reivindicação 1, ca- racterizado por compreender adicionalmente um trocarte que com- preende um sensor de trocarte, sendo que o dito segundo sistema de detecção é configurado para detectar uma posição do dito sensor de trocarte.
7. Sistema cirúrgico, de acordo com a reivindicação 6, ca- racterizado por compreender adicionalmente uma tela em tempo real configurada para mostrar a posição da dita ferramenta cirúrgica e a posição do dito trocarte com base em dados fornecidos pelo dito se- gundo sistema de detecção.
8. Sistema cirúrgico, de acordo com a reivindicação 1, caracterizado por compreender adicionalmente uma pluralidade de sensores de pa- ciente aplicados a um paciente, sendo que o dito segundo sistema de detecção é configurado para detectar a posição dos ditos sensores de paciente.
9. Sistema cirúrgico, de acordo com a reivindicação 8, ca- racterizado por compreender adicionalmente uma tela em tempo real configurada para mostrar a posição da dita ferramenta cirúrgica e a posição dos ditos sensores de paciente com base em dados forneci- dos pelo dito segundo sistema de detecção.
10. Sistema cirúrgico, caracterizado por compreender: um sistema robótico que compreende: uma unidade de controle;
um braço robótico compreendendo uma primeira porção, uma segunda porção e uma articulação entre as ditas primeira e se- gunda porções; um primeiro sistema de detecção configurado para detectar uma posição da dita primeira porção e da dita segunda porção do dito braço robótico; e um sistema de detecção redundante configurado para detec- tar uma posição da dita primeira porção e da dita segunda porção do dito braço robótico.
11. Sistema cirúrgico, de acordo com a reivindicação 10, ca- racterizado por o dito braço robótico compreender um motor, e sendo que o dito primeiro sistema de detecção compreende um sensor de tor- que no dito motor.
12. Sistema cirúrgico, de acordo com a reivindicação 10, caracterizado por o dito sistema de detecção redundante compreender um emissor de campo magnético e uma pluralidade de sensores mag- néticos posicionados no dito braço robótico.
13. Sistema cirúrgico, de acordo com a reivindicação 10, caracterizado por a dita unidade de controle compreender um proces- sador e uma memória acoplada em comunicação com o processador, sendo que a dita memória armazena instruções executáveis pelo dito processador para comparar a posição detectada pelo dito primeiro sis- tema de detecção com a posição detectada pelo dito sistema de de- tecção redundante para otimizar os movimentos de controle do dito braço robótico.
14. Sistema cirúrgico, de acordo com a reivindicação 10, caracterizado por compreender adicionalmente um circuito de controle configurado para comparar a posição detectada pelo dito primeiro sis- tema de detecção com a posição detectada pelo dito sistema de de-
tecção redundante para otimizar os movimentos de controle do dito braço robótico.
15. Sistema cirúrgico, caracterizado por compreender: um robô cirúrgico que compreende: uma unidade de controle; e um braço robótico que compreende um motor; uma ferramenta cirúrgica fixada de modo removível ao dito braço robótico; um primeiro sistema de detecção em comunicação de sinal com a dita unidade de controle, sendo que o dito primeiro sistema de de- tecção compreende um sensor de torque no dito motor, e sendo que o dito primeiro sistema de detecção é configurado para detectar uma posi- ção da dita ferramenta cirúrgica; e um segundo sistema de detecção configurado para detec- tar de modo independente uma posição da dita ferramenta cirúrgica.
16. Sistema cirúrgico, de acordo com a reivindicação 15, caracterizado por o dito segundo sistema de detecção compreender: um emissor de campo magnético; e um sensor de campo magnético incorporados na dita ferra- menta cirúrgica.
17. Sistema cirúrgico, de acordo com a reivindicação 16, caracterizado por compreender adicionalmente um instrumento cirúr- gico portátil alimentado por bateria que compreende um sensor de instrumento, sendo que o dito segundo sistema de detecção é confi- gurado para detectar uma posição do dito sensor de instrumento.
18. Sistema cirúrgico, de acordo com a reivindicação 16, caracterizado por compreender adicionalmente um trocarte que com- preende um sensor de trocarte, sendo que o dito segundo sistema de detecção é configurado para detectar uma posição do dito sensor de trocarte.
19. Sistema cirúrgico, de acordo com a reivindicação 16, caracterizado por compreender adicionalmente uma pluralidade de sensores de paciente aplicados ao tecido do paciente, sendo que o dito segundo sistema de detecção é configurado para detectar a posi- ção dos ditos sensores de paciente.
20. Sistema cirúrgico, de acordo com a reivindicação 16, ca- racterizado por compreender adicionalmente uma tela em tempo real configurada para mostrar uma ou mais posições da dita ferramenta cirúr- gica com base em dados fornecidos pelo dito primeiro sistema de detec- ção e pelo dito segundo sistema de detecção.
21. Sistema cirúrgico, de acordo com a reivindicação 15, ca- racterizado por compreender adicionalmente um controlador central que compreende um sistema de reconhecimento situacional, sendo que o dito primeiro sistema de detecção e o dito segundo sistema de detecção compreendem fontes de dados para o dito sistema de reconhecimento situacional.
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762611341P | 2017-12-28 | 2017-12-28 | |
US201762611340P | 2017-12-28 | 2017-12-28 | |
US201762611339P | 2017-12-28 | 2017-12-28 | |
US62/611,341 | 2017-12-28 | ||
US62/611,340 | 2017-12-28 | ||
US62/611,339 | 2017-12-28 | ||
US201862649323P | 2018-03-28 | 2018-03-28 | |
US62/649,323 | 2018-03-28 | ||
US15/940,711 US11432885B2 (en) | 2017-12-28 | 2018-03-29 | Sensing arrangements for robot-assisted surgical platforms |
US15/940,711 | 2018-03-29 | ||
PCT/IB2018/057438 WO2019130092A1 (en) | 2017-12-28 | 2018-09-26 | Sensing arrangements for robot-assisted surgical platforms |
Publications (1)
Publication Number | Publication Date |
---|---|
BR112020012672A2 true BR112020012672A2 (pt) | 2020-12-01 |
Family
ID=67057569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR112020012672-1A BR112020012672A2 (pt) | 2017-12-28 | 2018-09-26 | disposições de detecção para plataformas cirúrgicas assistidas por robô |
Country Status (6)
Country | Link |
---|---|
US (2) | US11432885B2 (pt) |
EP (1) | EP3635739A1 (pt) |
JP (1) | JP7225247B2 (pt) |
CN (1) | CN111566749B (pt) |
BR (1) | BR112020012672A2 (pt) |
WO (1) | WO2019130092A1 (pt) |
Families Citing this family (513)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US7379790B2 (en) * | 2004-05-04 | 2008-05-27 | Intuitive Surgical, Inc. | Tool memory-based software upgrades for robotic surgery |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US7438209B1 (en) | 2007-03-15 | 2008-10-21 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments having a releasable staple-forming pocket |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
JP5410110B2 (ja) | 2008-02-14 | 2014-02-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Rf電極を有する外科用切断・固定器具 |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US10136890B2 (en) | 2010-09-30 | 2018-11-27 | Ethicon Llc | Staple cartridge comprising a variable thickness compressible portion |
US20130153641A1 (en) | 2008-02-15 | 2013-06-20 | Ethicon Endo-Surgery, Inc. | Releasable layer of material and surgical end effector having the same |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
JP2012517287A (ja) | 2009-02-06 | 2012-08-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | 被駆動式手術用ステープラの改良 |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9211120B2 (en) | 2011-04-29 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of medicaments |
US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
JP6026509B2 (ja) | 2011-04-29 | 2016-11-16 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ステープルカートリッジ自体の圧縮可能部分内に配置されたステープルを含むステープルカートリッジ |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
RU2639857C2 (ru) | 2012-03-28 | 2017-12-22 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий капсулу для среды с низким давлением |
JP6305979B2 (ja) | 2012-03-28 | 2018-04-04 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 複数の層を含む組織厚さコンペンセーター |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US20140005678A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Rotary drive arrangements for surgical instruments |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
JP6382235B2 (ja) | 2013-03-01 | 2018-08-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 信号通信用の導電路を備えた関節運動可能な外科用器具 |
JP6345707B2 (ja) | 2013-03-01 | 2018-06-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ソフトストップを備えた外科用器具 |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US10149680B2 (en) | 2013-04-16 | 2018-12-11 | Ethicon Llc | Surgical instrument comprising a gap setting system |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
US9510828B2 (en) | 2013-08-23 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Conductor arrangements for electrically powered surgical instruments with rotatable end effectors |
BR112016003329B1 (pt) | 2013-08-23 | 2021-12-21 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US9733663B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Llc | Power management through segmented circuit and variable voltage protection |
BR112016023698B1 (pt) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | Cartucho de prendedores para uso com um instrumento cirúrgico |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
BR112016023825B1 (pt) | 2014-04-16 | 2022-08-02 | Ethicon Endo-Surgery, Llc | Cartucho de grampos para uso com um grampeador cirúrgico e cartucho de grampos para uso com um instrumento cirúrgico |
US9801627B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Fastener cartridge for creating a flexible staple line |
CN106456159B (zh) | 2014-04-16 | 2019-03-08 | 伊西康内外科有限责任公司 | 紧固件仓组件和钉保持器盖布置结构 |
US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
MX2017003960A (es) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Refuerzos de grapas quirúrgicas y materiales auxiliares. |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10004501B2 (en) | 2014-12-18 | 2018-06-26 | Ethicon Llc | Surgical instruments with improved closure arrangements |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
BR112017012996B1 (pt) | 2014-12-18 | 2022-11-08 | Ethicon Llc | Instrumento cirúrgico com uma bigorna que é seletivamente móvel sobre um eixo geométrico imóvel distinto em relação a um cartucho de grampos |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10603039B2 (en) | 2015-09-30 | 2020-03-31 | Ethicon Llc | Progressively releasable implantable adjunct for use with a surgical stapling instrument |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
BR112018016098B1 (pt) | 2016-02-09 | 2023-02-23 | Ethicon Llc | Instrumento cirúrgico |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
US10548673B2 (en) | 2016-08-16 | 2020-02-04 | Ethicon Llc | Surgical tool with a display |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10492785B2 (en) | 2016-12-21 | 2019-12-03 | Ethicon Llc | Shaft assembly comprising a lockout |
US20180168623A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
CN110099619B (zh) | 2016-12-21 | 2022-07-15 | 爱惜康有限责任公司 | 用于外科端部执行器和可替换工具组件的闭锁装置 |
BR112019011947A2 (pt) | 2016-12-21 | 2019-10-29 | Ethicon Llc | sistemas de grampeamento cirúrgico |
US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
US10639035B2 (en) | 2016-12-21 | 2020-05-05 | Ethicon Llc | Surgical stapling instruments and replaceable tool assemblies thereof |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
JP7086963B2 (ja) | 2016-12-21 | 2022-06-20 | エシコン エルエルシー | エンドエフェクタロックアウト及び発射アセンブリロックアウトを備える外科用器具システム |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US11141154B2 (en) | 2017-06-27 | 2021-10-12 | Cilag Gmbh International | Surgical end effectors and anvils |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
EP4070740A1 (en) | 2017-06-28 | 2022-10-12 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11298128B2 (en) | 2017-06-28 | 2022-04-12 | Cilag Gmbh International | Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11413042B2 (en) | 2017-10-30 | 2022-08-16 | Cilag Gmbh International | Clip applier comprising a reciprocating clip advancing member |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11051836B2 (en) | 2017-10-30 | 2021-07-06 | Cilag Gmbh International | Surgical clip applier comprising an empty clip cartridge lockout |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11751867B2 (en) | 2017-12-21 | 2023-09-12 | Cilag Gmbh International | Surgical instrument comprising sequenced systems |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US20190201142A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Automatic tool adjustments for robot-assisted surgical platforms |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US20190201113A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controls for robot-assisted surgical platforms |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
WO2019133143A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub and modular device response adjustment based on situational awareness |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US12207817B2 (en) | 2017-12-28 | 2025-01-28 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
US11534196B2 (en) | 2018-03-08 | 2022-12-27 | Cilag Gmbh International | Using spectroscopy to determine device use state in combo instrument |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US10925598B2 (en) | 2018-07-16 | 2021-02-23 | Ethicon Llc | Robotically-assisted surgical suturing systems |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
US11213361B2 (en) | 2019-03-15 | 2022-01-04 | Cilag Gmbh International | Robotic surgical systems with mechanisms for scaling surgical tool motion according to tissue proximity |
US11690690B2 (en) | 2019-03-15 | 2023-07-04 | Cilag Gmbh International | Segmented control inputs for surgical robotic systems |
US11471229B2 (en) | 2019-03-15 | 2022-10-18 | Cilag Gmbh International | Robotic surgical systems with selectively lockable end effectors |
US11666401B2 (en) | 2019-03-15 | 2023-06-06 | Cilag Gmbh International | Input controls for robotic surgery |
US11490981B2 (en) | 2019-03-15 | 2022-11-08 | Cilag Gmbh International | Robotic surgical controls having feedback capabilities |
US11284957B2 (en) | 2019-03-15 | 2022-03-29 | Cilag Gmbh International | Robotic surgical controls with force feedback |
US11583350B2 (en) | 2019-03-15 | 2023-02-21 | Cilag Gmbh International | Jaw coordination of robotic surgical controls |
US11992282B2 (en) | 2019-03-15 | 2024-05-28 | Cilag Gmbh International | Motion capture controls for robotic surgery |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11376083B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Determining robotic surgical assembly coupling status |
US11607278B2 (en) | 2019-06-27 | 2023-03-21 | Cilag Gmbh International | Cooperative robotic surgical systems |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
US11369443B2 (en) | 2019-06-27 | 2022-06-28 | Cilag Gmbh International | Method of using a surgical modular robotic assembly |
US11723729B2 (en) | 2019-06-27 | 2023-08-15 | Cilag Gmbh International | Robotic surgical assembly coupling safety mechanisms |
US11399906B2 (en) | 2019-06-27 | 2022-08-02 | Cilag Gmbh International | Robotic surgical system for controlling close operation of end-effectors |
US11413102B2 (en) | 2019-06-27 | 2022-08-16 | Cilag Gmbh International | Multi-access port for surgical robotic systems |
US11612445B2 (en) | 2019-06-27 | 2023-03-28 | Cilag Gmbh International | Cooperative operation of robotic arms |
US11376082B2 (en) | 2019-06-27 | 2022-07-05 | Cilag Gmbh International | Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11853835B2 (en) | 2019-06-28 | 2023-12-26 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11361176B2 (en) | 2019-06-28 | 2022-06-14 | Cilag Gmbh International | Surgical RFID assemblies for compatibility detection |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
CN114929084A (zh) * | 2019-11-28 | 2022-08-19 | 微机器人医疗有限公司 | 外科工具柄部的机器人操作 |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11219501B2 (en) | 2019-12-30 | 2022-01-11 | Cilag Gmbh International | Visualization systems using structured light |
US12002571B2 (en) | 2019-12-30 | 2024-06-04 | Cilag Gmbh International | Dynamic surgical visualization systems |
US11759283B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Surgical systems for generating three dimensional constructs of anatomical organs and coupling identified anatomical structures thereto |
US11776144B2 (en) | 2019-12-30 | 2023-10-03 | Cilag Gmbh International | System and method for determining, adjusting, and managing resection margin about a subject tissue |
US12207881B2 (en) | 2019-12-30 | 2025-01-28 | Cilag Gmbh International | Surgical systems correlating visualization data and powered surgical instrument data |
US12053223B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Adaptive surgical system control according to surgical smoke particulate characteristics |
US11744667B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Adaptive visualization by a surgical system |
US20210196108A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Adaptive surgical system control according to surgical smoke cloud characteristics |
US20210196098A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Surgical system control based on multiple sensed parameters |
US11896442B2 (en) | 2019-12-30 | 2024-02-13 | Cilag Gmbh International | Surgical systems for proposing and corroborating organ portion removals |
US11284963B2 (en) | 2019-12-30 | 2022-03-29 | Cilag Gmbh International | Method of using imaging devices in surgery |
US11648060B2 (en) | 2019-12-30 | 2023-05-16 | Cilag Gmbh International | Surgical system for overlaying surgical instrument data onto a virtual three dimensional construct of an organ |
US11832996B2 (en) | 2019-12-30 | 2023-12-05 | Cilag Gmbh International | Analyzing surgical trends by a surgical system |
US11819288B2 (en) * | 2020-03-19 | 2023-11-21 | Verb Surgical Inc. | Trocar pose estimation using machine learning for docking surgical robotic arm to trocar |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
US11974741B2 (en) | 2020-07-28 | 2024-05-07 | Cilag Gmbh International | Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators |
US12083361B2 (en) * | 2020-08-26 | 2024-09-10 | Tae Technologies, Inc. | Systems, devices, and methods for unified modular beam diagnostics |
US11793500B2 (en) | 2020-09-30 | 2023-10-24 | Verb Surgical Inc. | Adjustable force and ball bearing attachment mechanism for docking cannulas to surgical robotic arms |
US11793597B2 (en) | 2020-09-30 | 2023-10-24 | Verb Surgical Inc. | Attachment mechanism for docking cannulas to surgical robotic arms |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US12070287B2 (en) | 2020-12-30 | 2024-08-27 | Cilag Gmbh International | Robotic surgical tools having dual articulation drives |
US12059170B2 (en) | 2020-12-30 | 2024-08-13 | Cilag Gmbh International | Surgical tool with tool-based translation and lock for the same |
US11813746B2 (en) | 2020-12-30 | 2023-11-14 | Cilag Gmbh International | Dual driving pinion crosscheck |
US12048497B2 (en) * | 2021-01-11 | 2024-07-30 | Mazor Robotics Ltd. | Safety mechanism for robotic bone cutting |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
EP4062819A1 (en) | 2021-03-23 | 2022-09-28 | Cilag GmbH International | Surgical systems for generating three dimensional constructs of anatomical organs and coupling identified anatomical structures thereto |
TWI769756B (zh) * | 2021-03-24 | 2022-07-01 | 炳碩生醫股份有限公司 | 手術裝置 |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
EP4066772A1 (en) | 2021-03-29 | 2022-10-05 | Cilag GmbH International | System and method for determining, adjusting, and managing resection margin about a subject tissue |
EP4066771A1 (en) | 2021-03-29 | 2022-10-05 | Cilag GmbH International | Visualization systems using structured light |
US20220346786A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Shaft system for surgical instrument |
US20220346859A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Surgical instrument comprising independently activatable segmented electrodes |
US11944295B2 (en) | 2021-04-30 | 2024-04-02 | Cilag Gmbh International | Surgical instrument comprising end effector with longitudinal sealing step |
US11857184B2 (en) | 2021-04-30 | 2024-01-02 | Cilag Gmbh International | Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife |
US20220346853A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Electrosurgical techniques for sealing, short circuit detection, and system determination of power level |
US20220346773A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Surgical staple for use with combination electrosurgical instruments |
US20220346860A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Surgical systems configured to control therapeutic energy application to tissue based on cartridge and tissue parameters |
US20220346785A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Surgical instrument comprising end effector with energy sensitive resistance elements |
US11931035B2 (en) | 2021-04-30 | 2024-03-19 | Cilag Gmbh International | Articulation system for surgical instrument |
US20220346784A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Surgical instrument comprising a closure bar and a firing bar |
US11918275B2 (en) | 2021-04-30 | 2024-03-05 | Cilag Gmbh International | Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity |
US20220346781A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Staple cartridge comprising staple drivers and stability supports |
US11826043B2 (en) | 2021-04-30 | 2023-11-28 | Cilag Gmbh International | Staple cartridge comprising formation support features |
US20220346861A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Surgical systems configured to cooperatively control end effector function and application of therapeutic energy |
US20220346787A1 (en) | 2021-04-30 | 2022-11-03 | Cilag Gmbh International | Interchangeable end effector reloads |
US20220370065A1 (en) | 2021-05-10 | 2022-11-24 | Cilag Gmbh International | Dissimilar staple cartridges with different bioabsorbable components |
WO2022238847A1 (en) | 2021-05-10 | 2022-11-17 | Cilag Gmbh International | Adaptive control of surgical stapling instrument based on staple cartridge type |
WO2022238840A1 (en) | 2021-05-10 | 2022-11-17 | Cilag Gmbh International | System of surgical staple cartridges comprising absorbable staples |
US20220361872A1 (en) | 2021-05-10 | 2022-11-17 | Cilag Gmbh International | Cartridge assemblies with absorbable metal staples and absorbable implantable adjuncts |
WO2022238844A1 (en) | 2021-05-10 | 2022-11-17 | Cilag Gmbh International | Absorbable surgical staple comprising a coating |
EP4094666A1 (en) | 2021-05-27 | 2022-11-30 | Cilag GmbH International | Surgical systems for proposing and corroborating organ portion removals |
US11918217B2 (en) | 2021-05-28 | 2024-03-05 | Cilag Gmbh International | Stapling instrument comprising a staple cartridge insertion stop |
EP4302721A2 (en) | 2021-06-15 | 2024-01-10 | Cilag GmbH International | Method of using imaging devices in surgery |
EP4104743A1 (en) | 2021-06-15 | 2022-12-21 | Cilag GmbH International | Method of using imaging devices in surgery |
EP4105939A1 (en) | 2021-06-15 | 2022-12-21 | Cilag GmbH International | Analyzing surgical trends by a surgical system |
US11931026B2 (en) * | 2021-06-30 | 2024-03-19 | Cilag Gmbh International | Staple cartridge replacement |
US20230001579A1 (en) | 2021-06-30 | 2023-01-05 | Cilag Gmbh International | Grasping work determination and indications thereof |
US11974829B2 (en) | 2021-06-30 | 2024-05-07 | Cilag Gmbh International | Link-driven articulation device for a surgical device |
US11648070B2 (en) * | 2021-07-08 | 2023-05-16 | Mendaera, Inc. | Real time image guided portable robotic intervention system |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
WO2023085880A1 (ko) * | 2021-11-15 | 2023-05-19 | 주식회사 로엔서지컬 | 수술 장치 및 이를 포함하는 원격 수술 시스템 |
US12137904B2 (en) | 2022-06-15 | 2024-11-12 | Cilag Gmbh International | Impact mechanism for grasp clamp fire |
DE102022119361B3 (de) | 2022-08-02 | 2024-01-11 | Festo Se & Co. Kg | Sensoreinrichtung, System und Verfahren |
US20240221924A1 (en) * | 2022-12-30 | 2024-07-04 | Cilag Gmbh International | Detection of knock-off or counterfeit surgical devices |
Family Cites Families (2027)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1853416A (en) | 1931-01-24 | 1932-04-12 | Ada P Hall | Tattoo marker |
US2222125A (en) | 1940-03-19 | 1940-11-19 | Rudolph J Stehlik | Nail driver |
US3082426A (en) | 1960-06-17 | 1963-03-26 | George Oliver Halsted | Surgical stapling device |
US3503396A (en) | 1967-09-21 | 1970-03-31 | American Hospital Supply Corp | Atraumatic surgical clamp |
US3584628A (en) | 1968-10-11 | 1971-06-15 | United States Surgical Corp | Wire suture wrapping instrument |
US3633584A (en) | 1969-06-10 | 1972-01-11 | Research Corp | Method and means for marking animals for identification |
US4041362A (en) | 1970-01-23 | 1977-08-09 | Canon Kabushiki Kaisha | Motor control system |
US3626457A (en) | 1970-03-05 | 1971-12-07 | Koppers Co Inc | Sentinel control for cutoff apparatus |
US3759017A (en) | 1971-10-22 | 1973-09-18 | American Air Filter Co | Latch for a filter apparatus |
US3863118A (en) | 1973-01-26 | 1975-01-28 | Warner Electric Brake & Clutch | Closed-loop speed control for step motors |
US3898545A (en) | 1973-05-25 | 1975-08-05 | Mohawk Data Sciences Corp | Motor control circuit |
US3932812A (en) | 1974-03-20 | 1976-01-13 | Peripheral Equipment Corporation | Motor speed indicator |
US3912121A (en) | 1974-08-14 | 1975-10-14 | Dickey John Corp | Controlled population monitor |
US3915271A (en) | 1974-09-25 | 1975-10-28 | Koppers Co Inc | Method and apparatus for electronically controlling the engagement of coacting propulsion systems |
US4052649A (en) | 1975-06-18 | 1977-10-04 | Lear Motors Corporation | Hand held variable speed drill motor and control system therefor |
AT340039B (de) | 1975-09-18 | 1977-11-25 | Viennatone Gmbh | Myoelektrische steuerschaltung |
US4096006A (en) | 1976-09-22 | 1978-06-20 | Spectra-Strip Corporation | Method and apparatus for making twisted pair multi-conductor ribbon cable with intermittent straight sections |
US4412539A (en) | 1976-10-08 | 1983-11-01 | United States Surgical Corporation | Repeating hemostatic clip applying instruments and multi-clip cartridges therefor |
US4171700A (en) | 1976-10-13 | 1979-10-23 | Erbe Elektromedizin Gmbh & Co. Kg | High-frequency surgical apparatus |
JPS6056394B2 (ja) | 1976-12-10 | 1985-12-10 | ソニー株式会社 | モ−タの制御装置 |
US4157859A (en) | 1977-05-26 | 1979-06-12 | Clifford Terry | Surgical microscope system |
CA1124605A (en) | 1977-08-05 | 1982-06-01 | Charles H. Klieman | Surgical stapler |
DE2944730A1 (de) | 1978-11-16 | 1980-05-29 | Corning Glass Works | Chirurgisches instrument |
DE3016131A1 (de) | 1980-04-23 | 1981-10-29 | Siemens AG, 1000 Berlin und 8000 München | Nachrichtenkabel mit einer vorrichtung zur bestimmung des feuchtezustandes |
DE3204522A1 (de) | 1982-02-10 | 1983-08-25 | B. Braun Melsungen Ag, 3508 Melsungen | Chirurgisches hautklammergeraet |
US4448193A (en) | 1982-02-26 | 1984-05-15 | Ethicon, Inc. | Surgical clip applier with circular clip magazine |
US5385544A (en) | 1992-08-12 | 1995-01-31 | Vidamed, Inc. | BPH ablation method and apparatus |
US4614366A (en) | 1983-11-18 | 1986-09-30 | Exactident, Inc. | Nail identification wafer |
US4633874A (en) | 1984-10-19 | 1987-01-06 | Senmed, Inc. | Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge |
US4608160A (en) | 1984-11-05 | 1986-08-26 | Nelson Industries, Inc. | System for separating liquids |
DE3523871C3 (de) | 1985-07-04 | 1994-07-28 | Erbe Elektromedizin | Hochfrequenz-Chirurgiegerät |
US4701193A (en) | 1985-09-11 | 1987-10-20 | Xanar, Inc. | Smoke evacuator system for use in laser surgery |
GB2180972A (en) | 1985-09-27 | 1987-04-08 | Philips Electronic Associated | Generating addresses for circuit units |
US5047043A (en) | 1986-03-11 | 1991-09-10 | Olympus Optical Co., Ltd. | Resecting device for living organism tissue utilizing ultrasonic vibrations |
US4735603A (en) | 1986-09-10 | 1988-04-05 | James H. Goodson | Laser smoke evacuation system and method |
USD303787S (en) | 1986-10-31 | 1989-10-03 | Messenger Ronald L | Connector strain relieving back shell |
GB8704265D0 (en) | 1987-02-24 | 1987-04-01 | Yang T H | Manual electric tools(1) |
US5084057A (en) | 1989-07-18 | 1992-01-28 | United States Surgical Corporation | Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures |
US5158585A (en) | 1988-04-13 | 1992-10-27 | Hitachi, Ltd. | Compressor unit and separator therefor |
DE3824913A1 (de) | 1988-07-22 | 1990-02-01 | Thomas Hill | Einrichtung zur ueberwachung von hochfrequenten elektrischen leckstroemen |
JPH071130Y2 (ja) | 1988-10-25 | 1995-01-18 | オリンパス光学工業株式会社 | 超音波処置装置 |
US4892244A (en) | 1988-11-07 | 1990-01-09 | Ethicon, Inc. | Surgical stapler cartridge lockout device |
US4955959A (en) | 1989-05-26 | 1990-09-11 | United States Surgical Corporation | Locking mechanism for a surgical fastening apparatus |
FR2647683B1 (fr) | 1989-05-31 | 1993-02-12 | Kyocera Corp | Dispositif d'etanchement/coagulation de sang hors de vaisseaux sanguins |
JPH0341943A (ja) | 1989-07-10 | 1991-02-22 | Topcon Corp | レーザー手術装置 |
US5010341A (en) | 1989-10-04 | 1991-04-23 | The United States Of America As Represented By The Secretary Of The Navy | High pulse repetition frequency radar early warning receiver |
DE4002843C1 (en) | 1990-02-01 | 1991-04-18 | Gesellschaft Fuer Geraetebau Mbh, 4600 Dortmund, De | Protective breathing mask with filter - having gas sensors in-front and behind with difference in their signals providing signal for change of filter |
US5035692A (en) | 1990-02-13 | 1991-07-30 | Nicholas Herbert | Hemostasis clip applicator |
US5026387A (en) | 1990-03-12 | 1991-06-25 | Ultracision Inc. | Method and apparatus for ultrasonic surgical cutting and hemostatis |
US5318516A (en) | 1990-05-23 | 1994-06-07 | Ioan Cosmescu | Radio frequency sensor for automatic smoke evacuator system for a surgical laser and/or electrical apparatus and method therefor |
DE4026452C2 (de) | 1990-08-21 | 1993-12-02 | Schott Glaswerke | Vorrichtung zur Erkennung und Unterscheidung von unter eine Steckverbindung an einen Laser anschließbaren medizinischen Einwegapplikatoren |
US5204669A (en) | 1990-08-30 | 1993-04-20 | Datacard Corporation | Automatic station identification where function modules automatically initialize |
US5253793A (en) | 1990-09-17 | 1993-10-19 | United States Surgical Corporation | Apparatus for applying two-part surgical fasteners |
US5156315A (en) | 1990-09-17 | 1992-10-20 | United States Surgical Corporation | Arcuate apparatus for applying two-part surgical fasteners |
US5100402A (en) | 1990-10-05 | 1992-03-31 | Megadyne Medical Products, Inc. | Electrosurgical laparoscopic cauterization electrode |
US5129570A (en) | 1990-11-30 | 1992-07-14 | Ethicon, Inc. | Surgical stapler |
DE69119607T2 (de) | 1990-12-18 | 1996-11-14 | United States Surgical Corp., Norwalk, Conn. | Sicherheitsvorrichtung für chirurgische klammersetzgeräte |
USD399561S (en) | 1991-01-24 | 1998-10-13 | Megadyne Medical Products, Inc. | Electrical surgical forceps handle |
US5423192A (en) | 1993-08-18 | 1995-06-13 | General Electric Company | Electronically commutated motor for driving a compressor |
US5171247A (en) | 1991-04-04 | 1992-12-15 | Ethicon, Inc. | Endoscopic multiple ligating clip applier with rotating shaft |
US5396900A (en) | 1991-04-04 | 1995-03-14 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5189277A (en) | 1991-04-08 | 1993-02-23 | Thermal Dynamics Corporation | Modular, stackable plasma cutting apparatus |
US5413267A (en) | 1991-05-14 | 1995-05-09 | United States Surgical Corporation | Surgical stapler with spent cartridge sensing and lockout means |
US5197962A (en) | 1991-06-05 | 1993-03-30 | Megadyne Medical Products, Inc. | Composite electrosurgical medical instrument |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
USD327061S (en) | 1991-07-29 | 1992-06-16 | Motorola, Inc. | Radio telephone controller or similar article |
US5307976A (en) | 1991-10-18 | 1994-05-03 | Ethicon, Inc. | Linear stapling mechanism with cutting means |
US5397046A (en) | 1991-10-18 | 1995-03-14 | United States Surgical Corporation | Lockout mechanism for surgical apparatus |
US6250532B1 (en) | 1991-10-18 | 2001-06-26 | United States Surgical Corporation | Surgical stapling apparatus |
CA2122594A1 (en) | 1991-11-01 | 1993-05-13 | Royce Herbst | Dual mode laser smoke evacuation system with sequential filter monitor and vacuum compensation |
US5383880A (en) | 1992-01-17 | 1995-01-24 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
US5271543A (en) | 1992-02-07 | 1993-12-21 | Ethicon, Inc. | Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism |
US5906625A (en) | 1992-06-04 | 1999-05-25 | Olympus Optical Co., Ltd. | Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue |
US5318563A (en) | 1992-06-04 | 1994-06-07 | Valley Forge Scientific Corporation | Bipolar RF generator |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5772597A (en) | 1992-09-14 | 1998-06-30 | Sextant Medical Corporation | Surgical tool end effector |
FR2696089B1 (fr) | 1992-09-25 | 1994-11-25 | Gen Electric Cgr | Dispositif de manipulation d'un appareil de radiologie. |
US5626587A (en) | 1992-10-09 | 1997-05-06 | Ethicon Endo-Surgery, Inc. | Method for operating a surgical instrument |
DE4304353A1 (de) | 1992-10-24 | 1994-04-28 | Helmut Dipl Ing Wurster | Endoskopisches Nähgerät |
US5610811A (en) | 1992-11-09 | 1997-03-11 | Niti-On Medical Supply Co., Ltd. | Surgical instrument file system |
US5417699A (en) | 1992-12-10 | 1995-05-23 | Perclose Incorporated | Device and method for the percutaneous suturing of a vascular puncture site |
US5697926A (en) | 1992-12-17 | 1997-12-16 | Megadyne Medical Products, Inc. | Cautery medical instrument |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
US5403327A (en) | 1992-12-31 | 1995-04-04 | Pilling Weck Incorporated | Surgical clip applier |
US5322055B1 (en) | 1993-01-27 | 1997-10-14 | Ultracision Inc | Clamp coagulator/cutting system for ultrasonic surgical instruments |
US5987346A (en) | 1993-02-26 | 1999-11-16 | Benaron; David A. | Device and method for classification of tissue |
US5467911A (en) | 1993-04-27 | 1995-11-21 | Olympus Optical Co., Ltd. | Surgical device for stapling and fastening body tissues |
ES2122282T3 (es) | 1993-04-30 | 1998-12-16 | United States Surgical Corp | Instrumento quirurgico que tiene una estructura de mandibula articulada. |
GB9309142D0 (en) | 1993-05-04 | 1993-06-16 | Gyrus Medical Ltd | Laparoscopic instrument |
US5364003A (en) | 1993-05-05 | 1994-11-15 | Ethicon Endo-Surgery | Staple cartridge for a surgical stapler |
US5439468A (en) | 1993-05-07 | 1995-08-08 | Ethicon Endo-Surgery | Surgical clip applier |
ES2189805T3 (es) | 1993-07-01 | 2003-07-16 | Boston Scient Ltd | Cateteres de visualizacion de imagen, de potencial electrico y de ablacion. |
US5817093A (en) | 1993-07-22 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
GR940100335A (el) | 1993-07-22 | 1996-05-22 | Ethicon Inc. | Ηλεκτροχειρουργικη συσκευη τοποθετησης συρραπτικων αγκυλων. |
US5342349A (en) | 1993-08-18 | 1994-08-30 | Sorenson Laboratories, Inc. | Apparatus and system for coordinating a surgical plume evacuator and power generator |
US5503320A (en) | 1993-08-19 | 1996-04-02 | United States Surgical Corporation | Surgical apparatus with indicator |
ZA948393B (en) | 1993-11-01 | 1995-06-26 | Polartechnics Ltd | Method and apparatus for tissue type recognition |
US5462545A (en) | 1994-01-31 | 1995-10-31 | New England Medical Center Hospitals, Inc. | Catheter electrodes |
US5560372A (en) | 1994-02-02 | 1996-10-01 | Cory; Philip C. | Non-invasive, peripheral nerve mapping device and method of use |
US5465895A (en) | 1994-02-03 | 1995-11-14 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5415335A (en) | 1994-04-07 | 1995-05-16 | Ethicon Endo-Surgery | Surgical stapler cartridge containing lockout mechanism |
US5529235A (en) | 1994-04-28 | 1996-06-25 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
US5474566A (en) | 1994-05-05 | 1995-12-12 | United States Surgical Corporation | Self-contained powered surgical apparatus |
ATE288706T1 (de) | 1994-07-29 | 2005-02-15 | Olympus Optical Co | Medizinisches instrument zur benutzung in kombination mit endoskopen |
US5496315A (en) | 1994-08-26 | 1996-03-05 | Megadyne Medical Products, Inc. | Medical electrode insulating system |
US6646541B1 (en) | 1996-06-24 | 2003-11-11 | Computer Motion, Inc. | General purpose distributed operating room control system |
US7053752B2 (en) | 1996-08-06 | 2006-05-30 | Intuitive Surgical | General purpose distributed operating room control system |
DE4434864C2 (de) | 1994-09-29 | 1997-06-19 | United States Surgical Corp | Chirurgischer Klammerapplikator mit auswechselbarem Klammermagazin |
US6678552B2 (en) | 1994-10-24 | 2004-01-13 | Transscan Medical Ltd. | Tissue characterization based on impedance images and on impedance measurements |
US5531743A (en) | 1994-11-18 | 1996-07-02 | Megadyne Medical Products, Inc. | Resposable electrode |
US5846237A (en) | 1994-11-18 | 1998-12-08 | Megadyne Medical Products, Inc. | Insulated implement |
JPH08164148A (ja) | 1994-12-13 | 1996-06-25 | Olympus Optical Co Ltd | 内視鏡下手術装置 |
US5836869A (en) | 1994-12-13 | 1998-11-17 | Olympus Optical Co., Ltd. | Image tracking endoscope system |
US5632432A (en) | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5613966A (en) | 1994-12-21 | 1997-03-25 | Valleylab Inc | System and method for accessory rate control |
DE19503702B4 (de) | 1995-02-04 | 2005-10-27 | Nicolay Verwaltungs-Gmbh | Flüssigkeits- und gasdicht gekapselter Schalter, insbesondere für elektrochirurgische Instrumente |
US5654750A (en) | 1995-02-23 | 1997-08-05 | Videorec Technologies, Inc. | Automatic recording system |
US5735445A (en) | 1995-03-07 | 1998-04-07 | United States Surgical Corporation | Surgical stapler |
US5695505A (en) | 1995-03-09 | 1997-12-09 | Yoon; Inbae | Multifunctional spring clips and cartridges and applicators therefor |
US5942333A (en) | 1995-03-27 | 1999-08-24 | Texas Research Institute | Non-conductive coatings for underwater connector backshells |
US5624452A (en) | 1995-04-07 | 1997-04-29 | Ethicon Endo-Surgery, Inc. | Hemostatic surgical cutting or stapling instrument |
US5775331A (en) | 1995-06-07 | 1998-07-07 | Uromed Corporation | Apparatus and method for locating a nerve |
US5752644A (en) | 1995-07-11 | 1998-05-19 | United States Surgical Corporation | Disposable loading unit for surgical stapler |
US5706998A (en) | 1995-07-17 | 1998-01-13 | United States Surgical Corporation | Surgical stapler with alignment pin locking mechanism |
US5718359A (en) | 1995-08-14 | 1998-02-17 | United States Of America Surgical Corporation | Surgical stapler with lockout mechanism |
US5693052A (en) | 1995-09-01 | 1997-12-02 | Megadyne Medical Products, Inc. | Coated bipolar electrocautery |
USD379346S (en) | 1995-09-05 | 1997-05-20 | International Business Machines Corporation | Battery charger |
GB9521772D0 (en) | 1995-10-24 | 1996-01-03 | Gyrus Medical Ltd | An electrosurgical instrument |
US6283960B1 (en) | 1995-10-24 | 2001-09-04 | Oratec Interventions, Inc. | Apparatus for delivery of energy to a surgical site |
DE19546707A1 (de) | 1995-12-14 | 1997-06-19 | Bayerische Motoren Werke Ag | Antriebseinrichtung für ein Kraftfahrzeug |
US5746209A (en) | 1996-01-26 | 1998-05-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of and apparatus for histological human tissue characterizationusing ultrasound |
US6010054A (en) | 1996-02-20 | 2000-01-04 | Imagyn Medical Technologies | Linear stapling instrument with improved staple cartridge |
US5797537A (en) | 1996-02-20 | 1998-08-25 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved firing mechanism |
US5725536A (en) | 1996-02-20 | 1998-03-10 | Richard-Allen Medical Industries, Inc. | Articulated surgical instrument with improved articulation control mechanism |
US5820009A (en) | 1996-02-20 | 1998-10-13 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved jaw closure mechanism |
US5762255A (en) | 1996-02-20 | 1998-06-09 | Richard-Allan Medical Industries, Inc. | Surgical instrument with improvement safety lockout mechanisms |
US6099537A (en) | 1996-02-26 | 2000-08-08 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US5673842A (en) | 1996-03-05 | 1997-10-07 | Ethicon Endo-Surgery | Surgical stapler with locking mechanism |
IL117607A0 (en) | 1996-03-21 | 1996-07-23 | Dev Of Advanced Medical Produc | Surgical stapler and method of surgical fastening |
US6258105B1 (en) | 1996-04-18 | 2001-07-10 | Charles C. Hart | Malleable clip applier and method |
US6911916B1 (en) | 1996-06-24 | 2005-06-28 | The Cleveland Clinic Foundation | Method and apparatus for accessing medical data over a network |
US6017354A (en) | 1996-08-15 | 2000-01-25 | Stryker Corporation | Integrated system for powered surgical tools |
DE69728793T2 (de) | 1996-08-29 | 2004-09-23 | Bausch & Lomb Surgical, Inc. | Frequenz- und leistungsregelunganordnung mit doppelkreis |
US5997528A (en) | 1996-08-29 | 1999-12-07 | Bausch & Lomb Surgical, Inc. | Surgical system providing automatic reconfiguration |
US5724468A (en) | 1996-09-09 | 1998-03-03 | Lucent Technologies Inc. | Electronic backplane device for a fiber distribution shelf in an optical fiber administration system |
US7030146B2 (en) | 1996-09-10 | 2006-04-18 | University Of South Carolina | Methods for treating diabetic neuropathy |
US5836909A (en) | 1996-09-13 | 1998-11-17 | Cosmescu; Ioan | Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor |
US6109500A (en) | 1996-10-04 | 2000-08-29 | United States Surgical Corporation | Lockout mechanism for a surgical stapler |
US5843080A (en) | 1996-10-16 | 1998-12-01 | Megadyne Medical Products, Inc. | Bipolar instrument with multi-coated electrodes |
US6053910A (en) | 1996-10-30 | 2000-04-25 | Megadyne Medical Products, Inc. | Capacitive reusable electrosurgical return electrode |
US6582424B2 (en) | 1996-10-30 | 2003-06-24 | Megadyne Medical Products, Inc. | Capacitive reusable electrosurgical return electrode |
US5766186A (en) | 1996-12-03 | 1998-06-16 | Simon Fraser University | Suturing device |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US9050119B2 (en) | 2005-12-20 | 2015-06-09 | Intuitive Surgical Operations, Inc. | Cable tensioning in a robotic surgical system |
US8183998B2 (en) | 1996-12-16 | 2012-05-22 | Ip Holdings, Inc. | System for seamless and secure networking of implantable medical devices, electronic patch devices and wearable devices |
EP0864348A1 (en) | 1997-03-11 | 1998-09-16 | Philips Electronics N.V. | Gas purifier |
US6699187B2 (en) | 1997-03-27 | 2004-03-02 | Medtronic, Inc. | System and method for providing remote expert communications and video capabilities for use during a medical procedure |
US7041941B2 (en) | 1997-04-07 | 2006-05-09 | Patented Medical Solutions, Llc | Medical item thermal treatment systems and method of monitoring medical items for compliance with prescribed requirements |
US5947996A (en) | 1997-06-23 | 1999-09-07 | Medicor Corporation | Yoke for surgical instrument |
DE19731894C1 (de) | 1997-07-24 | 1999-05-12 | Storz Karl Gmbh & Co | Endoskopisches Instrument zur Durchführung von endoskopischen Eingriffen oder Untersuchungen und endoskopisches Instrumentarium, enthaltend ein solches endoskopisches Instrument |
US5878938A (en) | 1997-08-11 | 1999-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapler with improved locking mechanism |
US6102907A (en) | 1997-08-15 | 2000-08-15 | Somnus Medical Technologies, Inc. | Apparatus and device for use therein and method for ablation of tissue |
US5865361A (en) | 1997-09-23 | 1999-02-02 | United States Surgical Corporation | Surgical stapling apparatus |
US6039735A (en) | 1997-10-03 | 2000-03-21 | Megadyne Medical Products, Inc. | Electric field concentrated electrosurgical electrode |
US5873873A (en) | 1997-10-10 | 1999-02-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp mechanism |
US5980510A (en) | 1997-10-10 | 1999-11-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount |
US6068627A (en) | 1997-12-10 | 2000-05-30 | Valleylab, Inc. | Smart recognition apparatus and method |
US6273887B1 (en) | 1998-01-23 | 2001-08-14 | Olympus Optical Co., Ltd. | High-frequency treatment tool |
US6457625B1 (en) | 1998-02-17 | 2002-10-01 | Bionx Implants, Oy | Device for installing a tissue fastener |
WO1999040861A1 (en) | 1998-02-17 | 1999-08-19 | Baker James A | Radiofrequency medical instrument for vessel welding |
US6126658A (en) | 1998-02-19 | 2000-10-03 | Baker; James A. | Radiofrequency medical instrument and methods for vessel welding |
JPH11267133A (ja) | 1998-03-25 | 1999-10-05 | Olympus Optical Co Ltd | 治療装置 |
US5968032A (en) | 1998-03-30 | 1999-10-19 | Sleister; Dennis R. | Smoke evacuator for a surgical laser or cautery plume |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US6059799A (en) | 1998-06-25 | 2000-05-09 | United States Surgical Corporation | Apparatus for applying surgical clips |
US6341164B1 (en) | 1998-07-22 | 2002-01-22 | Entrust Technologies Limited | Method and apparatus for correcting improper encryption and/or for reducing memory storage |
US6126592A (en) | 1998-09-12 | 2000-10-03 | Smith & Nephew, Inc. | Endoscope cleaning and irrigation sheath |
US6090107A (en) | 1998-10-20 | 2000-07-18 | Megadyne Medical Products, Inc. | Resposable electrosurgical instrument |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
JP2002528161A (ja) | 1998-10-23 | 2002-09-03 | アプライド メディカル リソーシーズ コーポレイション | 挿入体を用いた外科手術用把持装置および同装置の使用方法 |
US20100042093A9 (en) | 1998-10-23 | 2010-02-18 | Wham Robert H | System and method for terminating treatment in impedance feedback algorithm |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
JP4101951B2 (ja) | 1998-11-10 | 2008-06-18 | オリンパス株式会社 | 手術用顕微鏡 |
US6451015B1 (en) | 1998-11-18 | 2002-09-17 | Sherwood Services Ag | Method and system for menu-driven two-dimensional display lesion generator |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6325808B1 (en) | 1998-12-08 | 2001-12-04 | Advanced Realtime Control Systems, Inc. | Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery |
DE19860689C2 (de) | 1998-12-29 | 2001-07-05 | Erbe Elektromedizin | Verfahren zum Steuern einer Vorrichtung zum Entfernen von Rauch sowie Vorrichtung zur Durchführung des Verfahrens |
CA2593763C (en) | 1998-12-31 | 2008-11-18 | Kensey Nash Corporation | Tissue fastening devices and delivery means |
US6423057B1 (en) | 1999-01-25 | 2002-07-23 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Method and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures |
GB2351884B (en) | 1999-04-10 | 2002-07-31 | Peter Strong | Data transmission method |
US6308089B1 (en) | 1999-04-14 | 2001-10-23 | O.B. Scientific, Inc. | Limited use medical probe |
US6301495B1 (en) | 1999-04-27 | 2001-10-09 | International Business Machines Corporation | System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan |
US6461352B2 (en) | 1999-05-11 | 2002-10-08 | Stryker Corporation | Surgical handpiece with self-sealing switch assembly |
US6454781B1 (en) | 1999-05-26 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Feedback control in an ultrasonic surgical instrument for improved tissue effects |
US7032798B2 (en) | 1999-06-02 | 2006-04-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US6264087B1 (en) | 1999-07-12 | 2001-07-24 | Powermed, Inc. | Expanding parallel jaw device for use with an electromechanical driver device |
US6793652B1 (en) | 1999-06-02 | 2004-09-21 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US8241322B2 (en) | 2005-07-27 | 2012-08-14 | Tyco Healthcare Group Lp | Surgical device |
US8229549B2 (en) | 2004-07-09 | 2012-07-24 | Tyco Healthcare Group Lp | Surgical imaging device |
US6716233B1 (en) | 1999-06-02 | 2004-04-06 | Power Medical Interventions, Inc. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US6443973B1 (en) | 1999-06-02 | 2002-09-03 | Power Medical Interventions, Inc. | Electromechanical driver device for use with anastomosing, stapling, and resecting instruments |
US8025199B2 (en) | 2004-02-23 | 2011-09-27 | Tyco Healthcare Group Lp | Surgical cutting and stapling device |
US6619406B1 (en) | 1999-07-14 | 2003-09-16 | Cyra Technologies, Inc. | Advanced applications for 3-D autoscanning LIDAR system |
JP2001029353A (ja) | 1999-07-21 | 2001-02-06 | Olympus Optical Co Ltd | 超音波処置装置 |
WO2001008578A1 (en) | 1999-07-30 | 2001-02-08 | Vivant Medical, Inc. | Device and method for safe location and marking of a cavity and sentinel lymph nodes |
DE19935904C1 (de) | 1999-07-30 | 2001-07-12 | Karlsruhe Forschzent | Applikatorspitze eines chirurgischen Applikators zum Setzen von Clips/Klammern für die Verbindung von Gewebe |
AU7880600A (en) | 1999-08-12 | 2001-03-13 | Somnus Medical Technologies, Inc. | Nerve stimulation and tissue ablation apparatus and method |
US6269411B1 (en) | 1999-08-12 | 2001-07-31 | Hewlett-Packard Company | System for enabling stacking of autochanger modules |
US6611793B1 (en) | 1999-09-07 | 2003-08-26 | Scimed Life Systems, Inc. | Systems and methods to identify and disable re-use single use devices based on detecting environmental changes |
AU7036100A (en) | 1999-09-13 | 2001-04-17 | Fernway Limited | A method for transmitting data between respective first and second modems in a telecommunications system, and telecommunications system |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US6325811B1 (en) | 1999-10-05 | 2001-12-04 | Ethicon Endo-Surgery, Inc. | Blades with functional balance asymmetries for use with ultrasonic surgical instruments |
US20040078236A1 (en) | 1999-10-30 | 2004-04-22 | Medtamic Holdings | Storage and access of aggregate patient data for analysis |
US6466817B1 (en) | 1999-11-24 | 2002-10-15 | Nuvasive, Inc. | Nerve proximity and status detection system and method |
AU776786B2 (en) | 2000-01-07 | 2004-09-23 | Biowave Corporation | Electro therapy method and apparatus |
US6569109B2 (en) | 2000-02-04 | 2003-05-27 | Olympus Optical Co., Ltd. | Ultrasonic operation apparatus for performing follow-up control of resonance frequency drive of ultrasonic oscillator by digital PLL system using DDS (direct digital synthesizer) |
US6911033B2 (en) | 2001-08-21 | 2005-06-28 | Microline Pentax Inc. | Medical clip applying device |
US8016855B2 (en) | 2002-01-08 | 2011-09-13 | Tyco Healthcare Group Lp | Surgical device |
US7770773B2 (en) | 2005-07-27 | 2010-08-10 | Power Medical Interventions, Llc | Surgical device |
AUPQ600100A0 (en) | 2000-03-03 | 2000-03-23 | Macropace Products Pty. Ltd. | Animation technology |
US6689131B2 (en) | 2001-03-08 | 2004-02-10 | Tissuelink Medical, Inc. | Electrosurgical device having a tissue reduction sensor |
US6391102B1 (en) | 2000-03-21 | 2002-05-21 | Stackhouse, Inc. | Air filtration system with filter efficiency management |
US6778846B1 (en) | 2000-03-30 | 2004-08-17 | Medtronic, Inc. | Method of guiding a medical device and system regarding same |
EP1272117A2 (en) | 2000-03-31 | 2003-01-08 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US6905498B2 (en) | 2000-04-27 | 2005-06-14 | Atricure Inc. | Transmural ablation device with EKG sensor and pacing electrode |
US7252664B2 (en) | 2000-05-12 | 2007-08-07 | Cardima, Inc. | System and method for multi-channel RF energy delivery with coagulum reduction |
WO2001087154A1 (en) | 2000-05-18 | 2001-11-22 | Nuvasive, Inc. | Tissue discrimination and applications in medical procedures |
US6742895B2 (en) | 2000-07-06 | 2004-06-01 | Alan L. Robin | Internet-based glaucoma diagnostic system |
CA2416581A1 (en) | 2000-07-25 | 2002-04-25 | Rita Medical Systems, Inc. | Apparatus for detecting and treating tumors using localized impedance measurement |
ES2291353T3 (es) | 2000-09-24 | 2008-03-01 | Medtronic, Inc. | Sistema de control de un motor para una pieza manual quirurgica. |
EP1324708B1 (en) | 2000-10-13 | 2008-09-24 | Tyco Healthcare Group Lp | Surgical fastener applying apparatus |
WO2003079909A2 (en) | 2002-03-19 | 2003-10-02 | Tyco Healthcare Group, Lp | Surgical fastener applying apparatus |
US7334717B2 (en) | 2001-10-05 | 2008-02-26 | Tyco Healthcare Group Lp | Surgical fastener applying apparatus |
US7077853B2 (en) | 2000-10-20 | 2006-07-18 | Ethicon Endo-Surgery, Inc. | Method for calculating transducer capacitance to determine transducer temperature |
US20020049551A1 (en) | 2000-10-20 | 2002-04-25 | Ethicon Endo-Surgery, Inc. | Method for differentiating between burdened and cracked ultrasonically tuned blades |
US6633234B2 (en) | 2000-10-20 | 2003-10-14 | Ethicon Endo-Surgery, Inc. | Method for detecting blade breakage using rate and/or impedance information |
US6679899B2 (en) | 2000-10-20 | 2004-01-20 | Ethicon Endo-Surgery, Inc. | Method for detecting transverse vibrations in an ultrasonic hand piece |
US6945981B2 (en) | 2000-10-20 | 2005-09-20 | Ethicon-Endo Surgery, Inc. | Finger operated switch for controlling a surgical handpiece |
CA2702198C (en) | 2000-10-20 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Detection circuitry for surgical handpiece system |
US6480796B2 (en) | 2000-10-20 | 2002-11-12 | Ethicon Endo-Surgery, Inc. | Method for improving the start up of an ultrasonic system under zero load conditions |
EP1346519B1 (en) | 2000-11-28 | 2006-05-17 | Flash Networks Ltd | System and method for a transmission rate controller |
US7232445B2 (en) | 2000-12-06 | 2007-06-19 | Id, Llc | Apparatus for the endoluminal treatment of gastroesophageal reflux disease (GERD) |
US6558380B2 (en) | 2000-12-08 | 2003-05-06 | Gfd Gesellschaft Fur Diamantprodukte Mbh | Instrument for surgical purposes and method of cleaning same |
EP1216651A1 (de) | 2000-12-21 | 2002-06-26 | BrainLAB AG | Kabelloses medizinisches Erfassungs- und Behandlungssystem |
US20050004559A1 (en) | 2003-06-03 | 2005-01-06 | Senorx, Inc. | Universal medical device control console |
US6618626B2 (en) | 2001-01-16 | 2003-09-09 | Hs West Investments, Llc | Apparatus and methods for protecting the axillary nerve during thermal capsullorhaphy |
US6551243B2 (en) | 2001-01-24 | 2003-04-22 | Siemens Medical Solutions Health Services Corporation | System and user interface for use in providing medical information and health care delivery support |
US6775575B2 (en) | 2001-02-26 | 2004-08-10 | D. Bommi Bommannan | System and method for reducing post-surgical complications |
EP1235471A1 (en) | 2001-02-27 | 2002-08-28 | STMicroelectronics Limited | A stackable module |
DE60232316D1 (de) | 2001-02-27 | 2009-06-25 | Smith & Nephew Inc | Vorrichtung zur totalen knierekonstruktion |
JP4443116B2 (ja) | 2001-03-14 | 2010-03-31 | ブラウン ゲーエムベーハー | 歯の洗浄方法及び装置 |
JP2002288105A (ja) | 2001-03-26 | 2002-10-04 | Hitachi Ltd | ストレージエリアネットワークシステム、その運用方法、ストレージ、データ転送量監視装置 |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
ES2381407T3 (es) | 2001-04-20 | 2012-05-28 | Tyco Healthcare Group Lp | Dispositivo quirúrgico bipolar o ultrasónico |
ATE398413T1 (de) | 2001-04-20 | 2008-07-15 | Power Med Interventions Inc | Abbildungsvorrichtung |
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
CA2449567A1 (en) | 2001-06-13 | 2002-12-19 | Ckm Diagnostics, Inc. | Non-invasive method and apparatus for tissue detection |
US7044911B2 (en) | 2001-06-29 | 2006-05-16 | Philometron, Inc. | Gateway platform for biological monitoring and delivery of therapeutic compounds |
US20040243147A1 (en) * | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
WO2003013374A1 (en) | 2001-08-06 | 2003-02-20 | Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
EP2308395A1 (en) | 2001-08-08 | 2011-04-13 | Stryker Corporation | Surgical tool system including a navigation unit that receives information about the implant the system is to implant and that responds to the received information |
US7344532B2 (en) | 2001-08-27 | 2008-03-18 | Gyrus Medical Limited | Electrosurgical generator and system |
US20030046109A1 (en) | 2001-08-30 | 2003-03-06 | Olympus Optical Co., Ltd. | Medical information system for improving efficiency of clinical record creating operations |
US7104949B2 (en) | 2001-08-31 | 2006-09-12 | Ams Research Corporation | Surgical articles for placing an implant about a tubular tissue structure and methods |
US20030093503A1 (en) | 2001-09-05 | 2003-05-15 | Olympus Optical Co., Ltd. | System for controling medical instruments |
JP2005503871A (ja) | 2001-09-28 | 2005-02-10 | メーガン メディカル、インク. | 経皮プローブへのリンクを固定及び/又は特定するための方法及び装置 |
WO2003026525A1 (en) | 2001-09-28 | 2003-04-03 | Rita Medical Systems, Inc. | Impedance controlled tissue ablation apparatus and method |
US6524307B1 (en) | 2001-10-05 | 2003-02-25 | Medtek Devices, Inc. | Smoke evacuation apparatus |
US6635056B2 (en) | 2001-10-09 | 2003-10-21 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using amplitude control |
DE10151269B4 (de) | 2001-10-17 | 2005-08-25 | Sartorius Ag | Verfahren zum Überwachen der Integrität von Filtrationsanlagen |
US7464847B2 (en) | 2005-06-03 | 2008-12-16 | Tyco Healthcare Group Lp | Surgical stapler with timer and feedback display |
US10285694B2 (en) | 2001-10-20 | 2019-05-14 | Covidien Lp | Surgical stapler with timer and feedback display |
US6770072B1 (en) | 2001-10-22 | 2004-08-03 | Surgrx, Inc. | Electrosurgical jaw structure for controlled energy delivery |
EP1448090A4 (en) | 2001-11-01 | 2010-07-14 | Scott Lab Inc | USER INTERFACE FOR METHODS AND SYSTEMS FOR ADMINISTERING ANALGESIA AND SEDATION |
US7383088B2 (en) | 2001-11-07 | 2008-06-03 | Cardiac Pacemakers, Inc. | Centralized management system for programmable medical devices |
US7409354B2 (en) | 2001-11-29 | 2008-08-05 | Medison Online Inc. | Method and apparatus for operative event documentation and related data management |
CA2466812C (en) | 2001-12-04 | 2012-04-03 | Michael P. Whitman | System and method for calibrating a surgical instrument |
US6783525B2 (en) | 2001-12-12 | 2004-08-31 | Megadyne Medical Products, Inc. | Application and utilization of a water-soluble polymer on a surface |
US20030114851A1 (en) | 2001-12-13 | 2003-06-19 | Csaba Truckai | Electrosurgical jaws for controlled application of clamping pressure |
US6869435B2 (en) | 2002-01-17 | 2005-03-22 | Blake, Iii John W | Repeating multi-clip applier |
US6585791B1 (en) | 2002-01-29 | 2003-07-01 | Jon C. Garito | Smoke plume evacuation filtration system |
US8775196B2 (en) | 2002-01-29 | 2014-07-08 | Baxter International Inc. | System and method for notification and escalation of medical data |
EP1334699A1 (en) | 2002-02-11 | 2003-08-13 | Led S.p.A. | Apparatus for electrosurgery |
US20030210812A1 (en) | 2002-02-26 | 2003-11-13 | Ali Khamene | Apparatus and method for surgical navigation |
US6685704B2 (en) | 2002-02-26 | 2004-02-03 | Megadyne Medical Products, Inc. | Utilization of an active catalyst in a surface coating of an electrosurgical instrument |
US7206626B2 (en) * | 2002-03-06 | 2007-04-17 | Z-Kat, Inc. | System and method for haptic sculpting of physical objects |
US8010180B2 (en) | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
WO2008042486A2 (en) | 2006-07-03 | 2008-04-10 | Beth Israel Deaconess Medical Center | Multi-channel medical imaging systems |
JP4405165B2 (ja) | 2002-03-19 | 2010-01-27 | オリンパス株式会社 | 内視鏡システム |
US7343565B2 (en) | 2002-03-20 | 2008-03-11 | Mercurymd, Inc. | Handheld device graphical user interfaces for displaying patient medical records |
US6641039B2 (en) | 2002-03-21 | 2003-11-04 | Alcon, Inc. | Surgical procedure identification system |
FR2838234A1 (fr) | 2002-04-03 | 2003-10-10 | Sylea | Cable electrique plat |
US7258688B1 (en) | 2002-04-16 | 2007-08-21 | Baylis Medical Company Inc. | Computerized electrical signal generator |
JP4431404B2 (ja) | 2002-04-25 | 2010-03-17 | タイコ ヘルスケア グループ エルピー | マイクロ電気機械的システム(mems)を含む外科用器具 |
US7431730B2 (en) | 2002-05-10 | 2008-10-07 | Tyco Healthcare Group Lp | Surgical stapling apparatus having a wound closure material applicator assembly |
US7457804B2 (en) | 2002-05-10 | 2008-11-25 | Medrad, Inc. | System and method for automated benchmarking for the recognition of best medical practices and products and for establishing standards for medical procedures |
US20030223877A1 (en) | 2002-06-04 | 2003-12-04 | Ametek, Inc. | Blower assembly with closed-loop feedback |
WO2003105701A2 (en) | 2002-06-12 | 2003-12-24 | Scimed Life Systems, Inc. | Suturing instruments |
EP1515651B1 (en) | 2002-06-14 | 2006-12-06 | Power Medical Interventions, Inc. | Device for clamping, cutting, and stapling tissue |
US6849074B2 (en) | 2002-06-17 | 2005-02-01 | Medconx, Inc. | Disposable surgical devices |
WO2004001569A2 (en) | 2002-06-21 | 2003-12-31 | Cedara Software Corp. | Computer assisted system and method for minimal invasive hip, uni knee and total knee replacement |
US6951559B1 (en) | 2002-06-21 | 2005-10-04 | Megadyne Medical Products, Inc. | Utilization of a hybrid material in a surface coating of an electrosurgical instrument |
US7121460B1 (en) | 2002-07-16 | 2006-10-17 | Diebold Self-Service Systems Division Of Diebold, Incorporated | Automated banking machine component authentication system and method |
US6852219B2 (en) | 2002-07-22 | 2005-02-08 | John M. Hammond | Fluid separation and delivery apparatus and method |
US20060116908A1 (en) | 2002-07-30 | 2006-06-01 | Dew Douglas K | Web-based data entry system and method for generating medical records |
US6824539B2 (en) | 2002-08-02 | 2004-11-30 | Storz Endoskop Produktions Gmbh | Touchscreen controlling medical equipment from multiple manufacturers |
US9271753B2 (en) | 2002-08-08 | 2016-03-01 | Atropos Limited | Surgical device |
CA2633137C (en) | 2002-08-13 | 2012-10-23 | The Governors Of The University Of Calgary | Microsurgical robot system |
DE60325198D1 (de) | 2002-10-02 | 2009-01-22 | Olympus Corp | Operationssystem mit mehreren medizinischen Geräten und mehreren Fernbedienungen |
ES2378036T3 (es) | 2002-10-04 | 2012-04-04 | Tyco Healthcare Group Lp | Grapadora quirúrgica con articulación universal y sujeción previa del tejido |
JP4668619B2 (ja) | 2002-10-28 | 2011-04-13 | ノキア コーポレイション | 装置鍵 |
US6913471B2 (en) | 2002-11-12 | 2005-07-05 | Gateway Inc. | Offset stackable pass-through signal connector |
US7073765B2 (en) | 2002-11-13 | 2006-07-11 | Hill-Rom Services, Inc. | Apparatus for carrying medical equipment |
KR100486596B1 (ko) | 2002-12-06 | 2005-05-03 | 엘지전자 주식회사 | 왕복동식 압축기의 운전장치 및 제어방법 |
US7009511B2 (en) | 2002-12-17 | 2006-03-07 | Cardiac Pacemakers, Inc. | Repeater device for communications with an implantable medical device |
JP3769752B2 (ja) | 2002-12-24 | 2006-04-26 | ソニー株式会社 | 情報処理装置および情報処理方法、データ通信システム、並びに、プログラム |
US7081096B2 (en) | 2003-01-24 | 2006-07-25 | Medtronic Vascular, Inc. | Temperature mapping balloon |
US7458977B2 (en) * | 2003-02-04 | 2008-12-02 | Zimmer Technology, Inc. | Surgical navigation instrument useful in marking anatomical structures |
US7230529B2 (en) | 2003-02-07 | 2007-06-12 | Theradoc, Inc. | System, method, and computer program for interfacing an expert system to a clinical information system |
US7182775B2 (en) | 2003-02-27 | 2007-02-27 | Microline Pentax, Inc. | Super atraumatic grasper apparatus |
US20080114212A1 (en) | 2006-10-10 | 2008-05-15 | General Electric Company | Detecting surgical phases and/or interventions |
US8882657B2 (en) | 2003-03-07 | 2014-11-11 | Intuitive Surgical Operations, Inc. | Instrument having radio frequency identification systems and methods for use |
US20040206365A1 (en) | 2003-03-31 | 2004-10-21 | Knowlton Edward Wells | Method for treatment of tissue |
US9149322B2 (en) | 2003-03-31 | 2015-10-06 | Edward Wells Knowlton | Method for treatment of tissue |
US20040199180A1 (en) | 2003-04-02 | 2004-10-07 | Knodel Bryan D. | Method of using surgical device for anastomosis |
WO2004091419A2 (en) | 2003-04-08 | 2004-10-28 | Wasielewski Ray C | Use of micro-and miniature position sensing devices for use in tka and tha |
AU2004237772B2 (en) | 2003-05-01 | 2009-12-10 | Covidien Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
WO2004103156A2 (en) | 2003-05-15 | 2004-12-02 | Sherwood Services Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
US7044352B2 (en) | 2003-05-20 | 2006-05-16 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US7143923B2 (en) | 2003-05-20 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a firing lockout for an unclosed anvil |
US7380695B2 (en) | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
US7140528B2 (en) | 2003-05-20 | 2006-11-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing |
US6988649B2 (en) | 2003-05-20 | 2006-01-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a spent cartridge lockout |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US6978921B2 (en) | 2003-05-20 | 2005-12-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an E-beam firing mechanism |
US20070010838A1 (en) | 2003-05-20 | 2007-01-11 | Shelton Frederick E Iv | Surgical stapling instrument having a firing lockout for an unclosed anvil |
US20040243435A1 (en) | 2003-05-29 | 2004-12-02 | Med-Sched, Inc. | Medical information management system |
US9035741B2 (en) | 2003-06-27 | 2015-05-19 | Stryker Corporation | Foot-operated control console for wirelessly controlling medical devices |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US20050020909A1 (en) | 2003-07-10 | 2005-01-27 | Moctezuma De La Barrera Jose Luis | Display device for surgery and method for using the same |
US8200775B2 (en) | 2005-02-01 | 2012-06-12 | Newsilike Media Group, Inc | Enhanced syndication |
JP2005058616A (ja) | 2003-08-19 | 2005-03-10 | Olympus Corp | 医療システム用制御装置及び医療システム用制御方法 |
KR100724837B1 (ko) | 2003-08-25 | 2007-06-04 | 엘지전자 주식회사 | 오디오 레벨 정보 기록 관리방법과 디지털 오디오기기에서의 오디오 출력 레벨 조절방법 |
US20050182655A1 (en) | 2003-09-02 | 2005-08-18 | Qcmetrix, Inc. | System and methods to collect, store, analyze, report, and present data |
US20050065438A1 (en) | 2003-09-08 | 2005-03-24 | Miller Landon C.G. | System and method of capturing and managing information during a medical diagnostic imaging procedure |
US7597731B2 (en) | 2003-09-15 | 2009-10-06 | Medtek Devices, Inc. | Operating room smoke evacuator with integrated vacuum motor and filter |
EP1517117A1 (de) | 2003-09-22 | 2005-03-23 | Leica Geosystems AG | Verfahren und System zur Bestimmung einer Aktualposition eines Positionierungsgerätes |
US20050063575A1 (en) | 2003-09-22 | 2005-03-24 | Ge Medical Systems Global Technology, Llc | System and method for enabling a software developer to introduce informational attributes for selective inclusion within image headers for medical imaging apparatus applications |
US8147486B2 (en) | 2003-09-22 | 2012-04-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical device with flexible printed circuit |
JP2005111085A (ja) | 2003-10-09 | 2005-04-28 | Olympus Corp | 手術支援システム |
US20090090763A1 (en) | 2007-10-05 | 2009-04-09 | Tyco Healthcare Group Lp | Powered surgical stapling device |
US10588629B2 (en) | 2009-11-20 | 2020-03-17 | Covidien Lp | Surgical console and hand-held surgical device |
US8968276B2 (en) | 2007-09-21 | 2015-03-03 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US10041822B2 (en) | 2007-10-05 | 2018-08-07 | Covidien Lp | Methods to shorten calibration times for powered devices |
US9113880B2 (en) | 2007-10-05 | 2015-08-25 | Covidien Lp | Internal backbone structural chassis for a surgical device |
US10105140B2 (en) | 2009-11-20 | 2018-10-23 | Covidien Lp | Surgical console and hand-held surgical device |
US9055943B2 (en) | 2007-09-21 | 2015-06-16 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
JP2007509717A (ja) | 2003-10-28 | 2007-04-19 | ザ ユーエービー リサーチ ファウンデーション | 電気外科制御システム |
US7169145B2 (en) | 2003-11-21 | 2007-01-30 | Megadyne Medical Products, Inc. | Tuned return electrode with matching inductor |
US7118564B2 (en) | 2003-11-26 | 2006-10-10 | Ethicon Endo-Surgery, Inc. | Medical treatment system with energy delivery device for limiting reuse |
US7317955B2 (en) | 2003-12-12 | 2008-01-08 | Conmed Corporation | Virtual operating room integration |
US7147139B2 (en) | 2003-12-30 | 2006-12-12 | Ethicon Endo-Surgery, Inc | Closure plate lockout for a curved cutter stapler |
US7766207B2 (en) | 2003-12-30 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Articulating curved cutter stapler |
US7207472B2 (en) | 2003-12-30 | 2007-04-24 | Ethicon Endo-Surgery, Inc. | Cartridge with locking knife for a curved cutter stapler |
US20050143759A1 (en) | 2003-12-30 | 2005-06-30 | Kelly William D. | Curved cutter stapler shaped for male pelvis |
US20050149356A1 (en) | 2004-01-02 | 2005-07-07 | Cyr Keneth K. | System and method for management of clinical supply operations |
ATE425706T1 (de) | 2004-01-23 | 2009-04-15 | Ams Res Corp | Gewebebefestigungs- und schneideinstrument |
US7766905B2 (en) | 2004-02-12 | 2010-08-03 | Covidien Ag | Method and system for continuity testing of medical electrodes |
US7774044B2 (en) | 2004-02-17 | 2010-08-10 | Siemens Medical Solutions Usa, Inc. | System and method for augmented reality navigation in a medical intervention procedure |
EP2253278B1 (en) | 2004-02-17 | 2011-12-28 | Tyco Healthcare Group LP | Surgical stapling apparatus with locking mechanism |
US20050192610A1 (en) | 2004-02-27 | 2005-09-01 | Houser Kevin L. | Ultrasonic surgical shears and tissue pad for same |
US7625388B2 (en) | 2004-03-22 | 2009-12-01 | Alcon, Inc. | Method of controlling a surgical system based on a load on the cutting tip of a handpiece |
JP2007531124A (ja) | 2004-03-26 | 2007-11-01 | コンヴァージェンス シーティー | 患者医療データ記録のアクセス及び利用を制御するためのシステム及び方法 |
US20050222631A1 (en) | 2004-04-06 | 2005-10-06 | Nirav Dalal | Hierarchical data storage and analysis system for implantable medical devices |
US7379790B2 (en) | 2004-05-04 | 2008-05-27 | Intuitive Surgical, Inc. | Tool memory-based software upgrades for robotic surgery |
US20070179482A1 (en) | 2004-05-07 | 2007-08-02 | Anderson Robert S | Apparatuses and methods to treat biological external tissue |
US20050251233A1 (en) | 2004-05-07 | 2005-11-10 | John Kanzius | System and method for RF-induced hyperthermia |
US7945065B2 (en) | 2004-05-07 | 2011-05-17 | Phonak Ag | Method for deploying hearing instrument fitting software, and hearing instrument adapted therefor |
WO2005110263A2 (en) | 2004-05-11 | 2005-11-24 | Wisconsin Alumni Research Foundation | Radiofrequency ablation with independently controllable ground pad conductors |
US20050277913A1 (en) | 2004-06-09 | 2005-12-15 | Mccary Brian D | Heads-up display for displaying surgical parameters in a surgical microscope |
US20050283148A1 (en) | 2004-06-17 | 2005-12-22 | Janssen William M | Ablation apparatus and system to limit nerve conduction |
AU2005267378A1 (en) | 2004-06-24 | 2006-02-02 | Suture Robotics, Inc. | Semi-robotic suturing device |
US7818041B2 (en) | 2004-07-07 | 2010-10-19 | Young Kim | System and method for efficient diagnostic analysis of ophthalmic examinations |
CA2513202C (en) | 2004-07-23 | 2015-03-31 | Mehran Anvari | Multi-purpose robotic operating system and method |
US7143925B2 (en) | 2004-07-28 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating EAP blocking lockout mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8905977B2 (en) | 2004-07-28 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser |
US7914551B2 (en) | 2004-07-28 | 2011-03-29 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument |
US7147138B2 (en) | 2004-07-28 | 2006-12-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism |
US7879070B2 (en) | 2004-07-28 | 2011-02-01 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based actuation mechanism for grasper |
JP4873384B2 (ja) | 2004-09-16 | 2012-02-08 | オリンパス株式会社 | 医療行為管理方法ならびにそれを利用した管理サーバおよび医療行為管理システム |
WO2008147555A2 (en) | 2007-05-24 | 2008-12-04 | Suturtek Incorporated | Apparatus and method for minimally invasive suturing |
US8123764B2 (en) | 2004-09-20 | 2012-02-28 | Endoevolution, Llc | Apparatus and method for minimally invasive suturing |
US7782789B2 (en) | 2004-09-23 | 2010-08-24 | Harris Corporation | Adaptive bandwidth utilization for telemetered data |
US20080015664A1 (en) | 2004-10-06 | 2008-01-17 | Podhajsky Ronald J | Systems and methods for thermally profiling radiofrequency electrodes |
US20060079872A1 (en) | 2004-10-08 | 2006-04-13 | Eggleston Jeffrey L | Devices for detecting heating under a patient return electrode |
US8057467B2 (en) | 2004-10-08 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Clamp mechanism for use with an ultrasonic surgical instrument |
WO2006044868A1 (en) | 2004-10-20 | 2006-04-27 | Nervonix, Inc. | An active electrode, bio-impedance based, tissue discrimination system and methods and use |
US8641738B1 (en) | 2004-10-28 | 2014-02-04 | James W. Ogilvie | Method of treating scoliosis using a biological implant |
JP2006158525A (ja) | 2004-12-03 | 2006-06-22 | Olympus Medical Systems Corp | 超音波手術装置及び超音波処置具の駆動方法 |
US7371227B2 (en) | 2004-12-17 | 2008-05-13 | Ethicon Endo-Surgery, Inc. | Trocar seal assembly |
US20060136622A1 (en) | 2004-12-21 | 2006-06-22 | Spx Corporation | Modular controller apparatus and method |
US7294116B1 (en) | 2005-01-03 | 2007-11-13 | Ellman Alan G | Surgical smoke plume evacuation system |
USD521936S1 (en) | 2005-01-07 | 2006-05-30 | Apple Computer, Inc. | Connector system |
US8027710B1 (en) | 2005-01-28 | 2011-09-27 | Patrick Dannan | Imaging system for endoscopic surgery |
US20070168461A1 (en) | 2005-02-01 | 2007-07-19 | Moore James F | Syndicating surgical data in a healthcare environment |
US20080040151A1 (en) | 2005-02-01 | 2008-02-14 | Moore James F | Uses of managed health care data |
US7993140B2 (en) | 2005-02-03 | 2011-08-09 | Christopher Sakezles | Models and methods of using same for testing medical devices |
US20060241399A1 (en) | 2005-02-10 | 2006-10-26 | Fabian Carl E | Multiplex system for the detection of surgical implements within the wound cavity |
US7884735B2 (en) | 2005-02-11 | 2011-02-08 | Hill-Rom Services, Inc. | Transferable patient care equipment support |
JP4681908B2 (ja) | 2005-02-14 | 2011-05-11 | オリンパス株式会社 | 手術機器コントローラ及びそれを用いた手術システム |
JP2006223375A (ja) | 2005-02-15 | 2006-08-31 | Olympus Corp | 手術データ記録装置、手術データ表示装置及び手術データ記録表示方法 |
US8092380B2 (en) | 2005-02-28 | 2012-01-10 | Rothman Healthcare Corporation | System and method for improving hospital patient care by providing a continual measurement of health |
US8206345B2 (en) | 2005-03-07 | 2012-06-26 | Medtronic Cryocath Lp | Fluid control system for a medical device |
US7784663B2 (en) | 2005-03-17 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having load sensing control circuitry |
US20100249791A1 (en) | 2009-03-26 | 2010-09-30 | Martin Roche | System and method for orthopedic measurement and alignment |
US8945095B2 (en) | 2005-03-30 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Force and torque sensing for surgical instruments |
US8038686B2 (en) | 2005-04-14 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Clip applier configured to prevent clip fallout |
US7297149B2 (en) | 2005-04-14 | 2007-11-20 | Ethicon Endo-Surgery, Inc. | Surgical clip applier methods |
US7699860B2 (en) | 2005-04-14 | 2010-04-20 | Ethicon Endo-Surgery, Inc. | Surgical clip |
EP3095379A1 (en) | 2005-04-15 | 2016-11-23 | Surgisense Corporation | Surgical instruments with sensors for detecting tissue properties, and systems using such instruments |
US7362228B2 (en) | 2005-04-28 | 2008-04-22 | Warsaw Orthepedic, Inc. | Smart instrument tray RFID reader |
US7515961B2 (en) | 2005-04-29 | 2009-04-07 | Medtronic, Inc. | Method and apparatus for dynamically monitoring, detecting and diagnosing lead conditions |
US9526587B2 (en) | 2008-12-31 | 2016-12-27 | Intuitive Surgical Operations, Inc. | Fiducial marker design and detection for locating surgical instrument in images |
US7717312B2 (en) | 2005-06-03 | 2010-05-18 | Tyco Healthcare Group Lp | Surgical instruments employing sensors |
US8398541B2 (en) | 2006-06-06 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Interactive user interfaces for robotic minimally invasive surgical systems |
US7828812B2 (en) | 2005-06-13 | 2010-11-09 | Ethicon Endo-Surgery, Inc. | Surgical suturing apparatus with needle release system |
US8468030B2 (en) | 2005-06-27 | 2013-06-18 | Children's Mercy Hospital | System and method for collecting, organizing, and presenting date-oriented medical information |
US8603083B2 (en) | 2005-07-15 | 2013-12-10 | Atricure, Inc. | Matrix router for surgical ablation |
US20160374747A9 (en) | 2005-07-15 | 2016-12-29 | Atricure, Inc. | Ablation Device with Sensor |
US7554343B2 (en) | 2005-07-25 | 2009-06-30 | Piezoinnovations | Ultrasonic transducer control method and system |
US9662116B2 (en) | 2006-05-19 | 2017-05-30 | Ethicon, Llc | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
US8627995B2 (en) | 2006-05-19 | 2014-01-14 | Ethicon Endo-Sugery, Inc. | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
US8038046B2 (en) | 2006-05-19 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Electrical surgical instrument with optimized power supply and drive |
US8627993B2 (en) | 2007-02-12 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Active braking electrical surgical instrument and method for braking such an instrument |
JP5043842B2 (ja) | 2005-07-27 | 2012-10-10 | タイコ ヘルスケア グループ リミテッド パートナーシップ | 電気機械的手術装置用のシャフト |
US7621192B2 (en) | 2005-07-29 | 2009-11-24 | Dynatek Laboratories, Inc. | Medical device durability test apparatus having an integrated particle counter and method of use |
CA2615769A1 (en) | 2005-07-29 | 2007-02-08 | Alcon, Inc. | Method and system for configuring and data populating a surgical device |
US7641092B2 (en) | 2005-08-05 | 2010-01-05 | Ethicon Endo - Surgery, Inc. | Swing gate for device lockout in a curved cutter stapler |
US7407075B2 (en) | 2005-08-15 | 2008-08-05 | Tyco Healthcare Group Lp | Staple cartridge having multiple staple sizes for a surgical stapling instrument |
US20070049947A1 (en) | 2005-08-25 | 2007-03-01 | Microline Pentax Inc. | Cinch control device |
US7720306B2 (en) | 2005-08-29 | 2010-05-18 | Photomed Technologies, Inc. | Systems and methods for displaying changes in biological responses to therapy |
US8365976B2 (en) | 2006-09-29 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US20070066970A1 (en) | 2005-09-16 | 2007-03-22 | Leonard Ineson | Integrated electrosurgical cart and surgical smoke evacuator unit |
US20070078678A1 (en) | 2005-09-30 | 2007-04-05 | Disilvestro Mark R | System and method for performing a computer assisted orthopaedic surgical procedure |
US8096459B2 (en) | 2005-10-11 | 2012-01-17 | Ethicon Endo-Surgery, Inc. | Surgical stapler with an end effector support |
WO2007041843A1 (en) | 2005-10-11 | 2007-04-19 | Podaima Blake | Smart medical compliance method and system |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US7966269B2 (en) | 2005-10-20 | 2011-06-21 | Bauer James D | Intelligent human-machine interface |
DE102005051367A1 (de) | 2005-10-25 | 2007-04-26 | Olympus Winter & Ibe Gmbh | Chirurgisches Maulinstrument |
JP4676864B2 (ja) | 2005-10-26 | 2011-04-27 | 株式会社フジクラ | フレキシブル配線基板を用いた回路構造 |
US7328828B2 (en) | 2005-11-04 | 2008-02-12 | Ethicon Endo-Surgery, Inc, | Lockout mechanisms and surgical instruments including same |
CN1964187B (zh) | 2005-11-11 | 2011-09-28 | 鸿富锦精密工业(深圳)有限公司 | 音量管理系统、方法及装置 |
US8411034B2 (en) | 2009-03-12 | 2013-04-02 | Marc Boillot | Sterile networked interface for medical systems |
US7761164B2 (en) | 2005-11-30 | 2010-07-20 | Medtronic, Inc. | Communication system for medical devices |
US7246734B2 (en) | 2005-12-05 | 2007-07-24 | Ethicon Endo-Surgery, Inc. | Rotary hydraulic pump actuated multi-stroke surgical instrument |
US20070179508A1 (en) | 2005-12-12 | 2007-08-02 | Cook Critical Care Incorporated | Hyperechoic stimulating block needle |
US20070136098A1 (en) * | 2005-12-12 | 2007-06-14 | Smythe Alan H | System and method for providing a secure feature set distribution infrastructure for medical device management |
CN105497994B (zh) | 2005-12-14 | 2018-08-28 | 史赛克公司 | 医疗/手术废物收集和处理系统 |
US7757028B2 (en) | 2005-12-22 | 2010-07-13 | Intuitive Surgical Operations, Inc. | Multi-priority messaging |
US8054752B2 (en) | 2005-12-22 | 2011-11-08 | Intuitive Surgical Operations, Inc. | Synchronous data communication |
JP2007175231A (ja) | 2005-12-27 | 2007-07-12 | Olympus Medical Systems Corp | 医療用システム |
US20090036794A1 (en) | 2005-12-29 | 2009-02-05 | Rikshospitalet-Radiumhospitalet Hf | Method and apparatus for determining local tissue impedance for positioning of a needle |
US20070167702A1 (en) | 2005-12-30 | 2007-07-19 | Intuitive Surgical Inc. | Medical robotic system providing three-dimensional telestration |
US8628518B2 (en) | 2005-12-30 | 2014-01-14 | Intuitive Surgical Operations, Inc. | Wireless force sensor on a distal portion of a surgical instrument and method |
US7930065B2 (en) * | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7907166B2 (en) | 2005-12-30 | 2011-03-15 | Intuitive Surgical Operations, Inc. | Stereo telestration for robotic surgery |
US7670334B2 (en) | 2006-01-10 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
CA2574935A1 (en) | 2006-01-24 | 2007-07-24 | Sherwood Services Ag | A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm |
WO2007089603A2 (en) | 2006-01-27 | 2007-08-09 | Suturtek Incorporated | Apparatus and method for tissue closure |
US7422139B2 (en) | 2006-01-31 | 2008-09-09 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting fastening instrument with tactile position feedback |
US7644848B2 (en) | 2006-01-31 | 2010-01-12 | Ethicon Endo-Surgery, Inc. | Electronic lockouts and surgical instrument including same |
US7575144B2 (en) | 2006-01-31 | 2009-08-18 | Ethicon Endo-Surgery, Inc. | Surgical fastener and cutter with single cable actuator |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7464849B2 (en) | 2006-01-31 | 2008-12-16 | Ethicon Endo-Surgery, Inc. | Electro-mechanical surgical instrument with closure system and anvil alignment components |
US20070175955A1 (en) | 2006-01-31 | 2007-08-02 | Shelton Frederick E Iv | Surgical cutting and fastening instrument with closure trigger locking mechanism |
US8763879B2 (en) | 2006-01-31 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of surgical instrument |
US8161977B2 (en) | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7568603B2 (en) | 2006-01-31 | 2009-08-04 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with articulatable end effector |
US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
US20070203744A1 (en) | 2006-02-28 | 2007-08-30 | Stefan Scholl | Clinical workflow simulation tool and method |
CA2644983C (en) | 2006-03-16 | 2015-09-29 | Boston Scientific Limited | System and method for treating tissue wall prolapse |
US20070225556A1 (en) | 2006-03-23 | 2007-09-27 | Ethicon Endo-Surgery, Inc. | Disposable endoscope devices |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US9636188B2 (en) | 2006-03-24 | 2017-05-02 | Stryker Corporation | System and method for 3-D tracking of surgical instrument in relation to patient body |
US20070270660A1 (en) | 2006-03-29 | 2007-11-22 | Caylor Edward J Iii | System and method for determining a location of an orthopaedic medical device |
US9675375B2 (en) | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
US7667839B2 (en) | 2006-03-30 | 2010-02-23 | Particle Measuring Systems, Inc. | Aerosol particle sensor with axial fan |
US20080015912A1 (en) | 2006-03-30 | 2008-01-17 | Meryl Rosenthal | Systems and methods for workforce management |
FR2899932A1 (fr) | 2006-04-14 | 2007-10-19 | Renault Sas | Procede et dispositif de controle de la regeneration d'un systeme de depollution |
US20070244478A1 (en) | 2006-04-18 | 2007-10-18 | Sherwood Services Ag | System and method for reducing patient return electrode current concentrations |
US20070249990A1 (en) | 2006-04-20 | 2007-10-25 | Ioan Cosmescu | Automatic smoke evacuator and insufflation system for surgical procedures |
CN101060315B (zh) | 2006-04-21 | 2010-09-29 | 鸿富锦精密工业(深圳)有限公司 | 音量管理系统及方法 |
US7278563B1 (en) | 2006-04-25 | 2007-10-09 | Green David T | Surgical instrument for progressively stapling and incising tissue |
US8007494B1 (en) | 2006-04-27 | 2011-08-30 | Encision, Inc. | Device and method to prevent surgical burns |
US8574229B2 (en) | 2006-05-02 | 2013-11-05 | Aesculap Ag | Surgical tool |
US7841980B2 (en) | 2006-05-11 | 2010-11-30 | Olympus Medical Systems Corp. | Treatment system, trocar, treatment method and calibration method |
US7920162B2 (en) | 2006-05-16 | 2011-04-05 | Stryker Leibinger Gmbh & Co. Kg | Display method and system for surgical procedures |
EP2023843B1 (en) | 2006-05-19 | 2016-03-09 | Mako Surgical Corp. | System for verifying calibration of a surgical device |
EP2529671B1 (en) | 2006-05-19 | 2016-08-31 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US20070293218A1 (en) | 2006-05-22 | 2007-12-20 | Qualcomm Incorporated | Collision avoidance for traffic in a wireless network |
US8574252B2 (en) | 2006-06-01 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Ultrasonic blade support |
JP4504332B2 (ja) | 2006-06-12 | 2010-07-14 | オリンパスメディカルシステムズ株式会社 | 手術システム及びそのシステム稼働情報告知方法 |
US9561045B2 (en) | 2006-06-13 | 2017-02-07 | Intuitive Surgical Operations, Inc. | Tool with rotation lock |
US8560047B2 (en) | 2006-06-16 | 2013-10-15 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
CA3068216C (en) | 2006-06-22 | 2023-03-07 | Board Of Regents Of The University Of Nebraska | Magnetically coupleable robotic devices and related methods |
DE102006029122A1 (de) * | 2006-06-22 | 2007-12-27 | Amedo Gmbh | System zur Bestimmung der Position eines medizinischen Instrumentes |
EP2465470B1 (en) | 2006-06-28 | 2015-10-28 | Medtronic Ardian Luxembourg S.à.r.l. | Systems for thermally-induced renal neuromodulation |
US20080059658A1 (en) | 2006-06-29 | 2008-03-06 | Nokia Corporation | Controlling the feeding of data from a feed buffer |
US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US7391173B2 (en) | 2006-06-30 | 2008-06-24 | Intuitive Surgical, Inc | Mechanically decoupled capstan drive |
US8292639B2 (en) | 2006-06-30 | 2012-10-23 | Molex Incorporated | Compliant pin control module and method for making the same |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US20080013460A1 (en) | 2006-07-17 | 2008-01-17 | Geoffrey Benjamin Allen | Coordinated upload of content from multimedia capture devices based on a transmission rule |
JP2008026051A (ja) | 2006-07-19 | 2008-02-07 | Furuno Electric Co Ltd | 生化学自動分析装置 |
US7740159B2 (en) | 2006-08-02 | 2010-06-22 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist |
US20080033404A1 (en) | 2006-08-03 | 2008-02-07 | Romoda Laszlo O | Surgical machine with removable display |
US9757142B2 (en) | 2006-08-09 | 2017-09-12 | Olympus Corporation | Relay device and ultrasonic-surgical and electrosurgical system |
US7771429B2 (en) | 2006-08-25 | 2010-08-10 | Warsaw Orthopedic, Inc. | Surgical tool for holding and inserting fasteners |
EP1897501B1 (en) | 2006-09-08 | 2009-08-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument and actuating movement transmitting device therefor |
US8652086B2 (en) | 2006-09-08 | 2014-02-18 | Abbott Medical Optics Inc. | Systems and methods for power and flow rate control |
US7637907B2 (en) | 2006-09-19 | 2009-12-29 | Covidien Ag | System and method for return electrode monitoring |
USD584688S1 (en) | 2006-09-26 | 2009-01-13 | Hosiden Corporation | Photoelectric-transfer connector for optical fiber |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US7845535B2 (en) | 2006-10-06 | 2010-12-07 | Tyco Healthcare Group Lp | Surgical instrument having a plastic surface |
US8733614B2 (en) | 2006-10-06 | 2014-05-27 | Covidien Lp | End effector identification by mechanical features |
US9028398B2 (en) | 2006-10-11 | 2015-05-12 | Alka Kumar | System for evacuating detached tissue in continuous flow irrigation endoscopic procedures |
EP2314232B1 (en) | 2006-10-17 | 2015-03-25 | Covidien LP | Apparatus for applying surgical clips |
US8229767B2 (en) | 2006-10-18 | 2012-07-24 | Hartford Fire Insurance Company | System and method for salvage calculation, fraud prevention and insurance adjustment |
WO2008049084A2 (en) | 2006-10-18 | 2008-04-24 | Minnow Medical, Inc. | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
US8126728B2 (en) | 2006-10-24 | 2012-02-28 | Medapps, Inc. | Systems and methods for processing and transmittal of medical data through an intermediary device |
JP5085996B2 (ja) | 2006-10-25 | 2012-11-28 | テルモ株式会社 | マニピュレータシステム |
US8214007B2 (en) | 2006-11-01 | 2012-07-03 | Welch Allyn, Inc. | Body worn physiological sensor device having a disposable electrode module |
IL179051A0 (en) | 2006-11-05 | 2007-03-08 | Gyrus Group Plc | Modular surgical workstation |
WO2008056618A2 (en) | 2006-11-06 | 2008-05-15 | Johnson & Johnson Kabushiki Kaisha | Stapling instrument |
WO2008069816A1 (en) | 2006-12-06 | 2008-06-12 | Ryan Timothy J | Apparatus and methods for delivering sutures |
US8062306B2 (en) | 2006-12-14 | 2011-11-22 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US8571598B2 (en) | 2006-12-18 | 2013-10-29 | Intel Corporation | Method and apparatus for location-based wireless connection and pairing |
WO2008097407A2 (en) | 2006-12-18 | 2008-08-14 | Trillium Precision Surgical, Inc. | Intraoperative tissue mapping and dissection systems, devices, methods, and kits |
US7617137B2 (en) | 2006-12-19 | 2009-11-10 | At&T Intellectual Property I, L.P. | Surgical suite radio frequency identification methods and systems |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US7954682B2 (en) | 2007-01-10 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument with elements to communicate between control unit and end effector |
US7721936B2 (en) | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
CN101600393B (zh) | 2007-01-16 | 2014-06-04 | 伊西康内外科公司 | 用于切割和凝结的超声装置 |
US20080177362A1 (en) | 2007-01-18 | 2008-07-24 | Medtronic, Inc. | Screening device and lead delivery system |
US20080177258A1 (en) | 2007-01-18 | 2008-07-24 | Assaf Govari | Catheter with microphone |
US20090017910A1 (en) | 2007-06-22 | 2009-01-15 | Broadcom Corporation | Position and motion tracking of an object |
US7836085B2 (en) | 2007-02-05 | 2010-11-16 | Google Inc. | Searching structured geographical data |
US20110125149A1 (en) | 2007-02-06 | 2011-05-26 | Rizk El-Galley | Universal surgical function control system |
US20080306759A1 (en) | 2007-02-09 | 2008-12-11 | Hakan Mehmel Ilkin | Patient workflow process messaging notification apparatus, system, and method |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
ES2441261T3 (es) | 2007-03-01 | 2014-02-03 | Buffalo Filter Llc | Mecha y válvula de descarga para sistema de evacuación de humo desechable laparoscópico |
JP2010520025A (ja) | 2007-03-06 | 2010-06-10 | タイコ ヘルスケア グループ リミテッド パートナーシップ | 手術用ステープリング装置 |
US8690864B2 (en) | 2007-03-09 | 2014-04-08 | Covidien Lp | System and method for controlling tissue treatment |
US7438209B1 (en) | 2007-03-15 | 2008-10-21 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments having a releasable staple-forming pocket |
US7422136B1 (en) | 2007-03-15 | 2008-09-09 | Tyco Healthcare Group Lp | Powered surgical stapling device |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US7862560B2 (en) | 2007-03-23 | 2011-01-04 | Arthrocare Corporation | Ablation apparatus having reduced nerve stimulation and related methods |
CN101642006B (zh) | 2007-04-03 | 2012-05-02 | 艾利森电话股份有限公司 | 用于配合具有不同宽度的板的底板 |
EP2142087B1 (en) | 2007-04-03 | 2016-06-29 | Nuvasive Inc. | Neurophysiologic monitoring system |
EP2671519B1 (en) | 2007-04-11 | 2014-12-17 | Covidien LP | Surgical clip applier |
US20080255413A1 (en) | 2007-04-13 | 2008-10-16 | Michael Zemlok | Powered surgical instrument |
US7950560B2 (en) | 2007-04-13 | 2011-05-31 | Tyco Healthcare Group Lp | Powered surgical instrument |
US7995045B2 (en) | 2007-04-13 | 2011-08-09 | Ethicon Endo-Surgery, Inc. | Combined SBI and conventional image processor |
US8170396B2 (en) | 2007-04-16 | 2012-05-01 | Adobe Systems Incorporated | Changing video playback rate |
DK2211749T3 (en) | 2007-04-16 | 2019-02-04 | Neuroarm Surgical Ltd | METHODS, DEVICES AND SYSTEMS THAT CAN BE USED FOR REGISTRATION |
US20080281301A1 (en) | 2007-04-20 | 2008-11-13 | Deboer Charles | Personal Surgical Center |
US7823760B2 (en) | 2007-05-01 | 2010-11-02 | Tyco Healthcare Group Lp | Powered surgical stapling device platform |
DE102007021185B4 (de) | 2007-05-05 | 2012-09-20 | Ziehm Imaging Gmbh | Röntgendiagnostikeinrichtung mit einer Vielzahl kodierter Marken und ein Verfahren zur Bestimmung der Lage von Einrichtungsteilen der Röntgendiagnostikeinrichtung |
US8083685B2 (en) | 2007-05-08 | 2011-12-27 | Propep, Llc | System and method for laparoscopic nerve detection |
US20080281678A1 (en) | 2007-05-09 | 2008-11-13 | Mclagan Partners, Inc. | Practice management analysis tool for financial advisors |
US9042978B2 (en) | 2007-05-11 | 2015-05-26 | Neurometrix, Inc. | Method and apparatus for quantitative nerve localization |
US8768251B2 (en) | 2007-05-17 | 2014-07-01 | Abbott Medical Optics Inc. | Exclusive pairing technique for Bluetooth compliant medical devices |
US7518502B2 (en) | 2007-05-24 | 2009-04-14 | Smith & Nephew, Inc. | System and method for tracking surgical assets |
WO2008147567A1 (en) | 2007-05-25 | 2008-12-04 | The Charles Stark Draper Laboratory, Inc. | Integration and control of medical devices in a clinical environment |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
US20080296346A1 (en) | 2007-05-31 | 2008-12-04 | Shelton Iv Frederick E | Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US8160690B2 (en) | 2007-06-14 | 2012-04-17 | Hansen Medical, Inc. | System and method for determining electrode-tissue contact based on amplitude modulation of sensed signal |
US20080312953A1 (en) | 2007-06-14 | 2008-12-18 | Advanced Medical Optics, Inc. | Database design for collection of medical instrument parameters |
US8308040B2 (en) | 2007-06-22 | 2012-11-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US8062330B2 (en) | 2007-06-27 | 2011-11-22 | Tyco Healthcare Group Lp | Buttress and surgical stapling apparatus |
GB0715211D0 (en) | 2007-08-06 | 2007-09-12 | Smith & Nephew | Apparatus |
US9861354B2 (en) | 2011-05-06 | 2018-01-09 | Ceterix Orthopaedics, Inc. | Meniscus repair |
US20160184054A1 (en) | 2007-07-05 | 2016-06-30 | Orthoaccel Technologies, Inc. | Pulsatile orthodontic device and methods |
US7982776B2 (en) | 2007-07-13 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | SBI motion artifact removal apparatus and method |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8035685B2 (en) | 2007-07-30 | 2011-10-11 | General Electric Company | Systems and methods for communicating video data between a mobile imaging system and a fixed monitor system |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8604709B2 (en) | 2007-07-31 | 2013-12-10 | Lsi Industries, Inc. | Methods and systems for controlling electrical power to DC loads |
US8801703B2 (en) | 2007-08-01 | 2014-08-12 | Covidien Lp | System and method for return electrode monitoring |
US9020240B2 (en) | 2007-08-10 | 2015-04-28 | Leica Geosystems Ag | Method and surveying system for noncontact coordinate measurement on an object surface |
CN102831294B (zh) | 2007-08-10 | 2016-08-17 | 施曼信医疗Asd公司 | 一种在服务器处确定医疗设备的操作能力的方法和系统 |
US20090046146A1 (en) | 2007-08-13 | 2009-02-19 | Jonathan Hoyt | Surgical communication and control system |
US20090048589A1 (en) | 2007-08-14 | 2009-02-19 | Tomoyuki Takashino | Treatment device and treatment method for living tissue |
FR2920086A1 (fr) | 2007-08-24 | 2009-02-27 | Univ Grenoble 1 | Systeme et procede d'analyse pour une operation chirurgicale par endoscopie |
US9848058B2 (en) | 2007-08-31 | 2017-12-19 | Cardiac Pacemakers, Inc. | Medical data transport over wireless life critical network employing dynamic communication link mapping |
GB0718291D0 (en) | 2007-09-19 | 2007-10-31 | King S College London | Imaging apparatus and method |
CA2921566C (en) | 2007-09-21 | 2018-05-22 | Tyco Healthcare Group Lp | Surgical device |
AU2008302043B2 (en) | 2007-09-21 | 2013-06-27 | Covidien Lp | Surgical device |
US9050120B2 (en) | 2007-09-30 | 2015-06-09 | Intuitive Surgical Operations, Inc. | Apparatus and method of user interface with alternate tool mode for robotic surgical tools |
US20090112618A1 (en) | 2007-10-01 | 2009-04-30 | Johnson Christopher D | Systems and methods for viewing biometrical information and dynamically adapting schedule and process interdependencies with clinical process decisioning |
US20110022032A1 (en) | 2007-10-05 | 2011-01-27 | Tyco Healthcare Group Lp | Battery ejection design for a surgical device |
EP2796102B1 (en) | 2007-10-05 | 2018-03-14 | Ethicon LLC | Ergonomic surgical instruments |
US10498269B2 (en) | 2007-10-05 | 2019-12-03 | Covidien Lp | Powered surgical stapling device |
US8960520B2 (en) | 2007-10-05 | 2015-02-24 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US10271844B2 (en) | 2009-04-27 | 2019-04-30 | Covidien Lp | Surgical stapling apparatus employing a predictive stapling algorithm |
US20130214025A1 (en) | 2007-10-05 | 2013-08-22 | Covidien Lp | Powered surgical stapling device |
US10779818B2 (en) | 2007-10-05 | 2020-09-22 | Covidien Lp | Powered surgical stapling device |
US8967443B2 (en) | 2007-10-05 | 2015-03-03 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US8012170B2 (en) | 2009-04-27 | 2011-09-06 | Tyco Healthcare Group Lp | Device and method for controlling compression of tissue |
US8343065B2 (en) | 2007-10-18 | 2013-01-01 | Innovative Surgical Solutions, Llc | Neural event detection |
US8321581B2 (en) | 2007-10-19 | 2012-11-27 | Voxer Ip Llc | Telecommunication and multimedia management method and apparatus |
DE102007050232B4 (de) * | 2007-10-20 | 2024-05-02 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Handhabungsroboter und Verfahren zur Steuerung eines Handhabungsroboters |
EP2053353A1 (de) | 2007-10-26 | 2009-04-29 | Leica Geosystems AG | Distanzmessendes Verfahren und ebensolches Gerät |
EP2060986B1 (en) | 2007-11-13 | 2019-01-02 | Karl Storz SE & Co. KG | System and method for management of processes in a hospital and/or in an operating room |
US8125168B2 (en) | 2007-11-19 | 2012-02-28 | Honeywell International Inc. | Motor having controllable torque |
DE102007057033A1 (de) | 2007-11-27 | 2009-05-28 | Robert Bosch Gmbh | Elektrisch antreibbare Handwerkzeugmaschine |
JP5278854B2 (ja) | 2007-12-10 | 2013-09-04 | 富士フイルム株式会社 | 画像処理システムおよびプログラム |
DE102008061418A1 (de) | 2007-12-12 | 2009-06-18 | Erbe Elektromedizin Gmbh | Vorrichtung zur kontaktlosen Kommunikation und Verwendung einer Speichereinrichtung |
FR2924917B1 (fr) | 2007-12-13 | 2011-02-11 | Microval | Appareil de pose de spires de suture resultant d'un fil metallique a memoire de forme. |
EP2075096A1 (de) | 2007-12-27 | 2009-07-01 | Leica Geosystems AG | Verfahren und System zum hochpräzisen Positionieren mindestens eines Objekts in eine Endlage im Raum |
US20110264000A1 (en) | 2007-12-28 | 2011-10-27 | Saurav Paul | System and method for determining tissue type and mapping tissue morphology |
US20090182577A1 (en) | 2008-01-15 | 2009-07-16 | Carestream Health, Inc. | Automated information management process |
US8740840B2 (en) | 2008-01-16 | 2014-06-03 | Catheter Robotics Inc. | Remotely controlled catheter insertion system |
JP5154961B2 (ja) | 2008-01-29 | 2013-02-27 | テルモ株式会社 | 手術システム |
US9336385B1 (en) | 2008-02-11 | 2016-05-10 | Adaptive Cyber Security Instruments, Inc. | System for real-time threat detection and management |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US7905381B2 (en) | 2008-09-19 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with cutting member arrangement |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US7810692B2 (en) | 2008-02-14 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with firing indicator |
US7913891B2 (en) | 2008-02-14 | 2011-03-29 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with user feedback features and surgical instrument for use therewith |
US7857185B2 (en) | 2008-02-14 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Disposable loading unit for surgical stapling apparatus |
US20090206131A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | End effector coupling arrangements for a surgical cutting and stapling instrument |
US10136890B2 (en) | 2010-09-30 | 2018-11-27 | Ethicon Llc | Staple cartridge comprising a variable thickness compressible portion |
US7980443B2 (en) | 2008-02-15 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | End effectors for a surgical cutting and stapling instrument |
US20130153641A1 (en) | 2008-02-15 | 2013-06-20 | Ethicon Endo-Surgery, Inc. | Releasable layer of material and surgical end effector having the same |
US8608044B2 (en) | 2008-02-15 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Feedback and lockout mechanism for surgical instrument |
US20090217932A1 (en) | 2008-03-03 | 2009-09-03 | Ethicon Endo-Surgery, Inc. | Intraluminal tissue markers |
US8118206B2 (en) | 2008-03-15 | 2012-02-21 | Surgisense Corporation | Sensing adjunct for surgical staplers |
US20090234352A1 (en) | 2008-03-17 | 2009-09-17 | Tyco Healthcare Group Lp | Variable Capacitive Electrode Pad |
US9987072B2 (en) | 2008-03-17 | 2018-06-05 | Covidien Lp | System and method for detecting a fault in a capacitive return electrode for use in electrosurgery |
US8343096B2 (en) | 2008-03-27 | 2013-01-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
US8155479B2 (en) | 2008-03-28 | 2012-04-10 | Intuitive Surgical Operations Inc. | Automated panning and digital zooming for robotic surgical systems |
WO2009124097A1 (en) | 2008-03-31 | 2009-10-08 | Applied Medical Resources Corporation | Electrosurgical system |
USD583328S1 (en) | 2008-04-01 | 2008-12-23 | Cheng Uei Precision Industry Co., Ltd. | Receptacle connector |
US20090254376A1 (en) | 2008-04-08 | 2009-10-08 | The Quantum Group, Inc. | Dynamic integration of disparate health-related processes and data |
US20090259221A1 (en) | 2008-04-15 | 2009-10-15 | Naoko Tahara | Power supply apparatus for operation |
US20090259149A1 (en) | 2008-04-15 | 2009-10-15 | Naoko Tahara | Power supply apparatus for operation |
US9526407B2 (en) | 2008-04-25 | 2016-12-27 | Karl Storz Imaging, Inc. | Wirelessly powered medical devices and instruments |
WO2009140092A1 (en) | 2008-05-13 | 2009-11-19 | The Medicines Company | Maintenance of platelet inhibition during antiplatelet therapy |
KR101714060B1 (ko) | 2008-05-27 | 2017-03-08 | 스트리커 코포레이션 | 다수의 의료 장치의 제어용 무선 의료실 제어 배열장치 |
US8506478B2 (en) | 2008-06-04 | 2013-08-13 | Fujifilm Corporation | Illumination device for use in endoscope |
AR072011A1 (es) | 2008-06-05 | 2010-07-28 | Alcon Res Ltd | Red inalambrica y metodos de comunicacion inalambrica para consolas quirurgicas oftalmicas |
US7942303B2 (en) | 2008-06-06 | 2011-05-17 | Tyco Healthcare Group Lp | Knife lockout mechanisms for surgical instrument |
US7789283B2 (en) | 2008-06-06 | 2010-09-07 | Tyco Healthcare Group Lp | Knife/firing rod connection for surgical instrument |
US8622951B2 (en) | 2008-06-09 | 2014-01-07 | Abbott Medical Optics Inc. | Controlling a phacoemulsification system based on real-time analysis of image data |
US7932826B2 (en) | 2008-06-12 | 2011-04-26 | Abbott Laboratories Inc. | System for tracking the location of components, assemblies, and subassemblies in an automated diagnostic analyzer |
US8007513B2 (en) | 2008-06-12 | 2011-08-30 | Ethicon Endo-Surgery, Inc. | Partially reusable surgical stapler |
JP5216429B2 (ja) | 2008-06-13 | 2013-06-19 | 富士フイルム株式会社 | 光源装置および内視鏡装置 |
US8628545B2 (en) | 2008-06-13 | 2014-01-14 | Covidien Lp | Endoscopic stitching devices |
WO2009155432A2 (en) | 2008-06-18 | 2009-12-23 | Sterling Lc | Miniaturized imaging device multiple grin lenses optically coupled to multiple ssids |
WO2010008846A2 (en) | 2008-06-23 | 2010-01-21 | John Richard Dein | Intra-operative system for identifying and tracking surgical sharp objects, instruments, and sponges |
US20090326336A1 (en) | 2008-06-25 | 2009-12-31 | Heinz Ulrich Lemke | Process for comprehensive surgical assist system by means of a therapy imaging and model management system (TIMMS) |
CN101617950A (zh) | 2008-07-01 | 2010-01-06 | 王爱娣 | 一种连发钛夹钳 |
US8771270B2 (en) | 2008-07-16 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Bipolar cautery instrument |
US8054184B2 (en) | 2008-07-31 | 2011-11-08 | Intuitive Surgical Operations, Inc. | Identification of surgical instrument attached to surgical robot |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
WO2010019515A2 (en) | 2008-08-10 | 2010-02-18 | Board Of Regents, The University Of Texas System | Digital light processing hyperspectral imaging apparatus |
US8172836B2 (en) | 2008-08-11 | 2012-05-08 | Tyco Healthcare Group Lp | Electrosurgical system having a sensor for monitoring smoke or aerosols |
WO2010018907A1 (ko) | 2008-08-14 | 2010-02-18 | (주)미래컴퍼니 | 서버 클라이언트 방식의 수술용 로봇 시스템 |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
WO2010022088A1 (en) | 2008-08-18 | 2010-02-25 | Encision, Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US8409223B2 (en) | 2008-08-29 | 2013-04-02 | Covidien Lp | Endoscopic surgical clip applier with clip retention |
JP5231902B2 (ja) | 2008-09-02 | 2013-07-10 | 株式会社ニデック | 硝子体手術装置 |
US8208707B2 (en) | 2008-09-02 | 2012-06-26 | General Electric Company | Tissue classification in medical images |
CN101672648A (zh) | 2008-09-12 | 2010-03-17 | 富士通天株式会社 | 信息处理装置、图像处理装置 |
WO2010030850A2 (en) | 2008-09-12 | 2010-03-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for fingertip control |
US20100070417A1 (en) | 2008-09-12 | 2010-03-18 | At&T Mobility Ii Llc | Network registration for content transactions |
US9107688B2 (en) | 2008-09-12 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Activation feature for surgical instrument with pencil grip |
US20100069939A1 (en) | 2008-09-15 | 2010-03-18 | Olympus Medical Systems Corp. | Operation system |
EP2163209A1 (en) | 2008-09-15 | 2010-03-17 | Zhiqiang Weng | Lockout mechanism for a surgical stapler |
US20100069942A1 (en) | 2008-09-18 | 2010-03-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with apparatus for measuring elapsed time between actions |
US8005947B2 (en) | 2008-09-22 | 2011-08-23 | Abbott Medical Optics Inc. | Systems and methods for providing remote diagnostics and support for surgical systems |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9050083B2 (en) | 2008-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US7988028B2 (en) | 2008-09-23 | 2011-08-02 | Tyco Healthcare Group Lp | Surgical instrument having an asymmetric dynamic clamping member |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US8562819B2 (en) | 2008-10-01 | 2013-10-22 | Chevron U.S.A. Inc. | Process to manufacture a base stock and a base oil manufacturing plant |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8808308B2 (en) | 2008-10-13 | 2014-08-19 | Alcon Research, Ltd. | Automated intraocular lens injector device |
US7918377B2 (en) | 2008-10-16 | 2011-04-05 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with apparatus for providing anvil position feedback |
US8239066B2 (en) | 2008-10-27 | 2012-08-07 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8021890B2 (en) | 2008-11-03 | 2011-09-20 | Petty Jon A | Colorimetric test for brake system corrosion |
US8231042B2 (en) | 2008-11-06 | 2012-07-31 | Tyco Healthcare Group Lp | Surgical stapler |
EP3173043A1 (en) | 2008-11-11 | 2017-05-31 | Shifamed Holdings, LLC | Low profile electrode assembly |
US20100137845A1 (en) | 2008-12-03 | 2010-06-03 | Immersion Corporation | Tool Having Multiple Feedback Devices |
US8515520B2 (en) | 2008-12-08 | 2013-08-20 | Medtronic Xomed, Inc. | Nerve electrode |
US10080578B2 (en) | 2008-12-16 | 2018-09-25 | Nico Corporation | Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications |
US8627483B2 (en) | 2008-12-18 | 2014-01-07 | Accenture Global Services Limited | Data anonymization based on guessing anonymity |
US8335590B2 (en) | 2008-12-23 | 2012-12-18 | Intuitive Surgical Operations, Inc. | System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device |
US8160098B1 (en) | 2009-01-14 | 2012-04-17 | Cisco Technology, Inc. | Dynamically allocating channel bandwidth between interfaces |
US11075754B2 (en) | 2009-01-15 | 2021-07-27 | International Business Machines Corporation | Universal personal medical database access control |
US20100191100A1 (en) | 2009-01-23 | 2010-07-29 | Warsaw Orthopedic, Inc. | Methods and systems for diagnosing, treating, or tracking spinal disorders |
US20110278343A1 (en) | 2009-01-29 | 2011-11-17 | Cardica, Inc. | Clamping of Hybrid Surgical Instrument |
US9107694B2 (en) | 2009-01-30 | 2015-08-18 | Koninklijke Philips N.V. | Examination apparatus |
US20100198200A1 (en) | 2009-01-30 | 2010-08-05 | Christopher Horvath | Smart Illumination for Surgical Devices |
BRPI1007522A2 (pt) | 2009-01-30 | 2016-02-16 | Univ Columbia | fonte magnética controlável para fixação de aparelho intracorporal |
US20100198248A1 (en) | 2009-02-02 | 2010-08-05 | Ethicon Endo-Surgery, Inc. | Surgical dissector |
US8799009B2 (en) | 2009-02-02 | 2014-08-05 | Mckesson Financial Holdings | Systems, methods and apparatuses for predicting capacity of resources in an institution |
ES2398006T3 (es) | 2009-02-04 | 2013-03-13 | Stryker Leibinger Gmbh & Co. Kg | Herramienta quirúrgica eléctrica y conjunto de accionamiento para la misma |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US20100204717A1 (en) | 2009-02-12 | 2010-08-12 | Cardica, Inc. | Surgical Device for Multiple Clip Application |
US8641621B2 (en) | 2009-02-17 | 2014-02-04 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures |
US8858547B2 (en) | 2009-03-05 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
US9848904B2 (en) | 2009-03-06 | 2017-12-26 | Procept Biorobotics Corporation | Tissue resection and treatment with shedding pulses |
KR20160138587A (ko) | 2009-03-06 | 2016-12-05 | 인터디지탈 패튼 홀딩스, 인크 | 무선 장치들의 플랫폼 검증 및 관리 |
US8914098B2 (en) | 2009-03-08 | 2014-12-16 | Oprobe, Llc | Medical and veterinary imaging and diagnostic procedures utilizing optical probe systems |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8918207B2 (en) | 2009-03-09 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Operator input device for a robotic surgical system |
US9226689B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit sheet |
US20100235689A1 (en) | 2009-03-16 | 2010-09-16 | Qualcomm Incorporated | Apparatus and method for employing codes for telecommunications |
BRPI1013591A2 (pt) | 2009-03-26 | 2016-04-19 | Xped Holdings Pty Ltd | sistema de gerenciamento de comunicação sem fio bi-direncional entre dispositivos |
US9277969B2 (en) | 2009-04-01 | 2016-03-08 | Covidien Lp | Microwave ablation system with user-controlled ablation size and method of use |
US8945163B2 (en) | 2009-04-01 | 2015-02-03 | Ethicon Endo-Surgery, Inc. | Methods and devices for cutting and fastening tissue |
US8277446B2 (en) | 2009-04-24 | 2012-10-02 | Tyco Healthcare Group Lp | Electrosurgical tissue sealer and cutter |
US8365975B1 (en) | 2009-05-05 | 2013-02-05 | Cardica, Inc. | Cam-controlled knife for surgical instrument |
US8554697B2 (en) * | 2009-05-08 | 2013-10-08 | Abbott Medical Optics Inc. | Self-learning engine for the refinement and optimization of surgical settings |
GB2470189B (en) | 2009-05-11 | 2013-10-16 | Gyrus Medical Ltd | Electrosurgical generator |
WO2010132617A2 (en) | 2009-05-12 | 2010-11-18 | Chronicmobile, Inc. | Methods and systems for managing, controlling and monitoring medical devices via one or more software applications functioning in a secure environment |
GB0908368D0 (en) | 2009-05-15 | 2009-06-24 | Univ Leuven Kath | Adjustable remote center of motion positioner |
US20100292684A1 (en) | 2009-05-15 | 2010-11-18 | Cybulski James S | Tissue modification devices and methods of the same |
US20100292535A1 (en) | 2009-05-18 | 2010-11-18 | Larry Paskar | Endoscope with multiple fields of view |
WO2010141922A1 (en) | 2009-06-04 | 2010-12-09 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
US9226791B2 (en) | 2012-03-12 | 2016-01-05 | Advanced Cardiac Therapeutics, Inc. | Systems for temperature-controlled ablation using radiometric feedback |
US9277961B2 (en) | 2009-06-12 | 2016-03-08 | Advanced Cardiac Therapeutics, Inc. | Systems and methods of radiometrically determining a hot-spot temperature of tissue being treated |
US20110077512A1 (en) | 2009-06-16 | 2011-03-31 | Dept. Of Veterans Affairs | Biopsy marker composition and method of use |
US9532827B2 (en) | 2009-06-17 | 2017-01-03 | Nuortho Surgical Inc. | Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator |
EP2442706B1 (en) | 2009-06-18 | 2014-11-12 | EndoChoice Innovation Center Ltd. | Multi-camera endoscope |
US9872609B2 (en) | 2009-06-18 | 2018-01-23 | Endochoice Innovation Center Ltd. | Multi-camera endoscope |
US8827134B2 (en) | 2009-06-19 | 2014-09-09 | Covidien Lp | Flexible surgical stapler with motor in the head |
RU2557887C2 (ru) | 2009-07-15 | 2015-07-27 | Конинклейке Филипс Электроникс Н.В. | Способ автоматической настройки предупреждения о меняющемся во времени параметре |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9439736B2 (en) | 2009-07-22 | 2016-09-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling a remote medical device guidance system in three-dimensions using gestures |
FR2948594B1 (fr) | 2009-07-31 | 2012-07-20 | Dexterite Surgical | Manipulateur ergonomique et semi-automatique et applications aux instruments pour chirurgie mini-invasive |
US8968358B2 (en) | 2009-08-05 | 2015-03-03 | Covidien Lp | Blunt tissue dissection surgical instrument jaw designs |
GB0913930D0 (en) | 2009-08-07 | 2009-09-16 | Ucl Business Plc | Apparatus and method for registering two medical images |
US8360299B2 (en) | 2009-08-11 | 2013-01-29 | Covidien Lp | Surgical stapling apparatus |
US8955732B2 (en) | 2009-08-11 | 2015-02-17 | Covidien Lp | Surgical stapling apparatus |
US7956620B2 (en) | 2009-08-12 | 2011-06-07 | Tyco Healthcare Group Lp | System and method for augmented impedance sensing |
US8733612B2 (en) | 2009-08-17 | 2014-05-27 | Covidien Lp | Safety method for powered surgical instruments |
US20140148729A1 (en) | 2012-11-29 | 2014-05-29 | Gregory P. Schmitz | Micro-mechanical devices and methods for brain tumor removal |
US8886790B2 (en) | 2009-08-19 | 2014-11-11 | Opanga Networks, Inc. | Systems and methods for optimizing channel resources by coordinating data transfers based on data type and traffic |
US9636239B2 (en) | 2009-08-20 | 2017-05-02 | Case Western Reserve University | System and method for mapping activity in peripheral nerves |
US20110166883A1 (en) | 2009-09-01 | 2011-07-07 | Palmer Robert D | Systems and Methods for Modeling Healthcare Costs, Predicting Same, and Targeting Improved Healthcare Quality and Profitability |
SE0901166A1 (sv) | 2009-09-10 | 2011-03-11 | Cathprint Ab | Flexibel ledningsbärare för kateter försedd med sådan ledningsbärare |
US9265429B2 (en) | 2009-09-18 | 2016-02-23 | Welch Allyn, Inc. | Physiological parameter measuring platform device supporting multiple workflows |
US9474565B2 (en) | 2009-09-22 | 2016-10-25 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
US10386990B2 (en) | 2009-09-22 | 2019-08-20 | Mederi Rf, Llc | Systems and methods for treating tissue with radiofrequency energy |
US9750563B2 (en) | 2009-09-22 | 2017-09-05 | Mederi Therapeutics, Inc. | Systems and methods for treating tissue with radiofrequency energy |
EP2483818A1 (en) | 2009-09-28 | 2012-08-08 | Johnson & Johnson Medical S.p.A. | Method and system for monitoring the flow and usage of medical devices |
US20120265555A1 (en) | 2009-09-28 | 2012-10-18 | Sandro Cappuzzo | Method and system for monitoring the flow and usage of medical devices |
US20110105895A1 (en) | 2009-10-01 | 2011-05-05 | Giora Kornblau | Guided surgery |
US20110125520A1 (en) | 2009-10-02 | 2011-05-26 | Rabin Chandra Kemp Dhoble | Apparatuses, methods and systems for a mobile healthcare manager-based patient adherence monitor |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US20140074076A1 (en) | 2009-10-12 | 2014-03-13 | Kona Medical, Inc. | Non-invasive autonomic nervous system modulation |
US8157151B2 (en) | 2009-10-15 | 2012-04-17 | Tyco Healthcare Group Lp | Staple line reinforcement for anvil and cartridge |
CA2777829A1 (en) | 2009-10-16 | 2011-04-21 | Nanomedapps Llc | Item and user tracking |
US8038693B2 (en) | 2009-10-21 | 2011-10-18 | Tyco Healthcare Group Ip | Methods for ultrasonic tissue sensing and feedback |
WO2011052390A1 (ja) | 2009-10-28 | 2011-05-05 | オリンパスメディカルシステムズ株式会社 | 医療用装置 |
US8322590B2 (en) | 2009-10-28 | 2012-12-04 | Covidien Lp | Surgical stapling instrument |
US8225979B2 (en) | 2009-10-30 | 2012-07-24 | Tyco Healthcare Group Lp | Locking shipping wedge |
CN102781336B (zh) | 2009-10-30 | 2016-01-20 | 约翰霍普金斯大学 | 用于外科手术干预的临床上重要的解剖标志的视觉跟踪和注释 |
US8398633B2 (en) | 2009-10-30 | 2013-03-19 | Covidien Lp | Jaw roll joint |
DK2320621T3 (en) | 2009-11-06 | 2016-12-19 | Hoffmann La Roche | A method of establishing a cryptographic communication between a remote device and a medical device and system for carrying out this method |
KR102109626B1 (ko) | 2009-11-13 | 2020-05-12 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 여분의 닫힘 메커니즘을 구비한 단부 작동기 |
US8521331B2 (en) | 2009-11-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument |
WO2011060315A2 (en) | 2009-11-13 | 2011-05-19 | Intuitive Surgical Operations, Inc. | Surgical tool with a compact wrist |
US8682489B2 (en) | 2009-11-13 | 2014-03-25 | Intuitive Sugical Operations, Inc. | Method and system for hand control of a teleoperated minimally invasive slave surgical instrument |
US9259275B2 (en) | 2009-11-13 | 2016-02-16 | Intuitive Surgical Operations, Inc. | Wrist articulation by linked tension members |
US9241730B2 (en) | 2009-11-25 | 2016-01-26 | Eliaz Babaev | Ultrasound surgical saw |
US8540709B2 (en) | 2009-12-07 | 2013-09-24 | Covidien Lp | Removable ink for surgical instrument |
US8136712B2 (en) | 2009-12-10 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Surgical stapler with discrete staple height adjustment and tactile feedback |
US20110152712A1 (en) | 2009-12-21 | 2011-06-23 | Hong Cao | Impedance Measurement Tissue Identification in Blood Vessels |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
USD657368S1 (en) | 2009-12-31 | 2012-04-10 | Welch Allyn, Inc. | Patient monitoring device with graphical user interface |
US20110162048A1 (en) | 2009-12-31 | 2011-06-30 | Apple Inc. | Local device awareness |
US8608046B2 (en) | 2010-01-07 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Test device for a surgical tool |
EP2525731A1 (en) | 2010-01-20 | 2012-11-28 | Creative Team Instruments Ltd. | Orientation dector for use with a hand-held surgical or dental tool |
US8439910B2 (en) | 2010-01-22 | 2013-05-14 | Megadyne Medical Products Inc. | Electrosurgical electrode with electric field concentrating flash edge |
CN102905637A (zh) | 2010-01-22 | 2013-01-30 | 奥林巴斯医疗株式会社 | 治疗用处理器具、治疗用处理装置及治疗处理方法 |
US8476227B2 (en) | 2010-01-22 | 2013-07-02 | Ethicon Endo-Surgery, Inc. | Methods of activating a melanocortin-4 receptor pathway in obese subjects |
US11881307B2 (en) | 2012-05-24 | 2024-01-23 | Deka Products Limited Partnership | System, method, and apparatus for electronic patient care |
US8556929B2 (en) | 2010-01-29 | 2013-10-15 | Covidien Lp | Surgical forceps capable of adjusting seal plate width based on vessel size |
GB2477515B (en) | 2010-02-03 | 2012-09-26 | Orbital Multi Media Holdings Corp | Data flow control method and apparatus |
AU2011212786C1 (en) | 2010-02-04 | 2014-10-16 | Aesculap Ag | Laparoscopic radiofrequency surgical device |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8403945B2 (en) | 2010-02-25 | 2013-03-26 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8512325B2 (en) | 2010-02-26 | 2013-08-20 | Covidien Lp | Frequency shifting multi mode ultrasonic dissector |
US9610412B2 (en) | 2010-03-02 | 2017-04-04 | Covidien Lp | Internally pressurized medical devices |
US9107684B2 (en) | 2010-03-05 | 2015-08-18 | Covidien Lp | System and method for transferring power to intrabody instruments |
USD673117S1 (en) | 2010-03-09 | 2012-12-25 | Wago Verwaltungsgesellschaft Mbh | Electrical connectors |
WO2011112843A1 (en) | 2010-03-12 | 2011-09-15 | Inspire Medical Systems, Inc. | Method and system for identifying a location for nerve stimulation |
TWI646988B (zh) | 2010-03-12 | 2019-01-11 | 美國伊利諾大學理事會 | 生物醫學裝置及其製造方法、流體遞送監視器、監視在管子中流動之流體的方法、近接感測器及感測兩個物件之間的距離的方法 |
US20130024213A1 (en) | 2010-03-25 | 2013-01-24 | The Research Foundation Of State University Of New York | Method and system for guided, efficient treatment |
US9023032B2 (en) | 2010-03-25 | 2015-05-05 | Covidien Lp | Shaped circuit boards suitable for use in electrosurgical devices and rotatable assemblies including same |
JP5405373B2 (ja) | 2010-03-26 | 2014-02-05 | 富士フイルム株式会社 | 電子内視鏡システム |
JP5606120B2 (ja) | 2010-03-29 | 2014-10-15 | 富士フイルム株式会社 | 内視鏡装置 |
USD678304S1 (en) | 2010-03-31 | 2013-03-19 | Spintso International Ab | Display screen or portion thereof with graphical user interface |
US8834518B2 (en) | 2010-04-12 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with cam-actuated jaws |
CN102845090B (zh) | 2010-04-13 | 2016-07-06 | 皇家飞利浦电子股份有限公司 | 具有基于密钥的频谱使用状况控制的医学人体区域网(mban) |
WO2011128766A2 (en) | 2010-04-13 | 2011-10-20 | Picard Frederic | Methods and systems for object tracking |
US10631912B2 (en) | 2010-04-30 | 2020-04-28 | Medtronic Xomed, Inc. | Interface module for use with nerve monitoring and electrosurgery |
USD631252S1 (en) | 2010-05-26 | 2011-01-25 | Leslie Henry E | Glove holder for engaging a garment |
US9052809B2 (en) | 2010-05-26 | 2015-06-09 | General Electric Company | Systems and methods for situational application development and deployment with patient event monitoring |
US9091588B2 (en) | 2010-05-28 | 2015-07-28 | Prognost Systems Gmbh | System and method of mechanical fault detection based on signature detection |
AU2015201140B2 (en) | 2010-06-11 | 2017-02-09 | Ethicon, Llc | Suture delivery tools for endoscopic and robot-assisted surgery and methods |
US20120130217A1 (en) | 2010-11-23 | 2012-05-24 | Kauphusman James V | Medical devices having electrodes mounted thereon and methods of manufacturing therefor |
US8596515B2 (en) | 2010-06-18 | 2013-12-03 | Covidien Lp | Staple position sensor system |
CN102958565B (zh) | 2010-06-24 | 2016-01-20 | 皇家飞利浦电子股份有限公司 | 在多个维度上的hifu治疗的实时监测和控制 |
US8429153B2 (en) | 2010-06-25 | 2013-04-23 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for classifying known specimens and media using spectral properties and identifying unknown specimens and media |
US20120022519A1 (en) | 2010-07-22 | 2012-01-26 | Ethicon Endo-Surgery, Inc. | Surgical cutting and sealing instrument with controlled energy delivery |
US8968337B2 (en) | 2010-07-28 | 2015-03-03 | Covidien Lp | Articulating clip applier |
US8403946B2 (en) | 2010-07-28 | 2013-03-26 | Covidien Lp | Articulating clip applier cartridge |
US10137245B2 (en) | 2010-08-17 | 2018-11-27 | University Of Florida Research Foundation, Inc. | Central site photoplethysmography, medication administration, and safety |
US8814864B2 (en) | 2010-08-23 | 2014-08-26 | Covidien Lp | Method of manufacturing tissue sealing electrodes |
US11544652B2 (en) | 2010-09-01 | 2023-01-03 | Apixio, Inc. | Systems and methods for enhancing workflow efficiency in a healthcare management system |
US20120059684A1 (en) | 2010-09-02 | 2012-03-08 | International Business Machines Corporation | Spatial-Temporal Optimization of Physical Asset Maintenance |
US8360296B2 (en) | 2010-09-09 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical stapling head assembly with firing lockout for a surgical stapler |
US9289212B2 (en) | 2010-09-17 | 2016-03-22 | Ethicon Endo-Surgery, Inc. | Surgical instruments and batteries for surgical instruments |
US8632525B2 (en) | 2010-09-17 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Power control arrangements for surgical instruments and batteries |
EP2618909A4 (en) | 2010-09-20 | 2014-06-18 | Surgiquest Inc | FILTRATION SYSTEM WITH MULTIPLE FLOWS |
US9402682B2 (en) | 2010-09-24 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Articulation joint features for articulating surgical device |
US8733613B2 (en) | 2010-09-29 | 2014-05-27 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
US8752699B2 (en) | 2010-09-30 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Implantable fastener cartridge comprising bioabsorbable layers |
JP5917529B2 (ja) | 2010-09-30 | 2016-05-18 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 互換性のあるステープルカートリッジ構成を備える、外科用ステープリング器具 |
US9272406B2 (en) | 2010-09-30 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator |
AU2011308701B2 (en) | 2010-09-30 | 2013-11-14 | Ethicon Endo-Surgery, Inc. | Fastener system comprising a retention matrix and an alignment matrix |
US8893949B2 (en) | 2010-09-30 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Surgical stapler with floating anvil |
US9204880B2 (en) | 2012-03-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9211120B2 (en) | 2011-04-29 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of medicaments |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
ES2912092T3 (es) | 2010-10-01 | 2022-05-24 | Applied Med Resources | Instrumentos electroquirúrgicos y conexiones a los mismos |
US9655672B2 (en) | 2010-10-04 | 2017-05-23 | Covidien Lp | Vessel sealing instrument |
WO2012051200A2 (en) | 2010-10-11 | 2012-04-19 | Cook Medical Technologies Llc | Medical devices with detachable pivotable jaws |
US9155503B2 (en) | 2010-10-27 | 2015-10-13 | Cadwell Labs | Apparatus, system, and method for mapping the location of a nerve |
EP2636034A4 (en) | 2010-11-04 | 2015-07-22 | Univ Johns Hopkins | SYSTEM AND METHOD FOR ASSESSING OR IMPROVING MINIMALLY INVASIVE SURGICAL SKILLS |
US10959769B2 (en) | 2010-11-05 | 2021-03-30 | Ethicon Llc | Surgical instrument with slip ring assembly to power ultrasonic transducer |
US20120116381A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging station and wireless communication |
US9381058B2 (en) | 2010-11-05 | 2016-07-05 | Ethicon Endo-Surgery, Llc | Recharge system for medical devices |
US20120116265A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging devices |
US9072523B2 (en) | 2010-11-05 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Medical device with feature for sterile acceptance of non-sterile reusable component |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9161803B2 (en) | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
US9011471B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument with pivoting coupling to modular shaft and end effector |
CA140107S (en) | 2010-11-11 | 2011-11-30 | Hosiden Corp | Electrical connector |
US9095362B2 (en) | 2010-11-15 | 2015-08-04 | Intutitive Surgical Operations, Inc. | Method for passively decoupling torque applied by a remote actuator into an independently rotating member |
EP2458328B1 (de) | 2010-11-24 | 2016-01-27 | Leica Geosystems AG | Konstruktionsvermessungsgerät mit einer automatischen Lotpunktfindungs-Funktionalität |
US8814996B2 (en) | 2010-12-01 | 2014-08-26 | University Of South Carolina | Methods and sensors for the detection of active carbon filters degradation with EMIS-ECIS PWAS |
US8523043B2 (en) | 2010-12-07 | 2013-09-03 | Immersion Corporation | Surgical stapler having haptic feedback |
US9044244B2 (en) | 2010-12-10 | 2015-06-02 | Biosense Webster (Israel), Ltd. | System and method for detection of metal disturbance based on mutual inductance measurement |
US8714352B2 (en) | 2010-12-10 | 2014-05-06 | Covidien Lp | Cartridge shipping aid |
US9364171B2 (en) | 2010-12-22 | 2016-06-14 | Veebot Systems, Inc. | Systems and methods for autonomous intravenous needle insertion |
CA2987984C (en) | 2010-12-22 | 2019-12-31 | Cooper Technologies Company | Pre-filtration and maintenance sensing for explosion-proof enclosures |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US8936614B2 (en) | 2010-12-30 | 2015-01-20 | Covidien Lp | Combined unilateral/bilateral jaws on a surgical instrument |
USD678196S1 (en) | 2011-01-07 | 2013-03-19 | Seiko Epson Corporation | Input signal selector for projector |
WO2015134768A1 (en) | 2011-01-11 | 2015-09-11 | Amsel Medical Corporation | Method and apparatus for occluding a blood vessel and/or other tubular structures |
US8818556B2 (en) | 2011-01-13 | 2014-08-26 | Microsoft Corporation | Multi-state model for robot and user interaction |
US8798527B2 (en) | 2011-01-14 | 2014-08-05 | Covidien Lp | Wireless relay module for remote monitoring systems |
US20120191162A1 (en) | 2011-01-20 | 2012-07-26 | Cristiano Villa | System of Remote Controlling a Medical Laser Generator Unit with a Portable Computing Device |
US20120191091A1 (en) | 2011-01-24 | 2012-07-26 | Tyco Healthcare Group Lp | Reusable Medical Device with Advanced Counting Capability |
US9875339B2 (en) | 2011-01-27 | 2018-01-23 | Simbionix Ltd. | System and method for generating a patient-specific digital image-based model of an anatomical structure |
US9990856B2 (en) | 2011-02-08 | 2018-06-05 | The Trustees Of The University Of Pennsylvania | Systems and methods for providing vibration feedback in robotic systems |
WO2012109621A1 (en) | 2011-02-10 | 2012-08-16 | Actuated Medical, Inc. | Medical tool with electromechanical control and feedback |
KR102156607B1 (ko) | 2011-02-15 | 2020-09-16 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 구동 샤프트에 의해 가동되는 관절식 말단 작동기를 구비한 수술 기구를 위한 시일 및 실링 방법 |
KR102222672B1 (ko) | 2011-02-15 | 2021-03-05 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 클램핑 또는 발사 실패를 검출하기 위한 시스템 |
US9393017B2 (en) | 2011-02-15 | 2016-07-19 | Intuitive Surgical Operations, Inc. | Methods and systems for detecting staple cartridge misfire or failure |
EP2675367B1 (en) | 2011-02-15 | 2018-03-07 | Intuitive Surgical Operations, Inc. | Systems for indicating a clamping prediction |
US20120211542A1 (en) | 2011-02-23 | 2012-08-23 | Tyco Healthcare Group I.P | Controlled tissue compression systems and methods |
USD687146S1 (en) | 2011-03-02 | 2013-07-30 | Baylis Medical Company Inc. | Electrosurgical generator |
AU2012225668A1 (en) | 2011-03-07 | 2013-10-10 | Passer Stitch, Llc | Suture passing devices and methods |
US8397972B2 (en) | 2011-03-18 | 2013-03-19 | Covidien Lp | Shipping wedge with lockout |
US20120245958A1 (en) | 2011-03-25 | 2012-09-27 | Surgichart, Llc | Case-Centric Medical Records System with Social Networking |
EP2691037B1 (en) | 2011-03-30 | 2021-03-10 | Covidien LP | Ultrasonic surgical instruments |
EP2509276B1 (de) | 2011-04-05 | 2013-11-20 | F. Hoffmann-La Roche AG | Verfahren zum sicheren Übertragen von elektronischen Daten über eine Datenkommunikationsverbindung zwischen einem Gerät und einem weiteren Gerät |
WO2012142432A1 (en) | 2011-04-15 | 2012-10-18 | Mrn Partners Llp | Remote health monitoring system |
US20150051452A1 (en) | 2011-04-26 | 2015-02-19 | The Trustees Of Columbia University In The City Of New York | Apparatus, method and computer-accessible medium for transform analysis of biomedical data |
US9649113B2 (en) | 2011-04-27 | 2017-05-16 | Covidien Lp | Device for monitoring physiological parameters in vivo |
JP6026509B2 (ja) | 2011-04-29 | 2016-11-16 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ステープルカートリッジ自体の圧縮可能部分内に配置されたステープルを含むステープルカートリッジ |
US9561316B2 (en) | 2011-04-29 | 2017-02-07 | Medtronic, Inc. | Intersession monitoring for blood fluid removal therapy |
JP5816457B2 (ja) | 2011-05-12 | 2015-11-18 | オリンパス株式会社 | 術具装置 |
US9820741B2 (en) | 2011-05-12 | 2017-11-21 | Covidien Lp | Replaceable staple cartridge |
JP5865606B2 (ja) | 2011-05-27 | 2016-02-17 | オリンパス株式会社 | 内視鏡装置及び内視鏡装置の作動方法 |
US10542978B2 (en) | 2011-05-27 | 2020-01-28 | Covidien Lp | Method of internally potting or sealing a handheld medical device |
US9202078B2 (en) | 2011-05-27 | 2015-12-01 | International Business Machines Corporation | Data perturbation and anonymization using one way hash |
CN107485448B (zh) | 2011-05-31 | 2020-07-31 | 直观外科手术操作公司 | 机器人外科器械末端执行器的主动控制 |
US8930214B2 (en) | 2011-06-17 | 2015-01-06 | Parallax Enterprises, Llc | Consolidated healthcare and resource management system |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US20130008677A1 (en) | 2011-07-08 | 2013-01-10 | Chen Huifu | Multi-head power tool |
US8897523B2 (en) | 2011-07-09 | 2014-11-25 | Gauss Surgical | System and method for counting surgical samples |
JP5936914B2 (ja) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | 操作入力装置およびこれを備えるマニピュレータシステム |
JP6021353B2 (ja) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | 手術支援装置 |
US9539007B2 (en) | 2011-08-08 | 2017-01-10 | Covidien Lp | Surgical fastener applying aparatus |
WO2013023006A2 (en) | 2011-08-08 | 2013-02-14 | California Institute Of Technology | Filtration membranes, and related nano and/or micro fibers, composites, methods and systems |
US9724095B2 (en) | 2011-08-08 | 2017-08-08 | Covidien Lp | Surgical fastener applying apparatus |
JP6242792B2 (ja) | 2011-08-08 | 2017-12-06 | モレックス エルエルシー | 同調チャネルを伴うコネクタ |
US9123155B2 (en) | 2011-08-09 | 2015-09-01 | Covidien Lp | Apparatus and method for using augmented reality vision system in surgical procedures |
US9125644B2 (en) | 2011-08-14 | 2015-09-08 | SafePath Medical, Inc. | Apparatus and method for suturing tissue |
US20130046182A1 (en) | 2011-08-16 | 2013-02-21 | Elwha LLC, a limited liability company of the State of Delaware | Devices and Methods for Recording Information on a Subject's Body |
US20130046279A1 (en) | 2011-08-16 | 2013-02-21 | Paul J. Niklewski | User interface feature for drug delivery system |
US8685056B2 (en) | 2011-08-18 | 2014-04-01 | Covidien Lp | Surgical forceps |
US9028492B2 (en) | 2011-08-18 | 2015-05-12 | Covidien Lp | Surgical instruments with removable components |
US10092164B2 (en) | 2011-08-21 | 2018-10-09 | M.S.T. Medical Surgery Technologies Ltd | Device and method for assisting laparoscopic surgery—rule based approach |
US20130066647A1 (en) | 2011-09-09 | 2013-03-14 | Depuy Spine, Inc. | Systems and methods for surgical support and management |
US9099863B2 (en) | 2011-09-09 | 2015-08-04 | Covidien Lp | Surgical generator and related method for mitigating overcurrent conditions |
US9101359B2 (en) | 2011-09-13 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridge with self-dispensing staple buttress |
US9414940B2 (en) | 2011-09-23 | 2016-08-16 | Orthosensor Inc. | Sensored head for a measurement tool for the muscular-skeletal system |
US20130093829A1 (en) | 2011-09-27 | 2013-04-18 | Allied Minds Devices Llc | Instruct-or |
WO2013049595A1 (en) | 2011-09-29 | 2013-04-04 | Ethicon Endo-Surgery, Inc. | Methods and compositions of bile acids |
US9579503B2 (en) | 2011-10-05 | 2017-02-28 | Medtronic Xomed, Inc. | Interface module allowing delivery of tissue stimulation and electrosurgery through a common surgical instrument |
US9463646B2 (en) | 2011-10-07 | 2016-10-11 | Transact Technologies Incorporated | Tilting touch screen for printer and printer with tilting touch screen |
US8856936B2 (en) | 2011-10-14 | 2014-10-07 | Albeado Inc. | Pervasive, domain and situational-aware, adaptive, automated, and coordinated analysis and control of enterprise-wide computers, networks, and applications for mitigation of business and operational risks and enhancement of cyber security |
US8931679B2 (en) | 2011-10-17 | 2015-01-13 | Covidien Lp | Surgical stapling apparatus |
US8585631B2 (en) | 2011-10-18 | 2013-11-19 | Alcon Research, Ltd. | Active bimodal valve system for real-time IOP control |
WO2013059432A1 (en) | 2011-10-19 | 2013-04-25 | Ethicon Endo-Surgery, Inc. | Clip applier adapted for use with a surgical robot |
US9480492B2 (en) | 2011-10-25 | 2016-11-01 | Covidien Lp | Apparatus for endoscopic procedures |
US9016539B2 (en) | 2011-10-25 | 2015-04-28 | Covidien Lp | Multi-use loading unit |
US9492146B2 (en) | 2011-10-25 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
US8657177B2 (en) | 2011-10-25 | 2014-02-25 | Covidien Lp | Surgical apparatus and method for endoscopic surgery |
CN106361391B (zh) | 2011-10-26 | 2020-01-24 | 直观外科手术操作公司 | 用于钉仓状态和存在检测的方法和系统 |
US8912746B2 (en) | 2011-10-26 | 2014-12-16 | Intuitive Surgical Operations, Inc. | Surgical instrument motor pack latch |
KR102019754B1 (ko) | 2011-10-26 | 2019-09-10 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 일체형 나이프 블레이드를 가진 수술 기구 |
US9364231B2 (en) | 2011-10-27 | 2016-06-14 | Covidien Lp | System and method of using simulation reload to optimize staple formation |
US10404801B2 (en) | 2011-11-08 | 2019-09-03 | DISH Technologies L.L.C. | Reconfiguring remote controls for different devices in a network |
US9277956B2 (en) | 2011-11-09 | 2016-03-08 | Siemens Medical Solutions Usa, Inc. | System for automatic medical ablation control |
US8968309B2 (en) | 2011-11-10 | 2015-03-03 | Covidien Lp | Surgical forceps |
EP2779921B1 (en) | 2011-11-15 | 2019-03-27 | Intuitive Surgical Operations, Inc. | Surgical instrument with stowing knife blade |
US8968312B2 (en) | 2011-11-16 | 2015-03-03 | Covidien Lp | Surgical device with powered articulation wrist rotation |
WO2013073523A1 (ja) | 2011-11-16 | 2013-05-23 | オリンパスメディカルシステムズ株式会社 | 医療機器 |
JP6078550B2 (ja) | 2011-11-24 | 2017-02-08 | シネロン メディカル リミテッド | 皮膚加熱エネルギーによる個人用皮膚治療のための装置 |
CN104272868A (zh) | 2011-12-05 | 2015-01-07 | 高通股份有限公司 | 远程医疗无线通信集线器设备和服务平台系统 |
US9259268B2 (en) | 2011-12-06 | 2016-02-16 | Covidien Lp | Vessel sealing using microwave energy |
US8968336B2 (en) | 2011-12-07 | 2015-03-03 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
US20130165776A1 (en) | 2011-12-22 | 2013-06-27 | Andreas Blomqvist | Contraction status assessment |
US9220502B2 (en) | 2011-12-28 | 2015-12-29 | Covidien Lp | Staple formation recognition for a surgical device |
JP5859849B2 (ja) | 2011-12-28 | 2016-02-16 | タイコエレクトロニクスジャパン合同会社 | 電気コネクタ |
US20130178853A1 (en) | 2012-01-05 | 2013-07-11 | International Business Machines Corporation | Surgical tool management |
US8962062B2 (en) | 2012-01-10 | 2015-02-24 | Covidien Lp | Methods of manufacturing end effectors for energy-based surgical instruments |
US9867914B2 (en) | 2012-01-10 | 2018-01-16 | Buffalo Filter Llc | Fluid filtration device and system |
EP2740430B1 (en) | 2012-01-19 | 2017-07-26 | Olympus Corporation | Medical system |
US20130191154A1 (en) | 2012-01-22 | 2013-07-25 | Dobkin William R. | Medical data system generating automated surgical reports |
JP5815426B2 (ja) | 2012-01-25 | 2015-11-17 | 富士フイルム株式会社 | 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像処理方法 |
US9641596B2 (en) | 2012-01-25 | 2017-05-02 | Panasonic Intellectual Property Management Co., Ltd. | Home appliance information management apparatus, home appliance information sharing method, and home appliance information sharing system |
US9649064B2 (en) | 2012-01-26 | 2017-05-16 | Autonomix Medical, Inc. | Controlled sympathectomy and micro-ablation systems and methods |
US9183723B2 (en) | 2012-01-31 | 2015-11-10 | Cleanalert, Llc | Filter clog detection and notification system |
US9710644B2 (en) | 2012-02-01 | 2017-07-18 | Servicenow, Inc. | Techniques for sharing network security event information |
US9038882B2 (en) | 2012-02-03 | 2015-05-26 | Covidien Lp | Circular stapling instrument |
US20140066700A1 (en) | 2012-02-06 | 2014-03-06 | Vantage Surgical Systems Inc. | Stereoscopic System for Minimally Invasive Surgery Visualization |
MX368375B (es) | 2012-02-14 | 2019-09-30 | Ethicon Endo Surgery Inc | Engrapadora lineal. |
US8682049B2 (en) | 2012-02-14 | 2014-03-25 | Terarecon, Inc. | Cloud-based medical image processing system with access control |
US20130274768A1 (en) | 2012-02-29 | 2013-10-17 | Marker Medical, Llc | Surgical apparatus and method |
US9486271B2 (en) | 2012-03-05 | 2016-11-08 | Covidien Lp | Method and apparatus for identification using capacitive elements |
EP2822484A4 (en) | 2012-03-06 | 2015-11-18 | Briteseed Llc | SURGICAL TOOL WITH INTEGRATED SENSOR |
US11399898B2 (en) | 2012-03-06 | 2022-08-02 | Briteseed, Llc | User interface for a system used to determine tissue or artifact characteristics |
US9864839B2 (en) | 2012-03-14 | 2018-01-09 | El Wha Llc. | Systems, devices, and method for determining treatment compliance including tracking, registering, etc. of medical staff, patients, instrumentation, events, etc. according to a treatment staging plan |
US9119617B2 (en) | 2012-03-16 | 2015-09-01 | Ethicon, Inc. | Clamping devices for dispensing surgical fasteners into soft media |
US20130253480A1 (en) | 2012-03-22 | 2013-09-26 | Cory G. Kimball | Surgical instrument usage data management |
US9364249B2 (en) | 2012-03-22 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Method and apparatus for programming modular surgical instrument |
US9198711B2 (en) | 2012-03-22 | 2015-12-01 | Covidien Lp | Electrosurgical system for communicating information embedded in an audio tone |
US9381003B2 (en) | 2012-03-23 | 2016-07-05 | Integrated Medical Systems International, Inc. | Digital controller for surgical handpiece |
US9078653B2 (en) | 2012-03-26 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge |
US9375282B2 (en) | 2012-03-26 | 2016-06-28 | Covidien Lp | Light energy sealing, cutting and sensing surgical device |
WO2013143573A1 (en) | 2012-03-26 | 2013-10-03 | Brainlab Ag | Pairing medical devices within a working environment |
US20130256373A1 (en) | 2012-03-28 | 2013-10-03 | Ethicon Endo-Surgery, Inc. | Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments |
JP6305979B2 (ja) | 2012-03-28 | 2018-04-04 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 複数の層を含む組織厚さコンペンセーター |
JP2013202313A (ja) | 2012-03-29 | 2013-10-07 | Panasonic Corp | 手術支援装置および手術支援プログラム |
US9050063B2 (en) | 2012-03-30 | 2015-06-09 | Sandance Technology Llc | Systems and methods for determining suitability of a mechanical implant for a medical procedure |
KR101365357B1 (ko) | 2012-04-02 | 2014-02-20 | 주식회사 모바수 | 관절 고정 구조를 갖는 최소 침습 수술 기구 |
US9055870B2 (en) | 2012-04-05 | 2015-06-16 | Welch Allyn, Inc. | Physiological parameter measuring platform device supporting multiple workflows |
USD772252S1 (en) | 2012-04-05 | 2016-11-22 | Welch Allyn, Inc. | Patient monitoring device with a graphical user interface |
US20130268283A1 (en) | 2012-04-05 | 2013-10-10 | Welch Allyn, Inc. | Process to Streamline Workflow for Continuous Monitoring of a Patient |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US20130267874A1 (en) | 2012-04-09 | 2013-10-10 | Amy L. Marcotte | Surgical instrument with nerve detection feature |
US9814457B2 (en) | 2012-04-10 | 2017-11-14 | Ethicon Llc | Control interface for laparoscopic suturing instrument |
US9186141B2 (en) | 2012-04-12 | 2015-11-17 | Covidien Lp | Circular anastomosis stapling apparatus utilizing a two stroke firing sequence |
JP5940864B2 (ja) | 2012-04-12 | 2016-06-29 | カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 医療用マニピュレータ |
US10357304B2 (en) | 2012-04-18 | 2019-07-23 | CardioSonic Ltd. | Tissue treatment |
US9788851B2 (en) | 2012-04-18 | 2017-10-17 | Ethicon Llc | Surgical instrument with tissue density sensing |
WO2013158436A1 (en) | 2012-04-18 | 2013-10-24 | Cardica, Inc. | Safety lockout for surgical stapler |
US20150133945A1 (en) | 2012-05-02 | 2015-05-14 | Stryker Global Technology Center | Handheld tracking system and devices for aligning implant systems during surgery |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US9439622B2 (en) | 2012-05-22 | 2016-09-13 | Covidien Lp | Surgical navigation system |
US9498182B2 (en) | 2012-05-22 | 2016-11-22 | Covidien Lp | Systems and methods for planning and navigation |
US9493807B2 (en) | 2012-05-25 | 2016-11-15 | Medtronic Minimed, Inc. | Foldover sensors and methods for making and using them |
US9572592B2 (en) | 2012-05-31 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Surgical instrument with orientation sensing |
US9084606B2 (en) | 2012-06-01 | 2015-07-21 | Megadyne Medical Products, Inc. | Electrosurgical scissors |
KR20130136184A (ko) | 2012-06-04 | 2013-12-12 | 삼성전자주식회사 | 컨텐츠 백업을 위한 방법 및 그 전자 장치 |
US20130325352A1 (en) | 2012-06-05 | 2013-12-05 | Dexcom, Inc. | Calculation engine based on histograms |
US11076880B2 (en) | 2012-06-11 | 2021-08-03 | Covidien Lp | Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring |
US10677764B2 (en) | 2012-06-11 | 2020-06-09 | Covidien Lp | Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring |
US20130331875A1 (en) | 2012-06-11 | 2013-12-12 | Covidien Lp | Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
US20190000569A1 (en) | 2012-06-21 | 2019-01-03 | Globus Medical, Inc. | Controlling a surgical robot to avoid robotic arm collision |
US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
US9483618B2 (en) | 2012-06-22 | 2016-11-01 | Exco Intouch Limited | Systems, methods and computer program products for providing disease and/or condition specific adaptive mobile health content, applications and/or solutions |
US20140107697A1 (en) | 2012-06-25 | 2014-04-17 | Castle Surgical, Inc. | Clamping Forceps and Associated Methods |
US8968296B2 (en) | 2012-06-26 | 2015-03-03 | Covidien Lp | Energy-harvesting system, apparatus and methods |
US9629523B2 (en) | 2012-06-27 | 2017-04-25 | Camplex, Inc. | Binocular viewing assembly for a surgical visualization system |
US9642606B2 (en) | 2012-06-27 | 2017-05-09 | Camplex, Inc. | Surgical visualization system |
US20140005678A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Rotary drive arrangements for surgical instruments |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
EP2866686A1 (en) | 2012-06-28 | 2015-05-06 | Ethicon Endo-Surgery, Inc. | Empty clip cartridge lockout |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
US20140005718A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Multi-functional powered surgical device with external dissection features |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US20140006132A1 (en) | 2012-06-28 | 2014-01-02 | Jason W. Barker | Systems and methods for managing promotional offers |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US10930400B2 (en) | 2012-06-28 | 2021-02-23 | LiveData, Inc. | Operating room checklist system |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
TWM444669U (zh) | 2012-07-03 | 2013-01-01 | Sercomm Corp | 多模組化組合之通訊裝置 |
US20140018788A1 (en) | 2012-07-04 | 2014-01-16 | Zoar Jacob ENGELMAN | Devices and Systems for Carotid Body Ablation |
KR101806195B1 (ko) | 2012-07-10 | 2018-01-11 | 큐렉소 주식회사 | 수술로봇 시스템 및 수술로봇 제어방법 |
US20140013565A1 (en) | 2012-07-10 | 2014-01-16 | Eileen B. MacDonald | Customized process for facilitating successful total knee arthroplasty with outcomes analysis |
US10194907B2 (en) | 2012-07-18 | 2019-02-05 | Covidien Lp | Multi-fire stapler with electronic counter, lockout, and visual indicator |
CN104619237B (zh) | 2012-07-26 | 2018-03-30 | 德普伊辛迪斯制品公司 | 光不足环境中的ycbcr脉冲调制的照明方案 |
US20140029411A1 (en) | 2012-07-27 | 2014-01-30 | Samsung Electronics Co., Ltd. | Method and system to provide seamless data transmission |
US8917513B1 (en) | 2012-07-30 | 2014-12-23 | Methode Electronics, Inc. | Data center equipment cabinet information center and updateable asset tracking system |
KR20150037987A (ko) | 2012-08-03 | 2015-04-08 | 어플라이드 메디컬 리소시스 코포레이션 | 수술 트레이닝용 모조 스테플링 및 에너지 기반 결찰 |
US20140033926A1 (en) | 2012-08-03 | 2014-02-06 | Robert Scott Fassel | Filtration System |
US9101374B1 (en) | 2012-08-07 | 2015-08-11 | David Harris Hoch | Method for guiding an ablation catheter based on real time intracardiac electrical signals and apparatus for performing the method |
US8761717B1 (en) | 2012-08-07 | 2014-06-24 | Brian K. Buchheit | Safety feature to disable an electronic device when a wireless implantable medical device (IMD) is proximate |
JP6257930B2 (ja) | 2012-08-07 | 2018-01-10 | 東芝メディカルシステムズ株式会社 | 超音波診断装置および超音波プローブ |
JP5542246B1 (ja) | 2012-08-07 | 2014-07-09 | オリンパスメディカルシステムズ株式会社 | 医療用制御システム |
EP4218647A1 (en) | 2012-08-08 | 2023-08-02 | Ortoma AB | System for computer assisted surgery |
US8795001B1 (en) | 2012-08-10 | 2014-08-05 | Cisco Technology, Inc. | Connector for providing pass-through power |
EP2698602A1 (de) | 2012-08-16 | 2014-02-19 | Leica Geosystems AG | Handhaltbares Entfernungsmessgerät mit Winkelbestimmungseinheit |
WO2014031800A1 (en) | 2012-08-22 | 2014-02-27 | Energize Medical Llc | Therapeutic energy systems |
WO2014032157A1 (en) | 2012-08-28 | 2014-03-06 | Leonard Ineson | Adjustable electrosurgical pencil |
USD729267S1 (en) | 2012-08-28 | 2015-05-12 | Samsung Electronics Co., Ltd. | Oven display screen with a graphical user interface |
US20140073893A1 (en) | 2012-09-12 | 2014-03-13 | Boston Scientific Scimed Inc. | Open irrigated-mapping linear ablation catheter |
US10496788B2 (en) | 2012-09-13 | 2019-12-03 | Parkland Center For Clinical Innovation | Holistic hospital patient care and management system and method for automated patient monitoring |
CN103654896B (zh) | 2012-09-14 | 2015-12-02 | 苏州天臣国际医疗科技有限公司 | 直线型缝切器的钉仓 |
US20140081659A1 (en) | 2012-09-17 | 2014-03-20 | Depuy Orthopaedics, Inc. | Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking |
US9250172B2 (en) | 2012-09-21 | 2016-02-02 | Ethicon Endo-Surgery, Inc. | Systems and methods for predicting metabolic and bariatric surgery outcomes |
US20140087999A1 (en) | 2012-09-21 | 2014-03-27 | The General Hospital Corporation D/B/A Massachusetts General Hospital | Clinical predictors of weight loss |
US20140084949A1 (en) | 2012-09-24 | 2014-03-27 | Access Business Group International Llc | Surface impedance systems and methods |
JP5719819B2 (ja) | 2012-09-28 | 2015-05-20 | 日本光電工業株式会社 | 手術支援システム |
US9106270B2 (en) | 2012-10-02 | 2015-08-11 | Covidien Lp | Transmitting data across a patient isolation barrier using an electric-field capacitive coupler module |
DE102012109459A1 (de) | 2012-10-04 | 2014-04-10 | Aesculap Ag | Weiteneinstellbares Schneidinstrument zur transapikalen Aortenklappenresektion |
US20140108035A1 (en) | 2012-10-11 | 2014-04-17 | Kunter Seref Akbay | System and method to automatically assign resources in a network of healthcare enterprises |
US9107573B2 (en) | 2012-10-17 | 2015-08-18 | Karl Storz Endovision, Inc. | Detachable shaft flexible endoscope |
US9421014B2 (en) | 2012-10-18 | 2016-08-23 | Covidien Lp | Loading unit velocity and position feedback |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US9265585B2 (en) | 2012-10-23 | 2016-02-23 | Covidien Lp | Surgical instrument with rapid post event detection |
EP3542833B1 (en) | 2012-10-24 | 2023-08-16 | Stryker Corporation | Waste collection assembly |
WO2014063181A1 (en) * | 2012-10-26 | 2014-05-01 | Inline Orthopaedics Pty Ltd | Surgical system |
US9572529B2 (en) | 2012-10-31 | 2017-02-21 | Covidien Lp | Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing |
US9918788B2 (en) | 2012-10-31 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrogram-based ablation control |
JP6262754B2 (ja) | 2012-11-02 | 2018-01-17 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | フラックス伝送コネクタ及びシステム、フラックス除去、並びにフラックス供給路をマッピングするためのシステム及び方法 |
US10631939B2 (en) | 2012-11-02 | 2020-04-28 | Intuitive Surgical Operations, Inc. | Systems and methods for mapping flux supply paths |
US9686306B2 (en) | 2012-11-02 | 2017-06-20 | University Of Washington Through Its Center For Commercialization | Using supplemental encrypted signals to mitigate man-in-the-middle attacks on teleoperated systems |
CN104902836B (zh) | 2012-11-05 | 2017-08-08 | 毕达哥拉斯医疗有限公司 | 受控组织消融 |
CA3050650C (en) | 2012-11-09 | 2021-10-19 | Covidien Lp | Multi-use loading unit |
ES2736004T3 (es) | 2012-11-14 | 2019-12-23 | Covidien Lp | Unidad de carga multiuso |
US9546662B2 (en) | 2012-11-20 | 2017-01-17 | Smith & Nephew, Inc. | Medical pump |
CN110338910B (zh) | 2012-11-20 | 2022-11-29 | 瑟吉奎斯特公司 | 用于在腹腔镜外科手术过程期间进行烟气抽空的系统及方法 |
US9724100B2 (en) | 2012-12-04 | 2017-08-08 | Ethicon Llc | Circular anvil introduction system with alignment feature |
US9743016B2 (en) | 2012-12-10 | 2017-08-22 | Intel Corporation | Techniques for improved focusing of camera arrays |
FR2999757A1 (fr) | 2012-12-13 | 2014-06-20 | Patrick Coudert | Procede d'acces securise a des donnees medicales confidentielles, et support de stockage pour ledit procede |
US9320534B2 (en) | 2012-12-13 | 2016-04-26 | Alcon Research, Ltd. | Fine membrane forceps with integral scraping feature |
US20140171979A1 (en) | 2012-12-13 | 2014-06-19 | Ethicon Endo-Surgery, Inc. | Surgical Needle with Steps and Flats |
CN202953237U (zh) | 2012-12-14 | 2013-05-29 | 纬创资通股份有限公司 | 纸箱结构 |
US10722222B2 (en) | 2012-12-14 | 2020-07-28 | Covidien Lp | Surgical system including a plurality of handle assemblies |
US9597081B2 (en) | 2012-12-17 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Motor driven rotary input circular stapler with modular end effector |
US9463022B2 (en) | 2012-12-17 | 2016-10-11 | Ethicon Endo-Surgery, Llc | Motor driven rotary input circular stapler with lockable flexible shaft |
DE102012025102A1 (de) | 2012-12-20 | 2014-06-26 | avateramedical GmBH | Endoskop mit einem Mehrkamerasystem für die minimal-invasive Chirurgie |
MX365363B (es) | 2012-12-21 | 2019-05-30 | Deka Products Lp | Sistema, método y aparato para la comunicación de datos. |
US20140187856A1 (en) | 2012-12-31 | 2014-07-03 | Lee D. Holoien | Control System For Modular Imaging Device |
US10028788B2 (en) | 2012-12-31 | 2018-07-24 | Mako Surgical Corp. | System for image-based robotic surgery |
EP2938273B1 (en) | 2012-12-31 | 2024-04-24 | Intuitive Surgical Operations, Inc. | Surgical staple cartridge with enhanced knife clearance |
US10588597B2 (en) | 2012-12-31 | 2020-03-17 | Intuitive Surgical Operations, Inc. | Systems and methods for interventional procedure planning |
US9717141B1 (en) | 2013-01-03 | 2017-07-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible printed circuit with removable testing portion |
WO2014107548A1 (en) | 2013-01-05 | 2014-07-10 | Foundation Medicine, Inc. | System and method for outcome tracking and analysis |
GB2509523A (en) | 2013-01-07 | 2014-07-09 | Anish Kumar Mampetta | Surgical instrument with flexible members and a motor |
US9675354B2 (en) | 2013-01-14 | 2017-06-13 | Intuitive Surgical Operations, Inc. | Torque compensation |
US9522003B2 (en) | 2013-01-14 | 2016-12-20 | Intuitive Surgical Operations, Inc. | Clamping instrument |
US10265090B2 (en) | 2013-01-16 | 2019-04-23 | Covidien Lp | Hand held electromechanical surgical system including battery compartment diagnostic display |
US9750500B2 (en) | 2013-01-18 | 2017-09-05 | Covidien Lp | Surgical clip applier |
USD716333S1 (en) | 2013-01-24 | 2014-10-28 | Broadbandtv, Corp. | Display screen or portion thereof with a graphical user interface |
US9610114B2 (en) | 2013-01-29 | 2017-04-04 | Ethicon Endo-Surgery, Llc | Bipolar electrosurgical hand shears |
US9370248B2 (en) | 2013-01-31 | 2016-06-21 | Enrique Ramirez Magaña | Theater seating system with reclining seats and comfort divider |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
EP3777703B1 (en) | 2013-02-08 | 2023-04-05 | Acutus Medical Inc. | Expandable catheter assembly with flexible printed circuit board |
US20140226572A1 (en) | 2013-02-13 | 2014-08-14 | Qualcomm Incorporated | Smart WiFi Access Point That Selects The Best Channel For WiFi Clients Having Multi-Radio Co-Existence Problems |
KR101451970B1 (ko) | 2013-02-19 | 2014-10-23 | 주식회사 루트로닉 | 안과용 수술장치 및 이의 제어 방법 |
WO2014130954A1 (en) | 2013-02-22 | 2014-08-28 | Cibiem, Inc. | Endovascular catheters for trans-superficial temporal artery transmural carotid body modulation |
WO2014134196A1 (en) | 2013-02-26 | 2014-09-04 | Eastern Virginia Medical School | Augmented shared situational awareness system |
US9375262B2 (en) | 2013-02-27 | 2016-06-28 | Covidien Lp | Limited use medical devices |
US20140243799A1 (en) | 2013-02-27 | 2014-08-28 | Ethicon Endo-Surgery, Inc. | Percutaneous Instrument with Tapered Shaft |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
US9717497B2 (en) | 2013-02-28 | 2017-08-01 | Ethicon Llc | Lockout feature for movable cutting member of surgical instrument |
US9808248B2 (en) | 2013-02-28 | 2017-11-07 | Ethicon Llc | Installation features for surgical instrument end effector cartridge |
JP6382235B2 (ja) | 2013-03-01 | 2018-08-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 信号通信用の導電路を備えた関節運動可能な外科用器具 |
US9326767B2 (en) | 2013-03-01 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Joystick switch assemblies for surgical instruments |
JP6345707B2 (ja) | 2013-03-01 | 2018-06-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | ソフトストップを備えた外科用器具 |
US20140252064A1 (en) | 2013-03-05 | 2014-09-11 | Covidien Lp | Surgical stapling device including adjustable fastener crimping |
KR102117270B1 (ko) | 2013-03-06 | 2020-06-01 | 삼성전자주식회사 | 수술 로봇 시스템 및 그 제어방법 |
US9414776B2 (en) | 2013-03-06 | 2016-08-16 | Navigated Technologies, LLC | Patient permission-based mobile health-linked information collection and exchange systems and methods |
US9706993B2 (en) | 2013-03-08 | 2017-07-18 | Covidien Lp | Staple cartridge with shipping wedge |
US9204995B2 (en) | 2013-03-12 | 2015-12-08 | Katalyst Surgical, Llc | Membrane removing forceps |
US9345481B2 (en) | 2013-03-13 | 2016-05-24 | Ethicon Endo-Surgery, Llc | Staple cartridge tissue thickness sensor system |
US9314308B2 (en) | 2013-03-13 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Robotic ultrasonic surgical device with articulating end effector |
US9717498B2 (en) | 2013-03-13 | 2017-08-01 | Covidien Lp | Surgical stapling apparatus |
EP3135225B1 (en) | 2013-03-13 | 2019-08-14 | Covidien LP | Surgical stapling apparatus |
US9629628B2 (en) | 2013-03-13 | 2017-04-25 | Covidien Lp | Surgical stapling apparatus |
US9814463B2 (en) | 2013-03-13 | 2017-11-14 | Covidien Lp | Surgical stapling apparatus |
US9668728B2 (en) | 2013-03-13 | 2017-06-06 | Covidien Lp | Surgical stapling apparatus |
JP6335271B2 (ja) | 2013-03-14 | 2018-05-30 | アプライド メディカル リソーシーズ コーポレイション | 部分ポケット付き外科用ステープラ |
US9332987B2 (en) | 2013-03-14 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Control arrangements for a drive member of a surgical instrument |
US20150313538A1 (en) | 2013-03-14 | 2015-11-05 | Kate Leeann Bechtel | Identification of surgical smoke |
US9255907B2 (en) | 2013-03-14 | 2016-02-09 | Empire Technology Development Llc | Identification of surgical smoke |
US9114494B1 (en) | 2013-03-14 | 2015-08-25 | Kenneth Jack Mah | Electronic drill guide |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
CA2906860A1 (en) | 2013-03-15 | 2014-09-18 | Peerbridge Health, Inc. | System and method for monitoring and diagnosing patient condition based on wireless sensor monitoring data |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
JP2016519591A (ja) | 2013-03-15 | 2016-07-07 | オリーブ・メディカル・コーポレイションOlive Medical Corporation | パルスカラー撮像システムにおける超解像度及び色運動アーチファクト補正 |
AU2014233193B2 (en) | 2013-03-15 | 2018-11-01 | DePuy Synthes Products, Inc. | Controlling the integral light energy of a laser pulse |
WO2014139018A1 (en) | 2013-03-15 | 2014-09-18 | Synaptive Medical (Barbados) Inc. | Context aware surgical systems |
WO2014145661A1 (en) | 2013-03-15 | 2014-09-18 | Pentair Water Pool And Spa, Inc. | Dissolved oxygen control system for aquaculture |
US9116597B1 (en) | 2013-03-15 | 2015-08-25 | Ca, Inc. | Information management software |
US11278353B2 (en) | 2016-03-16 | 2022-03-22 | Synaptive Medical Inc. | Trajectory alignment system and methods |
CN105263398B (zh) | 2013-03-15 | 2018-05-11 | 圣纳普医疗(巴巴多斯)公司 | 手术成像系统 |
US10929939B2 (en) | 2013-03-15 | 2021-02-23 | Breg, Inc. | Business intelligence portal |
BR112015022453A2 (pt) * | 2013-03-15 | 2017-07-18 | Stanford Res Inst Int | sistema cirúrgico hiperdextro |
BR112015023547B8 (pt) | 2013-03-15 | 2022-09-27 | Synaptive Medical Inc | Montagem de braço automatizado para uso usado durante um procedimento médico sobre uma parte anatômica |
WO2014144519A2 (en) | 2013-03-15 | 2014-09-18 | Arthrex, Inc. | Surgical imaging system and method for processing surgical images |
JP6846929B2 (ja) | 2013-03-15 | 2021-03-24 | アルベルティ,ジョン | 負荷応答電動ツール |
JP6396417B2 (ja) | 2013-03-15 | 2018-09-26 | アプライド メディカル リソーシーズ コーポレイション | 回転可能なシャフトを備えた作動機構体を有する外科用ステープラ |
WO2014139021A1 (en) | 2013-03-15 | 2014-09-18 | Synaptive Medical (Barbados) Inc. | Intramodal synchronization of surgical data |
US9283028B2 (en) | 2013-03-15 | 2016-03-15 | Covidien Lp | Crest-factor control of phase-shifted inverter |
US9668765B2 (en) | 2013-03-15 | 2017-06-06 | The Spectranetics Corporation | Retractable blade for lead removal device |
EP2967350A4 (en) | 2013-03-15 | 2017-03-01 | Synaptive Medical (Barbados) Inc. | Planning, navigation and simulation systems and methods for minimally invasive therapy |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
WO2014138916A1 (en) | 2013-03-15 | 2014-09-18 | Synaptive Medical (Barbados) Inc. | Method, system and apparatus for controlling a surgical navigation system |
JP6554089B2 (ja) | 2013-03-19 | 2019-07-31 | サージセンス コーポレイション | 組織酸素化の測定用の器具、システムおよびメソッド |
US20140364691A1 (en) | 2013-03-28 | 2014-12-11 | Endochoice, Inc. | Circuit Board Assembly of A Multiple Viewing Elements Endoscope |
US20140303660A1 (en) | 2013-04-04 | 2014-10-09 | Elwha Llc | Active tremor control in surgical instruments |
US20140303990A1 (en) | 2013-04-05 | 2014-10-09 | Biomet Manufacturing Corp. | Integrated orthopedic planning and management process |
US10349824B2 (en) | 2013-04-08 | 2019-07-16 | Apama Medical, Inc. | Tissue mapping and visualization systems |
US10149680B2 (en) | 2013-04-16 | 2018-12-11 | Ethicon Llc | Surgical instrument comprising a gap setting system |
US9561982B2 (en) | 2013-04-30 | 2017-02-07 | Corning Incorporated | Method of cleaning glass substrates |
US9592095B2 (en) | 2013-05-16 | 2017-03-14 | Intuitive Surgical Operations, Inc. | Systems and methods for robotic medical system integration with external imaging |
US9111548B2 (en) | 2013-05-23 | 2015-08-18 | Knowles Electronics, Llc | Synchronization of buffered data in multiple microphones |
US10722292B2 (en) | 2013-05-31 | 2020-07-28 | Covidien Lp | Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure |
JP6599317B2 (ja) | 2013-06-05 | 2019-10-30 | ザ アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティー オブ アリゾナ | 画像化プローブ |
CN105873508B (zh) | 2013-06-17 | 2019-09-03 | 尼科索亚股份有限公司 | 植入物单元递送工具 |
WO2014202445A1 (en) | 2013-06-18 | 2014-12-24 | Koninklijke Philips N.V. | Processing status information of a medical device |
ES2647815T3 (es) | 2013-06-20 | 2017-12-26 | Siemens Schweiz Ag | Control funcional de un sensor de gas electrolítico con tres electrodos, así como alarma de peligro y medidor de gas |
US9797486B2 (en) | 2013-06-20 | 2017-10-24 | Covidien Lp | Adapter direct drive with manual retraction, lockout and connection mechanisms |
US9542481B2 (en) | 2013-06-21 | 2017-01-10 | Virtual Radiologic Corporation | Radiology data processing and standardization techniques |
US11195598B2 (en) | 2013-06-28 | 2021-12-07 | Carefusion 303, Inc. | System for providing aggregated patient data |
US9910963B2 (en) | 2013-07-02 | 2018-03-06 | Quintiles Ims Incorporated | Market measures and outcomes for app prescribing |
EP2827099A1 (de) | 2013-07-16 | 2015-01-21 | Leica Geosystems AG | Lasertracker mit Zielsuchfunktionalität |
US10097578B2 (en) | 2013-07-23 | 2018-10-09 | Oasis Technology, Inc. | Anti-cyber hacking defense system |
JP6120715B2 (ja) * | 2013-07-26 | 2017-04-26 | オリンパス株式会社 | 医療システム |
WO2015019695A1 (ja) | 2013-08-06 | 2015-02-12 | オリンパスメディカルシステムズ株式会社 | 気腹装置 |
US10517626B2 (en) | 2013-08-07 | 2019-12-31 | Cornell University | Semiconductor tweezers and instrumentation for tissue detection and characterization |
US9439717B2 (en) | 2013-08-13 | 2016-09-13 | Covidien Lp | Surgical forceps including thermal spread control |
US9750522B2 (en) | 2013-08-15 | 2017-09-05 | Ethicon Llc | Surgical instrument with clips having transecting blades |
KR102299245B1 (ko) | 2013-08-16 | 2021-09-08 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 이종 장치 간 모션 조율 시스템 및 방법 |
US9636112B2 (en) | 2013-08-16 | 2017-05-02 | Covidien Lp | Chip assembly for reusable surgical instruments |
GB201314774D0 (en) | 2013-08-19 | 2013-10-02 | Fish Engineering Ltd | Distributor apparatus |
US9675419B2 (en) | 2013-08-21 | 2017-06-13 | Brachium, Inc. | System and method for automating medical procedures |
US9510828B2 (en) | 2013-08-23 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Conductor arrangements for electrically powered surgical instruments with rotatable end effectors |
US9539006B2 (en) | 2013-08-27 | 2017-01-10 | Covidien Lp | Hand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use |
US9295514B2 (en) | 2013-08-30 | 2016-03-29 | Ethicon Endo-Surgery, Llc | Surgical devices with close quarter articulation features |
EP3041427B1 (en) | 2013-09-06 | 2024-11-06 | Brigham and Women's Hospital, Inc. | System for a tissue resection margin measurement device |
WO2015038098A1 (en) | 2013-09-10 | 2015-03-19 | Pearl Capital Developments Llc | Sealed button for an electronic device |
US9861428B2 (en) | 2013-09-16 | 2018-01-09 | Ethicon Llc | Integrated systems for electrosurgical steam or smoke control |
EP3046518A4 (en) | 2013-09-18 | 2017-07-05 | Richard Awdeh | Surgical navigation system and method |
US9962157B2 (en) | 2013-09-18 | 2018-05-08 | Covidien Lp | Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument |
US9830424B2 (en) | 2013-09-18 | 2017-11-28 | Hill-Rom Services, Inc. | Bed/room/patient association systems and methods |
US9622684B2 (en) | 2013-09-20 | 2017-04-18 | Innovative Surgical Solutions, Llc | Neural locating system |
US10478189B2 (en) | 2015-06-26 | 2019-11-19 | Ethicon Llc | Method of applying an annular array of staples to tissue |
US9513861B2 (en) | 2013-09-24 | 2016-12-06 | Intel Corporation | Systems and methods for discovering wireless display devices using inaudible audio signals |
US9717548B2 (en) | 2013-09-24 | 2017-08-01 | Covidien Lp | Electrode for use in a bipolar electrosurgical instrument |
US9867651B2 (en) | 2013-09-26 | 2018-01-16 | Covidien Lp | Systems and methods for estimating tissue parameters using surgical devices |
US9936942B2 (en) | 2013-09-26 | 2018-04-10 | Surgimatix, Inc. | Laparoscopic suture device with release mechanism |
DE102013016063A1 (de) | 2013-09-27 | 2015-04-02 | W. O. M. World of Medicine GmbH | Druckerhaltende Rauchgasabsaugung in einem Insufflator |
US10390737B2 (en) * | 2013-09-30 | 2019-08-27 | Stryker Corporation | System and method of controlling a robotic system for manipulating anatomy of a patient during a surgical procedure |
US20140035762A1 (en) | 2013-10-01 | 2014-02-06 | Ethicon Endo-Surgery, Inc. | Providing Near Real Time Feedback To A User Of A Surgical Instrument |
US20160235303A1 (en) | 2013-10-11 | 2016-08-18 | The Trustees Of Columbia University In The City Of New York | System, method and computer-accessible medium for characterization of tissue |
US10037715B2 (en) | 2013-10-16 | 2018-07-31 | Simulab Corporation | Detecting insertion of needle into simulated vessel using a conductive fluid |
US20150108198A1 (en) | 2013-10-17 | 2015-04-23 | Covidien Lp | Surgical instrument, loading unit and fasteners for use therewith |
US10463365B2 (en) | 2013-10-17 | 2019-11-05 | Covidien Lp | Chip assembly for surgical instruments |
US10022090B2 (en) | 2013-10-18 | 2018-07-17 | Atlantic Health System, Inc. | Nerve protecting dissection device |
KR102332023B1 (ko) * | 2013-10-24 | 2021-12-01 | 아우리스 헬스, 인크. | 로봇-보조식 내강 내부 수술용 시스템 및 이와 관련된 방법 |
US20160287912A1 (en) | 2013-11-04 | 2016-10-06 | Guided Interventions, Inc. | Method and apparatus for performance of thermal bronchiplasty with unfocused ultrasound |
US9922304B2 (en) | 2013-11-05 | 2018-03-20 | Deroyal Industries, Inc. | System for sensing and recording consumption of medical items during medical procedure |
US9544744B2 (en) | 2013-11-15 | 2017-01-10 | Richard Postrel | Method and system for pre and post processing of beacon ID signals |
USD783675S1 (en) | 2013-11-18 | 2017-04-11 | Mitsubishi Electric Corporation | Information display for an automotive vehicle with a computer generated icon |
US9949785B2 (en) | 2013-11-21 | 2018-04-24 | Ethicon Llc | Ultrasonic surgical instrument with electrosurgical feature |
EP2876885A1 (en) | 2013-11-21 | 2015-05-27 | Axis AB | Method and apparatus in a motion video capturing system |
US10552574B2 (en) | 2013-11-22 | 2020-02-04 | Spinal Generations, Llc | System and method for identifying a medical device |
US10368892B2 (en) | 2013-11-22 | 2019-08-06 | Ethicon Llc | Features for coupling surgical instrument shaft assembly with instrument body |
US9105174B2 (en) | 2013-11-25 | 2015-08-11 | Mark Matthew Harris | System and methods for nonverbally communicating patient comfort data |
US9993260B2 (en) | 2013-11-26 | 2018-06-12 | Ethicon Llc | Shielding features for ultrasonic blade of a surgical instrument |
US9943325B2 (en) | 2013-11-26 | 2018-04-17 | Ethicon Llc | Handpiece and blade configurations for ultrasonic surgical instrument |
WO2015081086A1 (en) | 2013-11-27 | 2015-06-04 | The Johns Hopkins University | System and method for medical data analysis and sharing |
US9713503B2 (en) | 2013-12-04 | 2017-07-25 | Novartis Ag | Surgical utility connector |
FR3014636A1 (fr) | 2013-12-05 | 2015-06-12 | Sagemcom Broadband Sas | Module electrique |
KR101527176B1 (ko) | 2013-12-09 | 2015-06-09 | (주)미래컴퍼니 | 수술 로봇 장치 및 수술 로봇 장치의 제어 방법 |
US10159044B2 (en) | 2013-12-09 | 2018-12-18 | GM Global Technology Operations LLC | Method and apparatus for controlling operating states of bluetooth interfaces of a bluetooth module |
CN105813582B (zh) | 2013-12-11 | 2019-05-28 | 柯惠Lp公司 | 用于机器人手术系统的腕组件及钳夹组件 |
CN105813580B (zh) | 2013-12-12 | 2019-10-15 | 柯惠Lp公司 | 用于机器人手术系统的齿轮系组件 |
US9808245B2 (en) | 2013-12-13 | 2017-11-07 | Covidien Lp | Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9743946B2 (en) | 2013-12-17 | 2017-08-29 | Ethicon Llc | Rotation features for ultrasonic surgical instrument |
US9681870B2 (en) | 2013-12-23 | 2017-06-20 | Ethicon Llc | Articulatable surgical instruments with separate and distinct closing and firing systems |
EP3087424A4 (en) | 2013-12-23 | 2017-09-27 | Camplex, Inc. | Surgical visualization systems |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
US10039546B2 (en) | 2013-12-23 | 2018-08-07 | Covidien Lp | Loading unit including shipping member |
US9642620B2 (en) | 2013-12-23 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical cutting and stapling instruments with articulatable end effectors |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US9539020B2 (en) | 2013-12-27 | 2017-01-10 | Ethicon Endo-Surgery, Llc | Coupling features for ultrasonic surgical instrument |
TWI548388B (zh) * | 2013-12-30 | 2016-09-11 | 國立臺灣大學 | 骨科手術之手持式機器人以及其控制方法 |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
KR20150085251A (ko) | 2014-01-15 | 2015-07-23 | 엘지전자 주식회사 | 디스플레이 디바이스 및 그 제어 방법 |
US9839424B2 (en) | 2014-01-17 | 2017-12-12 | Covidien Lp | Electromechanical surgical assembly |
US9655616B2 (en) | 2014-01-22 | 2017-05-23 | Covidien Lp | Apparatus for endoscopic procedures |
US20150208934A1 (en) | 2014-01-24 | 2015-07-30 | Genevieve Sztrubel | Method And Apparatus For The Detection Of Neural Tissue |
US9907550B2 (en) | 2014-01-27 | 2018-03-06 | Covidien Lp | Stitching device with long needle delivery |
US9802033B2 (en) | 2014-01-28 | 2017-10-31 | Ethicon Llc | Surgical devices having controlled tissue cutting and sealing |
US9700312B2 (en) | 2014-01-28 | 2017-07-11 | Covidien Lp | Surgical apparatus |
US9468454B2 (en) | 2014-01-28 | 2016-10-18 | Ethicon Endo-Surgery, Inc. | Motor control and feedback in powered surgical devices |
WO2015116687A1 (en) | 2014-01-28 | 2015-08-06 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical devices incorporating a flexible substrate, a sensor, and electrically-conductive traces |
US9801679B2 (en) | 2014-01-28 | 2017-10-31 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
US9358685B2 (en) | 2014-02-03 | 2016-06-07 | Brain Corporation | Apparatus and methods for control of robot actions based on corrective user inputs |
US9706674B2 (en) | 2014-02-04 | 2017-07-11 | Covidien Lp | Authentication system for reusable surgical instruments |
US10213266B2 (en) | 2014-02-07 | 2019-02-26 | Covidien Lp | Robotic surgical assemblies and adapter assemblies thereof |
US11090109B2 (en) | 2014-02-11 | 2021-08-17 | Covidien Lp | Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same |
WO2015122306A1 (ja) | 2014-02-17 | 2015-08-20 | オリンパス株式会社 | 超音波処置装置 |
US9301691B2 (en) | 2014-02-21 | 2016-04-05 | Covidien Lp | Instrument for optically detecting tissue attributes |
US10973682B2 (en) | 2014-02-24 | 2021-04-13 | Alcon Inc. | Surgical instrument with adhesion optimized edge condition |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
US9839422B2 (en) | 2014-02-24 | 2017-12-12 | Ethicon Llc | Implantable layers and methods for altering implantable layers for use with surgical fastening instruments |
WO2015131088A1 (en) | 2014-02-27 | 2015-09-03 | University Surgical Associates, Inc. | Interactive display for surgery |
JP2015163172A (ja) | 2014-02-28 | 2015-09-10 | オリンパス株式会社 | 圧排装置およびロボットシステム |
WO2015134749A2 (en) | 2014-03-06 | 2015-09-11 | Stryker Corporation | Medical/surgical waste collection unit with a light assembly separate from the primary display, the light assembly presenting informatin about the operation of the system by selectively outputting light |
US9603277B2 (en) | 2014-03-06 | 2017-03-21 | Adtran, Inc. | Field-reconfigurable backplane system |
GB2523224C2 (en) | 2014-03-07 | 2021-06-02 | Cambridge Medical Robotics Ltd | Surgical arm |
US10342623B2 (en) | 2014-03-12 | 2019-07-09 | Proximed, Llc | Surgical guidance systems, devices, and methods |
KR20170035831A (ko) | 2014-03-14 | 2017-03-31 | 시냅티브 메디컬 (바베이도스) 아이엔씨. | 인텔리전트 포지셔닝 시스템과 그것의 방법들 |
US10172687B2 (en) | 2014-03-17 | 2019-01-08 | Intuitive Surgical Operations, Inc. | Surgical cannulas and related systems and methods of identifying surgical cannulas |
WO2015142798A1 (en) | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Methods and devices for tele-surgical table registration |
US10166061B2 (en) | 2014-03-17 | 2019-01-01 | Intuitive Surgical Operations, Inc. | Teleoperated surgical system equipment with user interface |
CN106456251B9 (zh) | 2014-03-17 | 2019-10-15 | 直观外科手术操作公司 | 用于对成像装置和输入控制装置重定中心的系统和方法 |
CN117653293A (zh) | 2014-03-17 | 2024-03-08 | 直观外科手术操作公司 | 外科手术套管安装件及相关的系统和方法 |
WO2015142793A1 (en) | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Sterile barrier between surgical instrument and teleoperated actuator |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
US9733663B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Llc | Power management through segmented circuit and variable voltage protection |
US9743929B2 (en) | 2014-03-26 | 2017-08-29 | Ethicon Llc | Modular powered surgical instrument with detachable shaft assemblies |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
NO3123826T3 (pt) | 2014-03-27 | 2018-07-21 | ||
WO2015145395A1 (en) | 2014-03-28 | 2015-10-01 | Alma Mater Studiorum - Universita' Di Bologna | Augmented reality glasses for medical applications and corresponding augmented reality system |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
KR102395579B1 (ko) | 2014-03-31 | 2022-05-09 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 시프트 가능한 트랜스미션을 가진 수술 기구 |
US9757126B2 (en) | 2014-03-31 | 2017-09-12 | Covidien Lp | Surgical stapling apparatus with firing lockout mechanism |
CN106163444B (zh) | 2014-04-01 | 2019-06-28 | 直观外科手术操作公司 | 遥控操作的外科手术器械的控制输入准确度 |
US9987068B2 (en) | 2014-04-04 | 2018-06-05 | Covidien Lp | Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators |
US9974595B2 (en) | 2014-04-04 | 2018-05-22 | Covidien Lp | Systems and methods for optimizing emissions from simultaneous activation of electrosurgery generators |
US9918730B2 (en) | 2014-04-08 | 2018-03-20 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
US9433427B2 (en) | 2014-04-08 | 2016-09-06 | Incuvate, Llc | Systems and methods for management of thrombosis |
US9980769B2 (en) | 2014-04-08 | 2018-05-29 | Ethicon Llc | Methods and devices for controlling motorized surgical devices |
WO2015157266A1 (en) | 2014-04-08 | 2015-10-15 | Ams Research Corporation | Flexible devices for blunt dissection and related methods |
EP3128941B1 (en) | 2014-04-09 | 2020-11-18 | Gyrus ACMI, Inc. (D.B.A. Olympus Surgical Technologies America) | Enforcement device for limited usage product |
WO2015157337A1 (en) | 2014-04-09 | 2015-10-15 | University Of Rochester | Method and apparatus to diagnose the metastatic or progressive potential of cancer, fibrosis and other diseases |
US11517315B2 (en) | 2014-04-16 | 2022-12-06 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US9801627B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Fastener cartridge for creating a flexible staple line |
BR112016023825B1 (pt) | 2014-04-16 | 2022-08-02 | Ethicon Endo-Surgery, Llc | Cartucho de grampos para uso com um grampeador cirúrgico e cartucho de grampos para uso com um instrumento cirúrgico |
US20150297200A1 (en) | 2014-04-17 | 2015-10-22 | Covidien Lp | End of life transmission system for surgical instruments |
US20150302157A1 (en) | 2014-04-17 | 2015-10-22 | Ryan Mitchell Collar | Apparatus, Method, and System for Counting Packaged, Consumable, Medical Items Such as Surgical Suture Cartridges |
US10164466B2 (en) | 2014-04-17 | 2018-12-25 | Covidien Lp | Non-contact surgical adapter electrical interface |
US10258363B2 (en) | 2014-04-22 | 2019-04-16 | Ethicon Llc | Method of operating an articulating ultrasonic surgical instrument |
BR112016024947A2 (pt) | 2014-04-25 | 2018-06-19 | Sharp Fluidics Llc | sistemas e métodos para melhorar a eficiência em uma sala de operação |
US10639185B2 (en) | 2014-04-25 | 2020-05-05 | The Trustees Of Columbia University In The City Of New York | Spinal treatment devices, methods, and systems |
US10133248B2 (en) | 2014-04-28 | 2018-11-20 | Covidien Lp | Systems and methods for determining an end of life state for surgical devices |
US20150317899A1 (en) | 2014-05-01 | 2015-11-05 | Covidien Lp | System and method for using rfid tags to determine sterilization of devices |
US10175127B2 (en) | 2014-05-05 | 2019-01-08 | Covidien Lp | End-effector force measurement drive circuit |
WO2015168781A1 (en) | 2014-05-06 | 2015-11-12 | Conceptualiz Inc. | System and method for interactive 3d surgical planning and modelling of surgical implants |
US9717552B2 (en) | 2014-05-06 | 2017-08-01 | Cosman Intruments, Llc | Electrosurgical generator |
AU2015259303B2 (en) | 2014-05-12 | 2021-10-28 | Arena, Christopher B. | Selective modulation of intracellular effects of cells using pulsed electric fields |
CN106456257B (zh) | 2014-05-13 | 2019-11-05 | 柯惠Lp公司 | 手术机器人手臂支撑系统及使用方法 |
US9770541B2 (en) | 2014-05-15 | 2017-09-26 | Thermedx, Llc | Fluid management system with pass-through fluid volume measurement |
US9753568B2 (en) | 2014-05-15 | 2017-09-05 | Bebop Sensors, Inc. | Flexible sensors and applications |
US11977998B2 (en) | 2014-05-15 | 2024-05-07 | Storz Endoskop Produktions Gmbh | Surgical workflow support system |
WO2015174985A1 (en) | 2014-05-15 | 2015-11-19 | Lp Covidien | Surgical fastener applying apparatus |
WO2016007224A2 (en) | 2014-05-16 | 2016-01-14 | Powdermet, Inc. | Heterogeneous composite bodies with isolated cermet regions formed by high temperature, rapid consolidation |
US20150332003A1 (en) | 2014-05-19 | 2015-11-19 | Unitedhealth Group Incorporated | Computer readable storage media for utilizing derived medical records and methods and systems for same |
EP3369392B1 (en) | 2014-05-30 | 2024-05-22 | Applied Medical Resources Corporation | Electrosurgical seal and dissection systems |
US20160106516A1 (en) | 2014-05-30 | 2016-04-21 | Sameh Mesallum | Systems for automated biomechanical computerized surgery |
US9549781B2 (en) | 2014-05-30 | 2017-01-24 | The Johns Hopkins University | Multi-force sensing surgical instrument and method of use for robotic surgical systems |
KR102373263B1 (ko) | 2014-05-30 | 2022-03-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 이를 제조하기 위한 방법 |
US9325732B1 (en) | 2014-06-02 | 2016-04-26 | Amazon Technologies, Inc. | Computer security threat sharing |
WO2015191562A1 (en) | 2014-06-09 | 2015-12-17 | Revon Systems, Llc | Systems and methods for health tracking and management |
US9331422B2 (en) | 2014-06-09 | 2016-05-03 | Apple Inc. | Electronic device with hidden connector |
US10251725B2 (en) | 2014-06-09 | 2019-04-09 | Covidien Lp | Authentication and information system for reusable surgical instruments |
ES2758511T3 (es) | 2014-06-11 | 2020-05-05 | Applied Med Resources | Grapadora quirúrgica con disparo circunferencial |
WO2015191718A1 (en) | 2014-06-11 | 2015-12-17 | University Of Houston | Systems and methods for medical procedure monitoring |
US10045781B2 (en) | 2014-06-13 | 2018-08-14 | Ethicon Llc | Closure lockout systems for surgical instruments |
US11437125B2 (en) | 2014-06-13 | 2022-09-06 | University Hospitals Cleveland Medical Center | Artificial-intelligence-based facilitation of healthcare delivery |
KR101587721B1 (ko) | 2014-06-17 | 2016-01-22 | 에스엔유 프리시젼 주식회사 | 수술용 버커터의 제어방법 및 제어장치 |
US10314577B2 (en) | 2014-06-25 | 2019-06-11 | Ethicon Llc | Lockout engagement features for surgical stapler |
US10335147B2 (en) | 2014-06-25 | 2019-07-02 | Ethicon Llc | Method of using lockout features for surgical stapler cartridge |
US9636825B2 (en) | 2014-06-26 | 2017-05-02 | Robotex Inc. | Robotic logistics system |
US10152789B2 (en) | 2014-07-25 | 2018-12-11 | Covidien Lp | Augmented surgical reality environment |
US20160034648A1 (en) | 2014-07-30 | 2016-02-04 | Verras Healthcare International, LLC | System and method for reducing clinical variation |
WO2016019345A1 (en) | 2014-08-01 | 2016-02-04 | Smith & Nephew, Inc. | Providing implants for surgical procedures |
US10422727B2 (en) | 2014-08-10 | 2019-09-24 | Harry Leon Pliskin | Contaminant monitoring and air filtration system |
CA2957832A1 (en) | 2014-08-13 | 2016-02-18 | Covidien Lp | Robotically controlling mechanical advantage gripping |
US10194972B2 (en) | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
CN105449719B (zh) | 2014-08-26 | 2019-01-04 | 珠海格力电器股份有限公司 | 分布式能源电源控制方法、装置及系统 |
CA2959332C (en) | 2014-08-26 | 2023-03-21 | Avent, Inc. | Method and system for identification of source of chronic pain and treatment |
US9943312B2 (en) | 2014-09-02 | 2018-04-17 | Ethicon Llc | Methods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device |
US9788835B2 (en) | 2014-09-02 | 2017-10-17 | Ethicon Llc | Devices and methods for facilitating ejection of surgical fasteners from cartridges |
US9700320B2 (en) | 2014-09-02 | 2017-07-11 | Ethicon Llc | Devices and methods for removably coupling a cartridge to an end effector of a surgical device |
US9848877B2 (en) | 2014-09-02 | 2017-12-26 | Ethicon Llc | Methods and devices for adjusting a tissue gap of an end effector of a surgical device |
US9795380B2 (en) | 2014-09-02 | 2017-10-24 | Ethicon Llc | Devices and methods for facilitating closing and clamping of an end effector of a surgical device |
US10004500B2 (en) | 2014-09-02 | 2018-06-26 | Ethicon Llc | Devices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device |
US9280884B1 (en) | 2014-09-03 | 2016-03-08 | Oberon, Inc. | Environmental sensor device with alarms |
US9724094B2 (en) | 2014-09-05 | 2017-08-08 | Ethicon Llc | Adjunct with integrated sensors to quantify tissue compression |
WO2016042356A1 (en) | 2014-09-15 | 2016-03-24 | Synaptive Medical (Barbados) Inc. | System and method for collection, storage and management of medical data |
CN107072722B (zh) | 2014-09-15 | 2020-05-12 | 柯惠Lp公司 | 机器人控制手术组件 |
EP4272688A3 (en) | 2014-09-15 | 2024-02-21 | Applied Medical Resources Corporation | Surgical stapler with self-adjusting staple height |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US12114986B2 (en) | 2014-09-23 | 2024-10-15 | SST Canada Inc. | System and method for biometric data capture for event prediction |
CN106999257A (zh) | 2014-09-23 | 2017-08-01 | 外科安全技术公司 | 手术室黑盒设备、系统、方法和计算机可读介质 |
EP3626279A1 (en) | 2014-09-25 | 2020-03-25 | NxStage Medical Inc. | Medicament preparation and treatment devices, methods, and systems |
US9936961B2 (en) | 2014-09-26 | 2018-04-10 | DePuy Synthes Products, Inc. | Surgical tool with feedback |
JP2017529907A (ja) | 2014-09-29 | 2017-10-12 | コヴィディエン リミテッド パートナーシップ | ロボット外科手術システムの制御のための動的入力スケーリング |
US10039564B2 (en) | 2014-09-30 | 2018-08-07 | Ethicon Llc | Surgical devices having power-assisted jaw closure and methods for compressing and sensing tissue |
US9630318B2 (en) | 2014-10-02 | 2017-04-25 | Brain Corporation | Feature detection apparatus and methods for training of robotic navigation |
US9901406B2 (en) | 2014-10-02 | 2018-02-27 | Inneroptic Technology, Inc. | Affected region display associated with a medical device |
US9833254B1 (en) | 2014-10-03 | 2017-12-05 | Verily Life Sciences Llc | Controlled dissection of biological tissue |
US10603128B2 (en) | 2014-10-07 | 2020-03-31 | Covidien Lp | Handheld electromechanical surgical system |
US10292758B2 (en) | 2014-10-10 | 2019-05-21 | Ethicon Llc | Methods and devices for articulating laparoscopic energy device |
GB201417963D0 (en) | 2014-10-10 | 2014-11-26 | Univ Oslo Hf | Measurement of impedance of body tissue |
US10102926B1 (en) | 2014-10-14 | 2018-10-16 | Sentry Data Systems, Inc. | Detecting, analyzing and impacting improvement opportunities related to total cost of care, clinical quality and revenue integrity |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10555777B2 (en) * | 2014-10-27 | 2020-02-11 | Intuitive Surgical Operations, Inc. | System and method for registering to a surgical table |
US9717417B2 (en) | 2014-10-29 | 2017-08-01 | Spectral Md, Inc. | Reflective mode multi-spectral time-resolved optical imaging methods and apparatuses for tissue classification |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
JP6374979B2 (ja) | 2014-10-31 | 2018-08-15 | オリンパス株式会社 | 医療用処置装置 |
CN104436911A (zh) | 2014-11-03 | 2015-03-25 | 佛山市顺德区阿波罗环保器材有限公司 | 一种基于滤芯识别防伪的空气净化器 |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10792422B2 (en) | 2014-11-10 | 2020-10-06 | White Bear Medical LLC | Dynamically controlled treatment protocols for autonomous treatment systems |
WO2016080223A1 (ja) | 2014-11-19 | 2016-05-26 | 国立大学法人九州大学 | 高周波鉗子 |
US10092355B1 (en) | 2014-11-21 | 2018-10-09 | Verily Life Sciences Llc | Biophotonic surgical probe |
US9782212B2 (en) | 2014-12-02 | 2017-10-10 | Covidien Lp | High level algorithms |
EP3226795B1 (en) | 2014-12-03 | 2020-08-26 | Metavention, Inc. | Systems for modulating nerves or other tissue |
US9247996B1 (en) | 2014-12-10 | 2016-02-02 | F21, Llc | System, method, and apparatus for refurbishment of robotic surgical arms |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10095942B2 (en) | 2014-12-15 | 2018-10-09 | Reflex Robotics, Inc | Vision based real-time object tracking system for robotic gimbal control |
CN106999249B (zh) | 2014-12-16 | 2020-10-23 | 直观外科手术操作公司 | 利用波段选择性成像的输尿管检测 |
WO2016100719A1 (en) | 2014-12-17 | 2016-06-23 | Maquet Cardiovascular Llc | Surgical device |
CN104490448B (zh) | 2014-12-17 | 2017-03-15 | 徐保利 | 外科结扎用施夹钳 |
US9160853B1 (en) | 2014-12-17 | 2015-10-13 | Noble Systems Corporation | Dynamic display of real time speech analytics agent alert indications in a contact center |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10004501B2 (en) | 2014-12-18 | 2018-06-26 | Ethicon Llc | Surgical instruments with improved closure arrangements |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US20160180045A1 (en) | 2014-12-19 | 2016-06-23 | Ebay Inc. | Wireless beacon devices used to track medical information at a hospital |
EP3238111B1 (en) | 2014-12-24 | 2025-02-05 | Genomate Health Inc. | System and method for adaptive medical decision support |
EP3241505B1 (en) | 2014-12-30 | 2024-02-07 | Touchstone International Medical Science Co., Ltd. | Stapling head assembly and suturing and cutting apparatus for endoscopic surgery |
WO2016109726A1 (en) | 2014-12-31 | 2016-07-07 | Vector Medical, Llc | Process and apparatus for managing medical device selection and implantation |
US9775611B2 (en) | 2015-01-06 | 2017-10-03 | Covidien Lp | Clam shell surgical stapling loading unit |
US9931124B2 (en) | 2015-01-07 | 2018-04-03 | Covidien Lp | Reposable clip applier |
US10362179B2 (en) | 2015-01-09 | 2019-07-23 | Tracfone Wireless, Inc. | Peel and stick activation code for activating service for a wireless device |
GB2545135B (en) | 2015-01-14 | 2018-01-24 | Gyrus Medical Ltd | Electrosurgical system |
WO2016115409A1 (en) | 2015-01-14 | 2016-07-21 | Datto, Inc. | Remotely configurable routers with failover features, and methods and apparatus for reliable web-based administration of same |
US9931040B2 (en) | 2015-01-14 | 2018-04-03 | Verily Life Sciences Llc | Applications of hyperspectral laser speckle imaging |
US10368876B2 (en) | 2015-01-15 | 2019-08-06 | Covidien Lp | Endoscopic reposable surgical clip applier |
US10656720B1 (en) | 2015-01-16 | 2020-05-19 | Ultrahaptics IP Two Limited | Mode switching for integrated gestural interaction and multi-user collaboration in immersive virtual reality environments |
AU2016200084B2 (en) | 2015-01-16 | 2020-01-16 | Covidien Lp | Powered surgical stapling device |
GB2534558B (en) | 2015-01-21 | 2020-12-30 | Cmr Surgical Ltd | Robot tool retraction |
EP3247298A4 (en) | 2015-01-21 | 2018-12-26 | Serene Medical, Inc. | Systems and devices to identify and limit nerve conduction |
US9387295B1 (en) | 2015-01-30 | 2016-07-12 | SurgiQues, Inc. | Filter cartridge with internal gaseous seal for multimodal surgical gas delivery system having a smoke evacuation mode |
US10159809B2 (en) | 2015-01-30 | 2018-12-25 | Surgiquest, Inc. | Multipath filter assembly with integrated gaseous seal for multimodal surgical gas delivery system |
AU2016215578A1 (en) | 2015-02-02 | 2017-07-27 | Think Surgical, Inc. | Method and system for managing medical data |
EP3254640A4 (en) | 2015-02-05 | 2018-08-08 | Olympus Corporation | Manipulator |
US9713424B2 (en) | 2015-02-06 | 2017-07-25 | Richard F. Spaide | Volume analysis and display of information in optical coherence tomography angiography |
JP6389774B2 (ja) | 2015-02-10 | 2018-09-12 | 東芝テック株式会社 | 商品販売データ処理装置 |
US10111658B2 (en) | 2015-02-12 | 2018-10-30 | Covidien Lp | Display screens for medical devices |
DE102016102607A1 (de) | 2015-02-13 | 2016-08-18 | Zoller + Fröhlich GmbH | Scananordnung und Verfahren zum Scannen eines Objektes |
US9805472B2 (en) | 2015-02-18 | 2017-10-31 | Sony Corporation | System and method for smoke detection during anatomical surgery |
US10111665B2 (en) | 2015-02-19 | 2018-10-30 | Covidien Lp | Electromechanical surgical systems |
US9905000B2 (en) | 2015-02-19 | 2018-02-27 | Sony Corporation | Method and system for surgical tool localization during anatomical surgery |
US20160242836A1 (en) | 2015-02-23 | 2016-08-25 | Hemostatix Medical Technologies, LLC | Apparatus, System and Method for Excision of Soft Tissue |
US10085749B2 (en) | 2015-02-26 | 2018-10-02 | Covidien Lp | Surgical apparatus with conductor strain relief |
US10130367B2 (en) | 2015-02-26 | 2018-11-20 | Covidien Lp | Surgical apparatus |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
DE112015006004T5 (de) | 2015-02-27 | 2017-10-26 | Olympus Corporation | Medizinische Behandlungsvorrichtung, Verfahren zum Bedienen einer medizinischen Behandlungsvorrichtung und Behandlungsverfahren |
US9993258B2 (en) | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
US10733267B2 (en) | 2015-02-27 | 2020-08-04 | Surgical Black Box Llc | Surgical data control system |
US10159483B2 (en) | 2015-02-27 | 2018-12-25 | Ethicon Llc | Surgical apparatus configured to track an end-of-life parameter |
US20160301690A1 (en) | 2015-04-10 | 2016-10-13 | Enovate Medical, Llc | Access control for a hard asset |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
JP6360803B2 (ja) | 2015-03-10 | 2018-07-18 | 富士フイルム株式会社 | 診療データ管理装置、その作動方法及び作動プログラム |
CN111513851B (zh) | 2015-03-10 | 2023-12-12 | 柯惠Lp公司 | 机器人手术系统、器械驱动单元以及驱动组件 |
CN113040921A (zh) | 2015-03-10 | 2021-06-29 | 柯惠Lp公司 | 测量机器人手术系统的连接器部件的健康状况 |
US10190888B2 (en) | 2015-03-11 | 2019-01-29 | Covidien Lp | Surgical stapling instruments with linear position assembly |
US10653476B2 (en) | 2015-03-12 | 2020-05-19 | Covidien Lp | Mapping vessels for resecting body tissue |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
WO2016149563A1 (en) | 2015-03-17 | 2016-09-22 | Ahluwalia Prabhat | Uterine manipulator |
US10390718B2 (en) | 2015-03-20 | 2019-08-27 | East Carolina University | Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design |
US9636164B2 (en) | 2015-03-25 | 2017-05-02 | Advanced Cardiac Therapeutics, Inc. | Contact sensing systems and methods |
US10136891B2 (en) | 2015-03-25 | 2018-11-27 | Ethicon Llc | Naturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler |
US10863984B2 (en) | 2015-03-25 | 2020-12-15 | Ethicon Llc | Low inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler |
US10172618B2 (en) | 2015-03-25 | 2019-01-08 | Ethicon Llc | Low glass transition temperature bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler |
US10349939B2 (en) | 2015-03-25 | 2019-07-16 | Ethicon Llc | Method of applying a buttress to a surgical stapler |
US10568621B2 (en) | 2015-03-25 | 2020-02-25 | Ethicon Llc | Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler |
US11322248B2 (en) | 2015-03-26 | 2022-05-03 | Surgical Safety Technologies Inc. | Operating room black-box device, system, method and computer readable medium for event and error prediction |
JP7069719B2 (ja) | 2015-03-30 | 2022-05-18 | ゾール メディカル コーポレイション | 機器の管理における臨床データの受け渡し及びデータ共有のためのシステム |
US10813684B2 (en) | 2015-03-30 | 2020-10-27 | Ethicon Llc | Control of cutting and sealing based on tissue mapped by segmented electrode |
CN107205773A (zh) | 2015-03-31 | 2017-09-26 | 圣犹达医疗用品心脏病学部门有限公司 | 用于在导管消融期间输送脉冲rf能量的方法和设备 |
US10383518B2 (en) | 2015-03-31 | 2019-08-20 | Midmark Corporation | Electronic ecosystem for medical examination room |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US20160292456A1 (en) | 2015-04-01 | 2016-10-06 | Abbvie Inc. | Systems and methods for generating longitudinal data profiles from multiple data sources |
WO2016164199A1 (en) | 2015-04-06 | 2016-10-13 | Thomas Jefferson University | Implantable vital sign sensor |
US10117702B2 (en) | 2015-04-10 | 2018-11-06 | Ethicon Llc | Surgical generator systems and related methods |
AU2016246745B2 (en) * | 2015-04-10 | 2020-11-26 | Mako Surgical Corp. | System and method of controlling a surgical tool during autonomous movement of the surgical tool |
US20160296246A1 (en) | 2015-04-13 | 2016-10-13 | Novartis Ag | Forceps with metal and polymeric arms |
WO2016172162A1 (en) | 2015-04-20 | 2016-10-27 | Darisse Ian J | Articulated robotic probes |
US10806506B2 (en) | 2015-04-21 | 2020-10-20 | Smith & Nephew, Inc. | Vessel sealing algorithm and modes |
AU2016251639B2 (en) | 2015-04-22 | 2021-01-14 | Covidien Lp | Handheld electromechanical surgical system |
CN107708595B (zh) | 2015-04-23 | 2020-08-04 | Sri国际公司 | 超灵巧型手术系统用户接口装置 |
US20160342753A1 (en) | 2015-04-24 | 2016-11-24 | Starslide | Method and apparatus for healthcare predictive decision technology platform |
US20160314716A1 (en) | 2015-04-27 | 2016-10-27 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using remote surgery station and party conferencing and associated methods |
US20160314717A1 (en) | 2015-04-27 | 2016-10-27 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using robotic surgery station coupled to remote surgeon trainee and instructor stations and associated methods |
US20160323283A1 (en) | 2015-04-30 | 2016-11-03 | Samsung Electronics Co., Ltd. | Semiconductor device for controlling access right to resource based on pairing technique and method thereof |
US10169862B2 (en) | 2015-05-07 | 2019-01-01 | Novadaq Technologies ULC | Methods and systems for laser speckle imaging of tissue using a color image sensor |
WO2016183054A1 (en) | 2015-05-11 | 2016-11-17 | Covidien Lp | Coupling instrument drive unit and robotic surgical instrument |
US10235737B2 (en) | 2015-05-11 | 2019-03-19 | Elwha Llc | Interactive surgical drape, system, and related methods |
EP3294109B1 (en) | 2015-05-12 | 2024-03-27 | Avraham Levy | Dynamic field of view endoscope |
GB2538497B (en) | 2015-05-14 | 2020-10-28 | Cmr Surgical Ltd | Torque sensing in a surgical robotic wrist |
US9566708B2 (en) | 2015-05-14 | 2017-02-14 | Daniel Kurnianto | Control mechanism for end-effector maneuver |
WO2016187070A1 (en) | 2015-05-15 | 2016-11-24 | Gauss Surgical, Inc. | Method for projecting blood loss of a patient during a surgery |
KR102728830B1 (ko) | 2015-05-15 | 2024-11-14 | 마코 서지컬 코포레이션 | 로봇식 의료 절차에 대한 지침을 제공하기 위한 시스템들 및 방법들 |
US20160342916A1 (en) | 2015-05-20 | 2016-11-24 | Schlumberger Technology Corporation | Downhole tool management system |
CA3029355A1 (en) | 2015-05-22 | 2016-11-22 | Covidien Lp | Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures |
US9519753B1 (en) | 2015-05-26 | 2016-12-13 | Virtual Radiologic Corporation | Radiology workflow coordination techniques |
US10022120B2 (en) | 2015-05-26 | 2018-07-17 | Ethicon Llc | Surgical needle with recessed features |
US9918326B2 (en) | 2015-05-27 | 2018-03-13 | Comcast Cable Communications, Llc | Optimizing resources in data transmission |
US10349941B2 (en) | 2015-05-27 | 2019-07-16 | Covidien Lp | Multi-fire lead screw stapling device |
US20160354162A1 (en) | 2015-06-02 | 2016-12-08 | National Taiwan University | Drilling control system and drilling control method |
CN107666866A (zh) | 2015-06-03 | 2018-02-06 | 柯惠Lp公司 | 偏置器械驱动单元 |
US10118119B2 (en) | 2015-06-08 | 2018-11-06 | Cts Corporation | Radio frequency process sensing, control, and diagnostics network and system |
CN112932674B (zh) | 2015-06-08 | 2024-09-10 | 柯惠Lp公司 | 用于手术系统的安装装置和使用方法 |
KR102673560B1 (ko) | 2015-06-09 | 2024-06-12 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 수술 절차 아틀라스를 갖는 수술시스템의 구성 |
EP3307464A4 (en) | 2015-06-10 | 2019-03-20 | Orthodrill Medical Ltd. | DEVICE FOR MODIFYING THE OPERATION OF SURGICAL BONE TOOLS AND / OR ASSOCIATED METHODS |
EP4331522A3 (en) | 2015-06-10 | 2024-05-22 | Intuitive Surgical Operations, Inc. | System and method for patient-side instrument control |
US10166080B2 (en) * | 2015-06-12 | 2019-01-01 | The Johns Hopkins University | Cooperatively-controlled surgical robotic system with redundant force sensing |
CN107921618B (zh) | 2015-06-15 | 2022-10-28 | 米沃奇电动工具公司 | 电动工具通信系统 |
US10004491B2 (en) | 2015-06-15 | 2018-06-26 | Ethicon Llc | Suturing instrument with needle motion indicator |
US9839419B2 (en) | 2015-06-16 | 2017-12-12 | Ethicon Endo-Surgery, Llc | Suturing instrument with jaw having integral cartridge component |
US9888914B2 (en) | 2015-06-16 | 2018-02-13 | Ethicon Endo-Surgery, Llc | Suturing instrument with motorized needle drive |
US10507068B2 (en) | 2015-06-16 | 2019-12-17 | Covidien Lp | Robotic surgical system torque transduction sensing |
US9782164B2 (en) | 2015-06-16 | 2017-10-10 | Ethicon Endo-Surgery, Llc | Suturing instrument with multi-mode cartridges |
US9861422B2 (en) | 2015-06-17 | 2018-01-09 | Medtronic, Inc. | Catheter breach loop feedback fault detection with active and inactive driver system |
US10052102B2 (en) | 2015-06-18 | 2018-08-21 | Ethicon Llc | Surgical end effectors with dual cam actuated jaw closing features |
US10512499B2 (en) | 2015-06-19 | 2019-12-24 | Covidien Lp | Systems and methods for detecting opening of the jaws of a vessel sealer mid-seal |
EP3310287B1 (en) | 2015-06-19 | 2022-04-20 | Covidien LP | Robotic surgical assemblies |
WO2016205452A1 (en) | 2015-06-19 | 2016-12-22 | Covidien Lp | Controlling robotic surgical instruments with bidirectional coupling |
CN108472102B (zh) | 2015-06-23 | 2022-05-17 | 矩阵It医疗追踪系统公司 | 无菌植入物追踪设备和系统 |
JP6719487B2 (ja) | 2015-06-23 | 2020-07-08 | コヴィディエン リミテッド パートナーシップ | ロボット外科手術アセンブリ |
WO2016206015A1 (en) | 2015-06-24 | 2016-12-29 | Covidien Lp | Surgical clip applier with multiple clip feeding mechanism |
US10528840B2 (en) | 2015-06-24 | 2020-01-07 | Stryker Corporation | Method and system for surgical instrumentation setup and user preferences |
US10905415B2 (en) | 2015-06-26 | 2021-02-02 | Ethicon Llc | Surgical stapler with electromechanical lockout |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US9839470B2 (en) | 2015-06-30 | 2017-12-12 | Covidien Lp | Electrosurgical generator for minimizing neuromuscular stimulation |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
KR101726054B1 (ko) | 2015-07-08 | 2017-04-12 | 성균관대학교산학협력단 | 생체조직 판별 장치 및 방법, 이를 이용한 수술 장치 |
EP4275610A3 (en) | 2015-07-13 | 2023-12-27 | Mako Surgical Corp. | Computer-implemented lower extremities leg length calculation method |
CN108289661B (zh) | 2015-07-13 | 2022-04-12 | 瑟吉玛蒂克斯公司 | 具有释放机构的腹腔镜缝合装置 |
WO2017011646A1 (en) | 2015-07-14 | 2017-01-19 | Smith & Nephew, Inc. | Instrumentation identification and re-ordering system |
GB2541369B (en) | 2015-07-22 | 2021-03-31 | Cmr Surgical Ltd | Drive mechanisms for robot arms |
GB2540756B (en) | 2015-07-22 | 2021-03-31 | Cmr Surgical Ltd | Gear packaging for robot arms |
US10524795B2 (en) | 2015-07-30 | 2020-01-07 | Ethicon Llc | Surgical instrument comprising systems for permitting the optional transection of tissue |
US10045782B2 (en) | 2015-07-30 | 2018-08-14 | Covidien Lp | Surgical stapling loading unit with stroke counter and lockout |
WO2017022287A1 (ja) | 2015-08-05 | 2017-02-09 | オリンパス株式会社 | 処置具 |
US10679758B2 (en) | 2015-08-07 | 2020-06-09 | Abbott Cardiovascular Systems Inc. | System and method for supporting decisions during a catheterization procedure |
US9532845B1 (en) | 2015-08-11 | 2017-01-03 | ITKR Software LLC | Methods for facilitating individualized kinematically aligned total knee replacements and devices thereof |
KR101920603B1 (ko) | 2015-08-14 | 2018-11-20 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 여과 시스템 내의 필터 매체의 식별 |
US11351001B2 (en) | 2015-08-17 | 2022-06-07 | Intuitive Surgical Operations, Inc. | Ungrounded master control devices and methods of use |
US10136949B2 (en) | 2015-08-17 | 2018-11-27 | Ethicon Llc | Gathering and analyzing data for robotic surgical systems |
US10205708B1 (en) | 2015-08-21 | 2019-02-12 | Teletracking Technologies, Inc. | Systems and methods for digital content protection and security in multi-computer networks |
US10639039B2 (en) | 2015-08-24 | 2020-05-05 | Ethicon Llc | Surgical stapler buttress applicator with multi-zone platform for pressure focused release |
US10433845B2 (en) | 2015-08-26 | 2019-10-08 | Ethicon Llc | Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading |
WO2017037705A1 (en) | 2015-08-30 | 2017-03-09 | M.S.T. Medical Surgery Technologies Ltd | An intelligent surgical tool control system for laparoscopic surgeries |
EP3344179B1 (en) | 2015-08-31 | 2021-06-30 | KB Medical SA | Robotic surgical systems |
US20170068792A1 (en) | 2015-09-03 | 2017-03-09 | Bruce Reiner | System and method for medical device security, data tracking and outcomes analysis |
EP3141181B1 (en) | 2015-09-11 | 2018-06-20 | Bernard Boon Chye Lim | Ablation catheter apparatus with a basket comprising electrodes, an optical emitting element and an optical receiving element |
EP3346940B1 (en) | 2015-09-11 | 2021-08-18 | Covidien LP | Robotic surgical system control scheme for manipulating robotic end effctors |
DE102015115559A1 (de) | 2015-09-15 | 2017-03-16 | Karl Storz Gmbh & Co. Kg | Manipulationssystem sowie Handhabungsvorrichtung für chirurgische Instrumente |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
CA2994443A1 (en) | 2015-09-25 | 2017-03-30 | Covidien Lp | Robotic surgical assemblies and electromechanical instruments thereof |
US11076909B2 (en) | 2015-09-25 | 2021-08-03 | Gyrus Acmi, Inc. | Multifunctional medical device |
US10130432B2 (en) * | 2015-09-25 | 2018-11-20 | Ethicon Llc | Hybrid robotic surgery with locking mode |
CN108024834A (zh) | 2015-09-25 | 2018-05-11 | 柯惠Lp公司 | 机器人手术系统的弹性手术接口 |
CN112618025B (zh) | 2015-09-25 | 2024-05-10 | 柯惠Lp公司 | 手术机器人组合件和其器械适配器 |
EP3352699B1 (en) | 2015-09-25 | 2023-08-23 | Covidien LP | Robotic surgical assemblies and instrument drive connectors thereof |
WO2017059105A1 (en) | 2015-09-30 | 2017-04-06 | Ou George | Multicomputer data transferring system with a rotating base station |
WO2017058696A1 (en) | 2015-09-30 | 2017-04-06 | Ethicon Endo-Surgery, Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US10433846B2 (en) | 2015-09-30 | 2019-10-08 | Ethicon Llc | Compressible adjunct with crossing spacer fibers |
CN108289695B (zh) | 2015-09-30 | 2021-01-26 | 伊西康有限责任公司 | 为外科器械提供隔离的直流(dc)电压的电路 |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
JP2018534011A (ja) | 2015-10-14 | 2018-11-22 | サージカル シアター エルエルシー | 拡張現実感手術ナビゲーション |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US11045275B2 (en) | 2015-10-19 | 2021-06-29 | Cilag Gmbh International | Surgical instrument with dual mode end effector and side-loaded clamp arm assembly |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
AU2016341284A1 (en) | 2015-10-22 | 2018-04-12 | Covidien Lp | Variable sweeping for input devices |
US20170116873A1 (en) | 2015-10-26 | 2017-04-27 | C-SATS, Inc. | Crowd-sourced assessment of performance of an activity |
US10639027B2 (en) | 2015-10-27 | 2020-05-05 | Ethicon Llc | Suturing instrument cartridge with torque limiting features |
CN108430339A (zh) | 2015-10-29 | 2018-08-21 | 夏普应用流体力学有限责任公司 | 用于手术室中数据捕获的系统和方法 |
US10818383B2 (en) | 2015-10-30 | 2020-10-27 | Koninklijke Philips N.V. | Hospital matching of de-identified healthcare databases without obvious quasi-identifiers |
EP3367948B1 (en) | 2015-10-30 | 2024-04-24 | Covidien LP | Haptic fedback controls for a robotic surgical system interface |
CN108348303B (zh) | 2015-10-30 | 2021-03-05 | 柯惠Lp公司 | 用于具有视觉反馈的机器人外科手术系统的输入手柄 |
WO2017075176A1 (en) | 2015-10-30 | 2017-05-04 | Cedars-Sinai Medical Center | Methods and systems for performing tissue classification using multi-channel tr-lifs and multivariate analysis |
US10084833B2 (en) | 2015-11-09 | 2018-09-25 | Cisco Technology, Inc. | Initiating a collaboration session between devices using an audible message |
US20170132785A1 (en) | 2015-11-09 | 2017-05-11 | Xerox Corporation | Method and system for evaluating the quality of a surgical procedure from in-vivo video |
WO2017082944A1 (en) | 2015-11-10 | 2017-05-18 | Gsi Group, Inc. | Cordless and wireless surgical display system |
US10390831B2 (en) | 2015-11-10 | 2019-08-27 | Covidien Lp | Endoscopic reposable surgical clip applier |
US20170132374A1 (en) | 2015-11-11 | 2017-05-11 | Zyno Medical, Llc | System for Collecting Medical Data Using Proxy Inputs |
CN108472084B (zh) | 2015-11-12 | 2021-08-27 | 直观外科手术操作公司 | 具有训练或辅助功能的外科手术系统 |
US10772630B2 (en) | 2015-11-13 | 2020-09-15 | Intuitive Surgical Operations, Inc. | Staple pusher with lost motion between ramps |
EP3373831B1 (en) | 2015-11-13 | 2024-01-03 | Intuitive Surgical Operations, Inc. | Push-pull stapler with two degree of freedom wrist |
US20170143284A1 (en) | 2015-11-25 | 2017-05-25 | Carestream Health, Inc. | Method to detect a retained surgical object |
WO2017091704A1 (en) | 2015-11-25 | 2017-06-01 | Camplex, Inc. | Surgical visualization systems and displays |
KR102374677B1 (ko) | 2015-11-27 | 2022-03-15 | 삼성전자 주식회사 | 무선 통신을 이용한 전자장치의 관리 방법과 장치 |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
US9888975B2 (en) | 2015-12-04 | 2018-02-13 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for control of surgical tools in a robotic surgical system |
KR102535081B1 (ko) | 2015-12-09 | 2023-05-22 | 삼성전자주식회사 | 시계-타입 웨어러블 장치 |
US10311036B1 (en) | 2015-12-09 | 2019-06-04 | Universal Research Solutions, Llc | Database management for a logical registry |
GB201521804D0 (en) | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Pulley arrangement for articulating a surgical instrument |
WO2017098259A1 (en) * | 2015-12-10 | 2017-06-15 | Cambridge Medical Robotics Limited | Robotic system |
GB201521805D0 (en) | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Guiding engagement of a robot arm and surgical instrument |
US20170164997A1 (en) | 2015-12-10 | 2017-06-15 | Ethicon Endo-Surgery, Llc | Method of treating tissue using end effector with ultrasonic and electrosurgical features |
US10265130B2 (en) | 2015-12-11 | 2019-04-23 | Ethicon Llc | Systems, devices, and methods for coupling end effectors to surgical devices and loading devices |
EP3387814B1 (en) | 2015-12-11 | 2024-02-14 | ServiceNow, Inc. | Computer network threat assessment |
EP3386410B1 (en) | 2015-12-11 | 2019-05-08 | Reach Surgical, Inc. | Modular signal interface system and powered trocar |
BR112018012090A2 (pt) | 2015-12-14 | 2018-11-27 | Nuvasive Inc | visualização 3d durante a cirurgia com exposição à radiação reduzida |
AU2016370636B2 (en) | 2015-12-14 | 2020-07-23 | Buffalo Filter Llc | Method and apparatus for attachment and evacuation |
US10238413B2 (en) | 2015-12-16 | 2019-03-26 | Ethicon Llc | Surgical instrument with multi-function button |
US20170172614A1 (en) | 2015-12-17 | 2017-06-22 | Ethicon Endo-Surgery, Llc | Surgical instrument with multi-functioning trigger |
US10624616B2 (en) | 2015-12-18 | 2020-04-21 | Covidien Lp | Surgical instruments including sensors |
US10368894B2 (en) | 2015-12-21 | 2019-08-06 | Ethicon Llc | Surgical instrument with variable clamping force |
WO2017111890A1 (en) | 2015-12-21 | 2017-06-29 | GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) | High surface energy portion on a medical instrument |
US20170177806A1 (en) | 2015-12-21 | 2017-06-22 | Gavin Fabian | System and method for optimizing surgical team composition and surgical team procedure resource management |
JP6657933B2 (ja) | 2015-12-25 | 2020-03-04 | ソニー株式会社 | 医療用撮像装置及び手術ナビゲーションシステム |
WO2017116793A1 (en) | 2015-12-29 | 2017-07-06 | Covidien Lp | Robotic surgical systems and instrument drive assemblies |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10470791B2 (en) | 2015-12-30 | 2019-11-12 | Ethicon Llc | Surgical instrument with staged application of electrosurgical and ultrasonic energy |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US20210275129A1 (en) | 2016-01-11 | 2021-09-09 | Kambiz Behzadi | In situ system and method for sensing or monitoring |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US20170202595A1 (en) | 2016-01-15 | 2017-07-20 | Ethicon Endo-Surgery, Llc | Modular battery powered handheld surgical instrument with a plurality of control programs |
US11022421B2 (en) * | 2016-01-20 | 2021-06-01 | Lucent Medical Systems, Inc. | Low-frequency electromagnetic tracking |
US11273006B2 (en) | 2016-01-29 | 2022-03-15 | Millennium Healthcare Technologies, Inc. | Laser-assisted periodontics |
US20170215944A1 (en) | 2016-01-29 | 2017-08-03 | Covidien Lp | Jaw aperture position sensor for electrosurgical forceps |
CN108601623B (zh) | 2016-01-29 | 2021-11-02 | 波士顿科学医学有限公司 | 医疗用户界面 |
JP6914942B2 (ja) | 2016-01-29 | 2021-08-04 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 可変速度手術器具のためのシステム及び方法 |
EP3410975B1 (en) | 2016-02-02 | 2024-08-21 | Intuitive Surgical Operations, Inc. | Instrument force sensor using strain gauges in a faraday cage |
USD784270S1 (en) | 2016-02-08 | 2017-04-18 | Vivint, Inc. | Control panel |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10588625B2 (en) | 2016-02-09 | 2020-03-17 | Ethicon Llc | Articulatable surgical instruments with off-axis firing beam arrangements |
US9980140B1 (en) | 2016-02-11 | 2018-05-22 | Bigfoot Biomedical, Inc. | Secure communication architecture for medical devices |
US10420559B2 (en) | 2016-02-11 | 2019-09-24 | Covidien Lp | Surgical stapler with small diameter endoscopic portion |
US20170231628A1 (en) | 2016-02-12 | 2017-08-17 | Ethicon Endo-Surgery, Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
CA2958160A1 (en) | 2016-02-24 | 2017-08-24 | Covidien Lp | Endoscopic reposable surgical clip applier |
JP2019508134A (ja) | 2016-02-26 | 2019-03-28 | シンク サージカル, インコーポレイテッド | ロボットの配置をユーザーにガイドするための方法およびシステム |
CN113384348B (zh) | 2016-02-26 | 2024-08-30 | 直观外科手术操作公司 | 使用虚拟边界避免碰撞的系统和方法 |
JP6886982B2 (ja) | 2016-02-26 | 2021-06-16 | コヴィディエン リミテッド パートナーシップ | ロボット手術システム及びそのロボットアーム |
US10786298B2 (en) | 2016-03-01 | 2020-09-29 | Covidien Lp | Surgical instruments and systems incorporating machine learning based tissue identification and methods thereof |
US10561753B2 (en) | 2016-03-02 | 2020-02-18 | Asp Global Manufacturing Gmbh | Method of sterilizing medical devices, analyzing biological indicators, and linking medical device sterilization equipment |
US10893884B2 (en) | 2016-03-04 | 2021-01-19 | Covidien Lp | Ultrasonic instruments for robotic surgical systems |
CA3013225A1 (en) | 2016-03-04 | 2017-09-08 | Covidien Lp | Electromechanical surgical systems and robotic surgical instruments thereof |
US20210212777A1 (en) | 2016-03-04 | 2021-07-15 | Covidien Lp | Inverse kinematic control systems for robotic surgical system |
WO2017155999A1 (en) | 2016-03-07 | 2017-09-14 | Hansa Medical Products, Inc. | Apparatus and method for forming an opening in patient's tissue |
JP6488249B2 (ja) | 2016-03-08 | 2019-03-20 | 富士フイルム株式会社 | 血管情報取得装置、内視鏡システム及び血管情報取得方法 |
US10305926B2 (en) | 2016-03-11 | 2019-05-28 | The Toronto-Dominion Bank | Application platform security enforcement in cross device and ownership structures |
WO2017160808A1 (en) | 2016-03-15 | 2017-09-21 | Advanced Cardiac Therapeutics, Inc. | Improved devices, systems and methods for irrigated ablation |
US10631858B2 (en) | 2016-03-17 | 2020-04-28 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and distal pulley |
US10350016B2 (en) | 2016-03-17 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and dual distal pulleys |
CN108601670B (zh) | 2016-03-30 | 2021-03-23 | 索尼公司 | 图像处理装置和方法、手术系统和手术构件 |
US10675021B2 (en) | 2016-04-01 | 2020-06-09 | Ethicon Llc | Circular stapling system comprising rotary firing system |
US10413297B2 (en) | 2016-04-01 | 2019-09-17 | Ethicon Llc | Surgical stapling system configured to apply annular rows of staples having different heights |
US10531874B2 (en) | 2016-04-01 | 2020-01-14 | Ethicon Llc | Surgical cutting and stapling end effector with anvil concentric drive member |
US11284890B2 (en) | 2016-04-01 | 2022-03-29 | Cilag Gmbh International | Circular stapling system comprising an incisable tissue support |
US10175096B2 (en) | 2016-04-01 | 2019-01-08 | Ethicon Llc | System and method to enable re-use of surgical instrument |
US10722233B2 (en) | 2016-04-07 | 2020-07-28 | Intuitive Surgical Operations, Inc. | Stapling cartridge |
ES2882141T3 (es) | 2016-04-12 | 2021-12-01 | Applied Med Resources | Conjunto de vástago de recarga para la grapadora quirúrgica |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10433840B2 (en) | 2016-04-18 | 2019-10-08 | Ethicon Llc | Surgical instrument comprising a replaceable cartridge jaw |
WO2017184651A1 (en) | 2016-04-19 | 2017-10-26 | ClearMotion, Inc. | Active hydraulec ripple cancellation methods and systems |
US10363032B2 (en) | 2016-04-20 | 2019-07-30 | Ethicon Llc | Surgical stapler with hydraulic deck control |
US20170304020A1 (en) | 2016-04-20 | 2017-10-26 | Samson Ng | Navigation arm system and methods |
US10285700B2 (en) | 2016-04-20 | 2019-05-14 | Ethicon Llc | Surgical staple cartridge with hydraulic staple deployment |
WO2017189317A1 (en) | 2016-04-26 | 2017-11-02 | KindHeart, Inc. | Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and an animating device |
US20170312456A1 (en) | 2016-04-27 | 2017-11-02 | David Bruce PHILLIPS | Skin Desensitizing Device |
US10772673B2 (en) | 2016-05-02 | 2020-09-15 | Covidien Lp | Surgical energy system with universal connection features |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
DE102016207666B4 (de) | 2016-05-03 | 2023-03-02 | Olympus Winter & Ibe Gmbh | Medizinische Rauchgasabsaugvorrichtung und Verfahren zum Betreiben derselben |
US10505756B2 (en) | 2017-02-10 | 2019-12-10 | Johnson Controls Technology Company | Building management system with space graphs |
CN105785611A (zh) | 2016-05-04 | 2016-07-20 | 深圳市华星光电技术有限公司 | 背板及用于制造背板支架的模具 |
US20200348662A1 (en) | 2016-05-09 | 2020-11-05 | Strong Force Iot Portfolio 2016, Llc | Platform for facilitating development of intelligence in an industrial internet of things system |
US20170325878A1 (en) | 2016-05-11 | 2017-11-16 | Ethicon Llc | Suction and irrigation sealing grasper |
US10751136B2 (en) | 2016-05-18 | 2020-08-25 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
US10624667B2 (en) | 2016-05-20 | 2020-04-21 | Ethicon Llc | System and method to track usage of surgical instrument |
US10555748B2 (en) | 2016-05-25 | 2020-02-11 | Ethicon Llc | Features and methods to control delivery of cooling fluid to end effector of ultrasonic surgical instrument |
CN109152613A (zh) | 2016-05-26 | 2019-01-04 | 柯惠Lp公司 | 与机器人手术系统一起使用的插管组件 |
EP3463159B1 (en) | 2016-05-26 | 2024-01-03 | Covidien LP | Instrument drive units |
WO2017205481A1 (en) | 2016-05-26 | 2017-11-30 | Covidien Lp | Robotic surgical assemblies and instrument drive units thereof |
AU2017269262B2 (en) | 2016-05-26 | 2021-09-09 | Covidien Lp | Robotic surgical assemblies |
GB201609467D0 (en) | 2016-05-30 | 2016-07-13 | Givaudan Sa | Improvements in or relating to organic compounds |
DE102016209576B4 (de) | 2016-06-01 | 2024-06-13 | Siemens Healthineers Ag | Bewegungssteuerung für ein mobiles Medizingerät |
US11272992B2 (en) | 2016-06-03 | 2022-03-15 | Covidien Lp | Robotic surgical assemblies and instrument drive units thereof |
AU2017275482A1 (en) | 2016-06-03 | 2018-11-15 | Covidien Lp | Systems, methods, and computer-readable storage media for controlling aspects of a robotic surgical device and viewer adaptive stereoscopic display |
US11058504B2 (en) | 2016-06-03 | 2021-07-13 | Covidien Lp | Control arm assemblies for robotic surgical systems |
CN113180835A (zh) | 2016-06-03 | 2021-07-30 | 柯惠Lp公司 | 用于机器人手术系统的控制臂 |
CN109195542B (zh) | 2016-06-03 | 2021-09-21 | 柯惠Lp公司 | 用于机器人手术系统的被动轴系统 |
US10561360B2 (en) | 2016-06-15 | 2020-02-18 | Biomet Manufacturing, Llc | Implants, systems and methods for surgical planning and assessment |
US11617611B2 (en) | 2016-06-17 | 2023-04-04 | Megadayne Medical Products, Inc. | Hand-held instrument with dual zone fluid removal |
GB2551541B (en) * | 2016-06-21 | 2021-09-01 | Cmr Surgical Ltd | Instrument-arm communications in a surgical robotic system |
WO2017220788A1 (en) | 2016-06-23 | 2017-12-28 | Siemens Healthcare Gmbh | System and method for artificial agent based cognitive operating rooms |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
USD822206S1 (en) | 2016-06-24 | 2018-07-03 | Ethicon Llc | Surgical fastener |
US11125553B2 (en) | 2016-06-24 | 2021-09-21 | Syracuse University | Motion sensor assisted room shape reconstruction and self-localization using first-order acoustic echoes |
US10893863B2 (en) | 2016-06-24 | 2021-01-19 | Ethicon Llc | Staple cartridge comprising offset longitudinal staple rows |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
WO2018006046A1 (en) | 2016-06-30 | 2018-01-04 | Intuitive Surgical Operations, Inc. | Systems and methods for fault reaction mechanisms for medical robotic systems |
US10313137B2 (en) | 2016-07-05 | 2019-06-04 | General Electric Company | Method for authenticating devices in a medical network |
CN206097107U (zh) | 2016-07-08 | 2017-04-12 | 山东威瑞外科医用制品有限公司 | 一种超声刀频率跟踪装置 |
US10258362B2 (en) | 2016-07-12 | 2019-04-16 | Ethicon Llc | Ultrasonic surgical instrument with AD HOC formed blade |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
JP6643482B2 (ja) | 2016-07-25 | 2020-02-12 | オリンパス株式会社 | エネルギー制御装置及び処置システム |
JP6665299B2 (ja) | 2016-07-26 | 2020-03-13 | オリンパス株式会社 | エネルギー制御装置、処置システム及びエネルギー制御装置の作動方法 |
US10378893B2 (en) | 2016-07-29 | 2019-08-13 | Ca, Inc. | Location detection sensors for physical devices |
US9844321B1 (en) * | 2016-08-04 | 2017-12-19 | Novartis Ag | Enhanced ophthalmic surgical experience using a virtual reality head-mounted display |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US11006997B2 (en) | 2016-08-09 | 2021-05-18 | Covidien Lp | Ultrasonic and radiofrequency energy production and control from a single power converter |
US10037641B2 (en) | 2016-08-10 | 2018-07-31 | Elwha Llc | Systems and methods for individual identification and authorization utilizing conformable electronics |
US10592067B2 (en) | 2016-08-12 | 2020-03-17 | Boston Scientific Scimed, Inc. | Distributed interactive medical visualization system with primary/secondary interaction features |
US10390895B2 (en) | 2016-08-16 | 2019-08-27 | Ethicon Llc | Control of advancement rate and application force based on measured forces |
US10548673B2 (en) | 2016-08-16 | 2020-02-04 | Ethicon Llc | Surgical tool with a display |
US10398517B2 (en) | 2016-08-16 | 2019-09-03 | Ethicon Llc | Surgical tool positioning based on sensed parameters |
US9943377B2 (en) | 2016-08-16 | 2018-04-17 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for causing end effector motion with a robotic surgical system |
US10813703B2 (en) | 2016-08-16 | 2020-10-27 | Ethicon Llc | Robotic surgical system with energy application controls |
US10531929B2 (en) | 2016-08-16 | 2020-01-14 | Ethicon Llc | Control of robotic arm motion based on sensed load on cutting tool |
US10231775B2 (en) | 2016-08-16 | 2019-03-19 | Ethicon Llc | Robotic surgical system with tool lift control |
US11285314B2 (en) | 2016-08-19 | 2022-03-29 | Cochlear Limited | Advanced electrode array insertion |
US10861605B2 (en) | 2016-08-22 | 2020-12-08 | Aic Innovations Group, Inc. | Method and apparatus for determining health status |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US10695134B2 (en) | 2016-08-25 | 2020-06-30 | Verily Life Sciences Llc | Motion execution of a robotic system |
US10555750B2 (en) | 2016-08-25 | 2020-02-11 | Ethicon Llc | Ultrasonic surgical instrument with replaceable blade having identification feature |
EP3506823A4 (en) | 2016-08-30 | 2020-03-04 | MAKO Surgical Corp. | SYSTEMS AND METHODS FOR PEROPERATIVE ALIGNMENT OF THE BASIN |
US11370113B2 (en) | 2016-09-06 | 2022-06-28 | Verily Life Sciences Llc | Systems and methods for prevention of surgical mistakes |
US10568703B2 (en) | 2016-09-21 | 2020-02-25 | Verb Surgical Inc. | User arm support for use in a robotic surgical system |
US10069633B2 (en) | 2016-09-30 | 2018-09-04 | Data I/O Corporation | Unified programming environment for programmable devices |
CN108289600A (zh) | 2016-10-03 | 2018-07-17 | 威博外科公司 | 用于机器人外科手术的沉浸式三维显示器 |
US20180098816A1 (en) | 2016-10-06 | 2018-04-12 | Biosense Webster (Israel) Ltd. | Pre-Operative Registration of Anatomical Images with a Position-Tracking System Using Ultrasound |
US10278778B2 (en) | 2016-10-27 | 2019-05-07 | Inneroptic Technology, Inc. | Medical device navigation using a virtual 3D space |
US20190254759A1 (en) | 2016-11-04 | 2019-08-22 | Intuitive Surgical Operations, Inc. | Reconfigurable display in computer-assisted tele-operated surgery |
US10492784B2 (en) | 2016-11-08 | 2019-12-03 | Covidien Lp | Surgical tool assembly with compact firing assembly |
CN109996508B (zh) | 2016-11-11 | 2024-03-15 | 直观外科手术操作公司 | 带有基于患者健康记录的器械控制的远程操作手术系统 |
US11147935B2 (en) | 2016-11-14 | 2021-10-19 | Conmed Corporation | Smoke evacuation system for continuously removing gas from a body cavity |
EP3538188B1 (en) | 2016-11-14 | 2022-03-30 | ConMed Corporation | Multimodal surgical gas delivery system having continuous pressure monitoring of a continuous flow of gas to a body cavity |
US11003988B2 (en) | 2016-11-23 | 2021-05-11 | General Electric Company | Hardware system design improvement using deep learning algorithms |
US10463371B2 (en) | 2016-11-29 | 2019-11-05 | Covidien Lp | Reload assembly with spent reload indicator |
WO2018102705A1 (en) | 2016-12-01 | 2018-06-07 | Kinze Manufacturing, Inc. | Systems, methods, and/or apparatus for providing a user display and interface for use with an agricultural implement |
CN113864958B (zh) | 2016-12-06 | 2023-09-19 | 斐乐公司 | 具有智能传感器和气流的空气净化器 |
US10881446B2 (en) | 2016-12-19 | 2021-01-05 | Ethicon Llc | Visual displays of electrical pathways |
US10318763B2 (en) | 2016-12-20 | 2019-06-11 | Privacy Analytics Inc. | Smart de-identification using date jittering |
JP6938634B2 (ja) | 2016-12-20 | 2021-09-22 | バーブ サージカル インコーポレイテッドVerb Surgical Inc. | ロボット外科用システムで使用するための無菌アダプタ制御システム及び通信インターフェース |
US20180168648A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Durability features for end effectors and firing assemblies of surgical stapling instruments |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
US20180168609A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Firing assembly comprising a fuse |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US20180168623A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10813638B2 (en) | 2016-12-21 | 2020-10-27 | Ethicon Llc | Surgical end effectors with expandable tissue stop arrangements |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US10492785B2 (en) | 2016-12-21 | 2019-12-03 | Ethicon Llc | Shaft assembly comprising a lockout |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10639035B2 (en) | 2016-12-21 | 2020-05-05 | Ethicon Llc | Surgical stapling instruments and replaceable tool assemblies thereof |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
WO2018116247A1 (en) | 2016-12-22 | 2018-06-28 | Baylis Medical Company Inc. | Multiplexing algorithm with power allocation |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US10610654B2 (en) | 2017-01-10 | 2020-04-07 | General Electric Company | Lung protective ventilation control |
US10842897B2 (en) | 2017-01-20 | 2020-11-24 | Éclair Medical Systems, Inc. | Disinfecting articles with ozone |
AU2018221456A1 (en) | 2017-02-15 | 2019-07-11 | Covidien Lp | System and apparatus for crush prevention for medical robot applications |
US11158415B2 (en) | 2017-02-16 | 2021-10-26 | Mako Surgical Corporation | Surgical procedure planning system with multiple feedback loops |
EP3582707A4 (en) | 2017-02-17 | 2020-11-25 | NZ Technologies Inc. | NON-CONTACT CONTROL PROCESSES AND SYSTEMS OF A SURGICAL ENVIRONMENT |
US20180242967A1 (en) | 2017-02-26 | 2018-08-30 | Endoevolution, Llc | Apparatus and method for minimally invasive suturing |
WO2018156928A1 (en) | 2017-02-27 | 2018-08-30 | Applied Logic, Inc. | System and method for managing the use of surgical instruments |
US9922172B1 (en) | 2017-02-28 | 2018-03-20 | Digital Surgery Limited | Surgical guidance system based on a pre-coded surgical procedural map |
US20170173262A1 (en) | 2017-03-01 | 2017-06-22 | François Paul VELTZ | Medical systems, devices and methods |
US10813710B2 (en) | 2017-03-02 | 2020-10-27 | KindHeart, Inc. | Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station |
US10675100B2 (en) | 2017-03-06 | 2020-06-09 | Covidien Lp | Systems and methods for improving medical instruments and devices |
US10497472B1 (en) | 2017-03-08 | 2019-12-03 | Deborah T. Bullington | Directional signal fencing for medical appointment progress tracking |
WO2018167878A1 (ja) | 2017-03-15 | 2018-09-20 | オリンパス株式会社 | エネルギー源装置 |
CN110402111A (zh) | 2017-03-17 | 2019-11-01 | 柯惠有限合伙公司 | 用于外科缝合器械的砧板 |
US11017906B2 (en) | 2017-03-20 | 2021-05-25 | Amino, Inc. | Machine learning models in location based episode prediction |
US10028402B1 (en) | 2017-03-22 | 2018-07-17 | Seagate Technology Llc | Planar expansion card assembly |
WO2018176414A1 (en) | 2017-03-31 | 2018-10-04 | Fengh Medical Co., Ltd. | Staple cartridge assembly and surgical instrument with the same |
CN108652695B (zh) | 2017-03-31 | 2020-02-14 | 江苏风和医疗器材股份有限公司 | 外科器械 |
US11071590B2 (en) | 2017-04-14 | 2021-07-27 | Stryker Corporation | Surgical systems and methods for facilitating ad-hoc intraoperative planning of surgical procedures |
JP2018176387A (ja) | 2017-04-19 | 2018-11-15 | 富士ゼロックス株式会社 | ロボット装置及びプログラム |
JP2020518312A (ja) | 2017-04-21 | 2020-06-25 | メディクレア インターナショナル | 脊椎手術を支援するための術中追跡を提供するシステム |
US20180315492A1 (en) | 2017-04-26 | 2018-11-01 | Darroch Medical Solutions, Inc. | Communication devices and systems and methods of analyzing, authenticating, and transmitting medical information |
JP7159208B2 (ja) | 2017-05-08 | 2022-10-24 | マシモ・コーポレイション | ドングルを使用することによって医療システムをネットワークコントローラとペアリングするためのシステム |
US11065062B2 (en) | 2017-05-17 | 2021-07-20 | Covidien Lp | Systems and methods of tracking and analyzing use of medical instruments |
USD834541S1 (en) | 2017-05-19 | 2018-11-27 | Universal Remote Control, Inc. | Remote control |
ES2923153T3 (es) | 2017-05-22 | 2022-09-23 | Becton Dickinson Co | Sistemas, aparatos y métodos de emparejamiento inalámbrico seguro entre dos dispositivos, que utiliza generación de claves fuera de banda (OOB) integrada |
US11229473B2 (en) | 2017-05-22 | 2022-01-25 | Cilag Gmbh International | Combination ultrasonic and electrosurgical instrument with clamp arm position input and method for identifying tissue state |
US10806532B2 (en) | 2017-05-24 | 2020-10-20 | KindHeart, Inc. | Surgical simulation system using force sensing and optical tracking and robotic surgery system |
US10478185B2 (en) | 2017-06-02 | 2019-11-19 | Covidien Lp | Tool assembly with minimal dead space |
US10992698B2 (en) | 2017-06-05 | 2021-04-27 | Meditechsafe, Inc. | Device vulnerability management |
US11596400B2 (en) | 2017-06-09 | 2023-03-07 | Covidien Lp | Handheld electromechanical surgical system |
US10932784B2 (en) | 2017-06-09 | 2021-03-02 | Covidien Lp | Handheld electromechanical surgical system |
US11045199B2 (en) | 2017-06-09 | 2021-06-29 | Covidien Lp | Handheld electromechanical surgical system |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US20180360456A1 (en) | 2017-06-20 | 2018-12-20 | Ethicon Llc | Surgical instrument having controllable articulation velocity |
US11229496B2 (en) | 2017-06-22 | 2022-01-25 | Navlab Holdings Ii, Llc | Systems and methods of providing assistance to a surgeon for minimizing errors during a surgical procedure |
US11020114B2 (en) | 2017-06-28 | 2021-06-01 | Cilag Gmbh International | Surgical instruments with articulatable end effector with axially shortened articulation joint configurations |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
KR102341451B1 (ko) | 2017-06-28 | 2021-12-23 | 아우리스 헬스, 인코포레이티드 | 기기의 삽입 보상을 위한 로봇 시스템, 방법 및 비일시적 컴퓨터 가독 저장 매체 |
USD893717S1 (en) | 2017-06-28 | 2020-08-18 | Ethicon Llc | Staple cartridge for surgical instrument |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11298128B2 (en) | 2017-06-28 | 2022-04-12 | Cilag Gmbh International | Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US11153076B2 (en) | 2017-07-17 | 2021-10-19 | Thirdwayv, Inc. | Secure communication for medical devices |
JP6901342B2 (ja) | 2017-07-21 | 2021-07-14 | 東芝テック株式会社 | 情報処理装置 |
US10959732B2 (en) | 2017-08-10 | 2021-03-30 | Ethicon Llc | Jaw for clip applier |
US10751052B2 (en) | 2017-08-10 | 2020-08-25 | Ethicon Llc | Surgical device with overload mechanism |
EP3662810A4 (en) | 2017-08-31 | 2020-07-08 | Sony Corporation | DEVICE FOR PROCESSING MEDICAL IMAGES, SYSTEM FOR PROCESSING MEDICAL IMAGES AND CONTROL METHOD OF A DEVICE FOR PROCESSING MEDICAL IMAGES |
US11027432B2 (en) | 2017-09-06 | 2021-06-08 | Stryker Corporation | Techniques for controlling position of an end effector of a robotic device relative to a virtual constraint |
USD831209S1 (en) | 2017-09-14 | 2018-10-16 | Ethicon Llc | Surgical stapler cartridge |
US10624707B2 (en) | 2017-09-18 | 2020-04-21 | Verb Surgical Inc. | Robotic surgical system and method for communicating synchronous and asynchronous information to and from nodes of a robotic arm |
US20190087544A1 (en) | 2017-09-21 | 2019-03-21 | General Electric Company | Surgery Digital Twin |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10874460B2 (en) | 2017-09-29 | 2020-12-29 | K2M, Inc. | Systems and methods for modeling spines and treating spines based on spine models |
WO2019074722A2 (en) | 2017-10-10 | 2019-04-18 | Miki Roberto Augusto | UNIVERSAL ORTHOPEDIC CLAMPING DEVICE |
US11284929B2 (en) | 2017-10-16 | 2022-03-29 | Cryterion Medical, Inc. | Fluid detection assembly for a medical device |
US10835344B2 (en) | 2017-10-17 | 2020-11-17 | Verily Life Sciences Llc | Display of preoperative and intraoperative images |
JP7385558B2 (ja) | 2017-10-17 | 2023-11-22 | アルコン インコーポレイティド | カスタマイズされた眼科手術プロファイル |
US10398348B2 (en) | 2017-10-19 | 2019-09-03 | Biosense Webster (Israel) Ltd. | Baseline impedance maps for tissue proximity indications |
US11051836B2 (en) | 2017-10-30 | 2021-07-06 | Cilag Gmbh International | Surgical clip applier comprising an empty clip cartridge lockout |
US11129634B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instrument with rotary drive selectively actuating multiple end effector functions |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US10842473B2 (en) | 2017-10-30 | 2020-11-24 | Ethicon Llc | Surgical instrument having dual rotatable members to effect different types of end effector movement |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10932804B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Surgical instrument with sensor and/or control systems |
US11413042B2 (en) | 2017-10-30 | 2022-08-16 | Cilag Gmbh International | Clip applier comprising a reciprocating clip advancing member |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10783634B2 (en) | 2017-11-22 | 2020-09-22 | General Electric Company | Systems and methods to deliver point of care alerts for radiological findings |
US10631916B2 (en) | 2017-11-29 | 2020-04-28 | Megadyne Medical Products, Inc. | Filter connection for a smoke evacuation device |
US10786317B2 (en) | 2017-12-11 | 2020-09-29 | Verb Surgical Inc. | Active backdriving for a robotic arm |
US11071595B2 (en) | 2017-12-14 | 2021-07-27 | Verb Surgical Inc. | Multi-panel graphical user interface for a robotic surgical system |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11751867B2 (en) | 2017-12-21 | 2023-09-12 | Cilag Gmbh International | Surgical instrument comprising sequenced systems |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US20190200997A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Stapling device with both compulsory and discretionary lockouts based on sensed parameters |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US20190201034A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Powered stapling device configured to adjust force, advancement speed, and overall stroke of cutting member based on sensed parameter of firing or clamping |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US12207817B2 (en) | 2017-12-28 | 2025-01-28 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US20190201140A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub situational awareness |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US20190206564A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method for facility data collection and interpretation |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US20190205567A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data pairing to interconnect a device measured parameter with an outcome |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US20190200906A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Dual cmos array imaging |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US20190206561A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Data handling and prioritization in a cloud analytics network |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US20190201090A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Capacitive coupled return path pad with separable array elements |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US20190200980A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical system for presenting information interpreted from external data |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US20190201115A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Aggregation and reporting of surgical hub data |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US20190200987A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Variable output cartridge sensor assembly |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
WO2019133143A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical hub and modular device response adjustment based on situational awareness |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US20190201142A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Automatic tool adjustments for robot-assisted surgical platforms |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US20190206555A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Cloud-based medical analytics for customization and recommendations to a user |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US20190201112A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Computer implemented interactive surgical systems |
US20190201027A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Surgical instrument with acoustic-based motor control |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US20190201113A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Controls for robot-assisted surgical platforms |
US20190201130A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication of data where a surgical network is using context of the data and requirements of a receiving system / user to influence inclusion or linkage of data and metadata to establish continuity |
CN118304526A (zh) | 2018-01-17 | 2024-07-09 | Zoll医疗公司 | 用于辅助救助者的医疗系统 |
US10856768B2 (en) | 2018-01-25 | 2020-12-08 | Biosense Webster (Israel) Ltd. | Intra-cardiac scar tissue identification using impedance sensing and contact measurement |
WO2019152898A1 (en) | 2018-02-03 | 2019-08-08 | Caze Technologies | Surgical systems with sensing and machine learning capabilities and methods thereof |
US10682139B2 (en) | 2018-02-11 | 2020-06-16 | Chul Hi Park | Device and method for assisting selection of surgical staple height |
WO2019169010A1 (en) | 2018-02-27 | 2019-09-06 | Applied Medical Resources Corporation | Surgical stapler having a powered handle |
US11967422B2 (en) | 2018-03-05 | 2024-04-23 | Medtech S.A. | Robotically-assisted surgical procedure feedback techniques |
US11534196B2 (en) | 2018-03-08 | 2022-12-27 | Cilag Gmbh International | Using spectroscopy to determine device use state in combo instrument |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US20190298353A1 (en) | 2018-03-28 | 2019-10-03 | Ethicon Llc | Surgical stapling devices with asymmetric closure features |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
USD876466S1 (en) | 2018-03-29 | 2020-02-25 | Mitsubishi Electric Corporation | Display screen with graphical user interface |
US11141232B2 (en) | 2018-03-29 | 2021-10-12 | Intuitive Surgical Operations, Inc. | Teleoperated surgical instruments |
JP7108449B2 (ja) | 2018-04-10 | 2022-07-28 | Dgshape株式会社 | 手術用器具管理システム |
US11278274B2 (en) | 2018-05-04 | 2022-03-22 | Arch Day Design, Llc | Suture passing device |
US12119110B2 (en) | 2018-06-06 | 2024-10-15 | Verily Life Sciences Llc | Robotic surgery using multi-user authentication without credentials |
US11278220B2 (en) | 2018-06-08 | 2022-03-22 | East Carolina University | Determining peripheral oxygen saturation (SpO2) and hemoglobin concentration using multi-spectral laser imaging (MSLI) methods and systems |
US10292769B1 (en) | 2018-08-07 | 2019-05-21 | Sony Corporation | Surgical assistive device and method for providing assistance in surgery of anatomical portions of internal organ affected by intraoperative shift |
USD904612S1 (en) | 2018-08-13 | 2020-12-08 | Ethicon Llc | Cartridge for linear surgical stapler |
US11278285B2 (en) | 2018-08-13 | 2022-03-22 | Cilag GbmH International | Clamping assembly for linear surgical stapler |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11350978B2 (en) | 2018-09-07 | 2022-06-07 | Cilag Gmbh International | Flexible neutral electrode |
US11923084B2 (en) | 2018-09-07 | 2024-03-05 | Cilag Gmbh International | First and second communication protocol arrangement for driving primary and secondary devices through a single port |
US11804679B2 (en) | 2018-09-07 | 2023-10-31 | Cilag Gmbh International | Flexible hand-switch circuit |
US12144136B2 (en) | 2018-09-07 | 2024-11-12 | Cilag Gmbh International | Modular surgical energy system with module positional awareness with digital logic |
US11696789B2 (en) | 2018-09-07 | 2023-07-11 | Cilag Gmbh International | Consolidated user interface for modular energy system |
US11605455B2 (en) | 2018-12-22 | 2023-03-14 | GE Precision Healthcare LLC | Systems and methods for predicting outcomes using raw data |
US11605161B2 (en) | 2019-01-10 | 2023-03-14 | Verily Life Sciences Llc | Surgical workflow and activity detection based on surgical videos |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
US11218822B2 (en) | 2019-03-29 | 2022-01-04 | Cilag Gmbh International | Audio tone construction for an energy module of a modular energy system |
US20200305924A1 (en) | 2019-03-29 | 2020-10-01 | Ethicon Llc | Automatic ultrasonic energy activation circuit design for modular surgical systems |
US11547468B2 (en) | 2019-06-27 | 2023-01-10 | Cilag Gmbh International | Robotic surgical system with safety and cooperative sensing control |
US11253255B2 (en) | 2019-07-26 | 2022-02-22 | Covidien Lp | Knife lockout wedge |
US20210128149A1 (en) | 2019-11-01 | 2021-05-06 | Covidien Lp | Surgical staple cartridge |
US10902944B1 (en) | 2020-01-06 | 2021-01-26 | Carlsmed, Inc. | Patient-specific medical procedures and devices, and associated systems and methods |
-
2018
- 2018-03-29 US US15/940,711 patent/US11432885B2/en active Active
- 2018-09-26 EP EP18788894.6A patent/EP3635739A1/en active Pending
- 2018-09-26 BR BR112020012672-1A patent/BR112020012672A2/pt unknown
- 2018-09-26 JP JP2020535222A patent/JP7225247B2/ja active Active
- 2018-09-26 WO PCT/IB2018/057438 patent/WO2019130092A1/en unknown
- 2018-09-26 CN CN201880084141.2A patent/CN111566749B/zh active Active
-
2022
- 2022-07-22 US US17/871,453 patent/US20220409302A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP7225247B2 (ja) | 2023-02-20 |
EP3635739A1 (en) | 2020-04-15 |
CN111566749B (zh) | 2024-09-03 |
US20220409302A1 (en) | 2022-12-29 |
WO2019130092A1 (en) | 2019-07-04 |
US20190201120A1 (en) | 2019-07-04 |
JP2021509037A (ja) | 2021-03-18 |
US11432885B2 (en) | 2022-09-06 |
CN111566749A (zh) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112020012672A2 (pt) | disposições de detecção para plataformas cirúrgicas assistidas por robô | |
US12137991B2 (en) | Display arrangements for robot-assisted surgical platforms | |
US11612445B2 (en) | Cooperative operation of robotic arms | |
US11607278B2 (en) | Cooperative robotic surgical systems | |
US11013569B2 (en) | Surgical systems with interchangeable motor packs | |
BR112020012908A2 (pt) | Disposições de comunicação para plataformas cirúrgicas assistidas por robôs | |
BR112020011230A2 (pt) | sistemas cirúrgicos interativos implementados por computador | |
BR112020012849A2 (pt) | Controlador central de comunicação e dispositivo de armazenamento para parâmetros de armazenamento e estado e de um dispositivo cirúrgico a serem compartilhados com sistemas de análise baseados em nuvem | |
BR112020012896A2 (pt) | Pacotes de dados autodescritivos gerados em um instrumento de emissão | |
BR112020012556A2 (pt) | instrumento cirúrgico que tem um eletrodo flexível | |
BR112020013040A2 (pt) | atualizações de programa de controle adaptativo para controladores cirúrgicos centrais | |
BR112020012806A2 (pt) | agregação e emissão de relatórios de dados de um controlador cirúrgico central | |
BR112020012604A2 (pt) | reconhecimento espacial de controlador cirúrgico central para determinar dispositivos em sala de cirurgia | |
BR112020012865A2 (pt) | Método de extração de dados para interrogar os registros de um paciente e criar um registro anonimizado | |
BR112020012593A2 (pt) | tela de alinhamento de cartucho de grampos em relação a linha de grampos linear precedente | |
BR112020013233A2 (pt) | bloco de trajetória de retorno acoplado capacitivo com elementos de matriz separáveis | |
BR112020012783A2 (pt) | percepção situacional de controlador cirúrgico centra |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B350 | Update of information on the portal [chapter 15.35 patent gazette] |