BG61081B1 - МУТАНТНИ МИКРОБИАЛНИ α-АМИЛАЗИ С ПОВИШЕНА ТЕРМИЧНА, КИСЕЛИННА И/ИЛИ АЛКАЛНА УСТОЙЧИВОСТ - Google Patents
МУТАНТНИ МИКРОБИАЛНИ α-АМИЛАЗИ С ПОВИШЕНА ТЕРМИЧНА, КИСЕЛИННА И/ИЛИ АЛКАЛНА УСТОЙЧИВОСТ Download PDFInfo
- Publication number
- BG61081B1 BG61081B1 BG93814A BG9381491A BG61081B1 BG 61081 B1 BG61081 B1 BG 61081B1 BG 93814 A BG93814 A BG 93814A BG 9381491 A BG9381491 A BG 9381491A BG 61081 B1 BG61081 B1 BG 61081B1
- Authority
- BG
- Bulgaria
- Prior art keywords
- amylase
- mutant
- dna sequence
- starch
- amylases
- Prior art date
Links
- 230000001965 increasing effect Effects 0.000 title claims description 15
- 229940025131 amylases Drugs 0.000 title description 5
- 230000002378 acidificating effect Effects 0.000 title description 2
- 230000000813 microbial effect Effects 0.000 title 1
- 108090000637 alpha-Amylases Proteins 0.000 claims abstract description 140
- 102000004139 alpha-Amylases Human genes 0.000 claims abstract description 126
- 238000000034 method Methods 0.000 claims abstract description 50
- 229920002472 Starch Polymers 0.000 claims abstract description 40
- 239000008107 starch Substances 0.000 claims abstract description 39
- 235000019698 starch Nutrition 0.000 claims abstract description 39
- 241000193830 Bacillus <bacterium> Species 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 239000004753 textile Substances 0.000 claims abstract description 12
- 238000006731 degradation reaction Methods 0.000 claims abstract description 8
- 230000015556 catabolic process Effects 0.000 claims abstract description 6
- 244000005700 microbiome Species 0.000 claims abstract description 6
- 229940024171 alpha-amylase Drugs 0.000 claims description 102
- 102000004190 Enzymes Human genes 0.000 claims description 43
- 108090000790 Enzymes Proteins 0.000 claims description 43
- 229940088598 enzyme Drugs 0.000 claims description 43
- 231100000350 mutagenesis Toxicity 0.000 claims description 30
- 238000002703 mutagenesis Methods 0.000 claims description 29
- 239000004382 Amylase Substances 0.000 claims description 26
- 108010065511 Amylases Proteins 0.000 claims description 20
- 150000001413 amino acids Chemical class 0.000 claims description 18
- 102000013142 Amylases Human genes 0.000 claims description 17
- 235000019418 amylase Nutrition 0.000 claims description 17
- 239000013604 expression vector Substances 0.000 claims description 12
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 10
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 10
- 241000194108 Bacillus licheniformis Species 0.000 claims description 9
- 238000006467 substitution reaction Methods 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 6
- 241000193385 Geobacillus stearothermophilus Species 0.000 claims description 5
- 238000005034 decoration Methods 0.000 claims description 3
- 239000001963 growth medium Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 238000006911 enzymatic reaction Methods 0.000 claims 2
- 241000831652 Salinivibrio sharmensis Species 0.000 claims 1
- 230000003625 amylolytic effect Effects 0.000 claims 1
- 230000004071 biological effect Effects 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 31
- 239000002253 acid Substances 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 11
- 108091027305 Heteroduplex Proteins 0.000 abstract description 5
- 238000013461 design Methods 0.000 abstract description 5
- 238000012216 screening Methods 0.000 description 33
- 108020004414 DNA Proteins 0.000 description 32
- 241000588724 Escherichia coli Species 0.000 description 30
- 239000013598 vector Substances 0.000 description 27
- 230000000694 effects Effects 0.000 description 26
- 230000035772 mutation Effects 0.000 description 25
- 239000013612 plasmid Substances 0.000 description 25
- 235000001014 amino acid Nutrition 0.000 description 21
- 239000012634 fragment Substances 0.000 description 17
- 229940024606 amino acid Drugs 0.000 description 16
- 239000002773 nucleotide Substances 0.000 description 15
- 229920001817 Agar Polymers 0.000 description 14
- 239000008272 agar Substances 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 10
- 239000011575 calcium Substances 0.000 description 9
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 9
- 231100000219 mutagenic Toxicity 0.000 description 9
- 230000003505 mutagenic effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 229960005091 chloramphenicol Drugs 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 239000000872 buffer Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 235000018102 proteins Nutrition 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 102000053602 DNA Human genes 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 108020004682 Single-Stranded DNA Proteins 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 125000001475 halogen functional group Chemical group 0.000 description 5
- 230000002779 inactivation Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 239000007993 MOPS buffer Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 238000002708 random mutagenesis Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 238000002741 site-directed mutagenesis Methods 0.000 description 4
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- 102000008300 Mutant Proteins Human genes 0.000 description 3
- 108010021466 Mutant Proteins Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 108020005038 Terminator Codon Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 239000013611 chromosomal DNA Substances 0.000 description 3
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 3
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000035784 germination Effects 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 101150009573 phoA gene Proteins 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 239000013605 shuttle vector Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 241001515965 unidentified phage Species 0.000 description 3
- 229920000945 Amylopectin Polymers 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- -1 DGTP Chemical compound 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 108090000204 Dipeptidase 1 Proteins 0.000 description 2
- 241000702374 Enterobacteria phage fd Species 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 238000012411 cloning technique Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 241000193749 Bacillus coagulans Species 0.000 description 1
- 238000009631 Broth culture Methods 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 208000016057 CHAND syndrome Diseases 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- OWXMKDGYPWMGEB-UHFFFAOYSA-N HEPPS Chemical compound OCCN1CCN(CCCS(O)(=O)=O)CC1 OWXMKDGYPWMGEB-UHFFFAOYSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- NBGXQZRRLOGAJF-UHFFFAOYSA-N Maltulose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)(CO)OCC1O NBGXQZRRLOGAJF-UHFFFAOYSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- FTNIPWXXIGNQQF-UHFFFAOYSA-N UNPD130147 Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(OC3C(OC(OC4C(OC(O)C(O)C4O)CO)C(O)C3O)CO)C(O)C2O)CO)C(O)C1O FTNIPWXXIGNQQF-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 239000007621 bhi medium Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000011545 carbonate/bicarbonate buffer Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- 230000006240 deamidation Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- BCQZXOMGPXTTIC-UHFFFAOYSA-N halothane Chemical compound FC(F)(F)C(Cl)Br BCQZXOMGPXTTIC-UHFFFAOYSA-N 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- FJCUPROCOFFUSR-UHFFFAOYSA-N malto-pentaose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 FJCUPROCOFFUSR-UHFFFAOYSA-N 0.000 description 1
- FJCUPROCOFFUSR-GMMZZHHDSA-N maltopentaose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O[C@H]([C@H](O)CO)[C@H](O)[C@@H](O)C=O)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O[C@@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O)[C@@H](CO)O2)O)[C@@H](CO)O1 FJCUPROCOFFUSR-GMMZZHHDSA-N 0.000 description 1
- JCQLYHFGKNRPGE-HFZVAGMNSA-N maltulose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JCQLYHFGKNRPGE-HFZVAGMNSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- GHLZUHZBBNDWHW-UHFFFAOYSA-N nonanamide Chemical group CCCCCCCCC(N)=O GHLZUHZBBNDWHW-UHFFFAOYSA-N 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 101150066583 rep gene Proteins 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000002804 saturated mutagenesis Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
- C12N9/2417—Alpha-amylase (3.2.1.1.) from microbiological source
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Tires In General (AREA)
- Cigarettes, Filters, And Manufacturing Of Filters (AREA)
Abstract
Мутантните α-амилази намират приложение за разграждане на нишесте в текстилния дизайн.
Термостабилните и киселиноустойчивите α-амилази се получават като експресионни продукти на
α-амилазни гени по генно-инженерен път. Изолирани са от микроорганизми, принадлежащи към
род Bacillus. За получаването на хетеродуплексна ДНК се използват както химични, така и мута-
генни методи.
Description
Настоящото изобретение се отнася до 5 ДНК молекули, включващи ДНК последователности, кодиращи ензими с α-амилазна активност. Характерно за α-амилазите е, че са подходящи за използване при декориране на текстил и други индустриални процеси, осно- 10 вани на разграждане на нишестето. Те имат повишена термична, киселинна и/или алкална стабилност, което ги прави подходящи за приложение при условия на процеса, при които преди това е било невъзможно. 15
Нишестето представлява смес от амилоза /15 - 30% об./об./ и амилопектин /7085% об./об./. Амилозата се състои от линейни вериги ота-1,4-свързани глюкозни единици, притежаващи молекулно тегло от около 60 000 20 до около 800 000. Амилопектинът е разклонен полимер, съдържащ а-1,6 точки на разклонение през 24-30 глюкозни единици, с молекулно тегло около 100 милиона.
Захарите от нишесте, под формата на 25 концентрирани декстрозни сиропи, понастоящем се продуцират чрез ензимно катализиран процес, включващ: 1/ втечняване на нишесте с α-амилаза до декстрини, притежаващи степен на полимеризация от около 7 до 10, 30 и 2/озахаряване на полученото втечнено нишесте (т.е. нишестен хидролизат) с амилоглюкозидаза (наричана също глюкоамилаза или AG). Полученият глюкозен сироп е с високо глюкозно съдържание. Повечето от глюкозни- 35 те сиропи, които се получават по промишлен път, са предимно изомеризирани по ензимен начин до декстрозо/фруктозна смес, известна като изосироп.
α-амилазата /ЕС 3.2.1.1../ хидролизира нишестето, глюкогена и сходните полизахариди чрез разглеждане на вътрешните а- 1,4-глюкозидни връзки случайно. Този ензим е приложим в захарната, алкохолната, пивоварната и текстилната промишленост, α-амилазите се изолират от голям брой бактериални, плесенни, растителни и животински източници. Най-значимите в индустриално отношение α-амилази са, изолираните от Bacilli.
В първия етап от процеса за разграждане на нишестето, последното внимателно се желатинира чрез нагряване при относително висока температура /до 110°С/. Желатинираното нишесте се втечнява и декстринира чрез термостабилна α-амилаза чрез двустадиен процес. Главните променливи величини в процеса са концентрацията на нишестето, дозата на α-амилазата, температурата и pH. По време на процеса на втечняване и декстриниране, променливите следва да се поддържат в рамките на тесни интервали, за да се постигне добра степен на конверсия, иначе могат да възникват редица сериозни проблеми при филтрацията. Вж. напр. L.E.Coker and Venkata Subramanian in: Biotechnology, p.165-171, Ed.Cheremisinoff P.N., P.B.Quellette, Technicom Publ, Corp.Lancaster Renn 1985.
Един от проблемите, които възникват най-често, е регулирането на температурата в началния етап на процеса на разграждане: пренагряването често причинява денатурация на α-амилазата, така че крайното втечняване е недостатъчно. Един от начините да се избегне това е употребата на термостабилни а-амилази.
Към настоящето да се добавят калциеви йони или амфотерни вещества ЕР 0189838, но този разтвор е незадоволителен.
Следователно от съществен интерес е производството на α-амилази с повишена термостабилност.
Известно е, че в ЕР 057976 се описва изолиране на ген, кодиращ термостабилна аамилаза, от B.Stearothermophilus. Генът е клониран в плазмид, съдържащ начало на репликация от Bacillus или от E.coli. Така полученият химерен плазмид се използва за получаване на а-амилаза. α-амилазният ген се изолира и използва без следващи модификации.
Известно е, че в ЕР 0134048 се описва метод за повишено промишлено производство интерална, на α-амилаза, чрез клониране и експресия на един или повече α-амилазни гени в промишлени щамове Bacillus.
Описани са в ЕР 252666 химерни а-амилази с обща формула Q-R-L в която Q е Nкраен полипептид с 55 до 60 аминокиселинни остатъка, - е 75% хомоложен на 37-те N-крайни остатъка на α-амилаза от B.Amyloliquefacien, R е даден полипептид и L е С-краен полипептид с 390 до 400 аминокиселинни остатъци,- е най-малко 75% хомоложен на 395-те С крайни остатъка на α-амилаза от B.Licheniformis.
Cray et al. /J.Bacteriol., 1986,166, 635/ описват химерни α-амилази, формирани от
NH2 - крайни части от α-амилаза на Вас.
Stearothermophilus и α-амилаза от СООН - крайни части наа-амилаза от B.licheniformis. Повечето от хибридните ензимни молекули са по-малко стабилни от аналогичните родителски от ензими тип. Нещо повече- нито една от хибридните молекули не показва повишаване на стабилността.
Нито един от посочените по-горе източници не описва заместване на една аминокиселина за получаване на нови а-амилази.
В ЕР-А-0285123 е описан метод за цялостен мутагенезис на последователност от аминокиселини. Като пример, се описва мутагенезис на Stearothermophilus. Освен това, се предполага, че този метод може да бъде използван за получаване на мутант на В. Stearothermophilus с повишена стабилност, но не са приведени примери.
Настоящото изобретение обхваща мутантни α-амилази и метод за получаването им. Тези мутантни α-амилази се отличават по наймалко една аминокиселина от природния тип ензим. Нещо повече, ДНК-те, кодиращи тези мутанти, векторите, кодиращи тези ДНК в експресионните форми и клетките-гостоприемници, съдържащи тези вектори, също влизат в обхвата на изобретението.
В един от аспектите на изобретението е разкрита случайна мутагенеза на клониран аамилазен ген. Мутантните гени са експресирани в подходящи гостоприемници, използвайки подходяща векторна система.
Според друг аспект на изобретението е разкрития скрининг метод за получаване на α-амилазите, както и приложението им. Тези методи обезпечават по-термостабилни и покиселиноустойчиви α-амилази. По-нататък методът се използва с незначителни изменена за получаване на алкалноустойчиви -амилази. Експресионните продукти от тези клонове са изолирани и пречистени.
При друг аспект на изобретението се предвижда α-амилазите да са с повишена термостабилност, като освен това се редуцират проблемите с филтрацията при условията на разграждане на нишестето.
α-амилазите с повишена стабилност редуцират формирането на нежелани странични продукти, такива като малтулоза, като същевременно те увеличават количеството на киселините, необходими за внасяне преди ре акцията с амилоглюкозидаза. Новият а-амилазен процес подобрява свойствата термостабилност и киселиноустойчивост по отделно или едновременно и двете- термостабилност и киселиноустойчивост.
В друг аспект на изобретението мутантните протеини имащи подобрени прояви в условията на приложение на нишестен разтвор. Стабилността в алкална среда е особено важна за прилагане при дизайна на текстил.
Тези аспекти ще бъдат детайлно описани по-нататък в описанието и в примерните изпълнения.
ПОДОБНО ОПИСАНИЕ НА ФИГУРИТЕ
Фигура 1 представлява нуклеотидна последователност на рМа5-8
Stanssens et al., 1987, EMBO Laboratory Course, Martinsried, July 1987. За описанието на различните елементи виж текста;
Фигура 2 - нуклеотидна последователност на плазмиди pPROM SP02 инсерция.
Конструкцията на този вектор е описана в ER-A-0224294. α-амилазната аминокиселинна последователност и изобразена под триплетите. Нормерирането започва от първата аминокиселина на зрелия протеин /Kuhn et al., 1982, I.Bacteriol, 149, 372/. Промоторът S P02 е инсертиран между позиции 61 до 344;
фигура 3 - нуклеотидна последователност на рМа.ТПаб.
Този вектор е конструиран от рМа5-8 инсерта на pPROM S РО2 и синтетичен ДНК фрагмент, кодиращ ТАС промотор. ДНК фрагментът, съдържащ ТАС промотора, действа между позиции 3757 и 3859. а-амилазната аминокиселинна последователност е изобразена под триплетите;
фигура 4 - рестрикционна карта pMaTLia6.
Следващите уникални сайтове на рестрикционния ензим са подходящи да попълнят конструкцията на α-амилазния ген: BamHI, Spel, SacII, Kpnl, Clal, Narl, Sall, Thtlll, Xmalll и BstEII. Секвенирани праймери за всички възможни случаи са синтезирани с оглед детерминацията на мутациите. Плазмидът pMcTLia6 е идентичен на pMaTLia6 с изключение на присъствието на amber кодон в ампицилиновия ген /отстраняващ Seal сайта/ и отсъствието същия amber кодон в хлорамфениколния ген « «ι i.MiiMiii ι /вкарва PvuII сайта/;
фигура 5 - очертание на рВМа/с Bacillus /E.coli совалковия вектор.
Секторът отляво рМа/ с дава възможност за подходяща мутагенеза в E.coli. Блокът 5 отляво от Вас.subtilis съдържа α-амилазния ген (или който и да е друг ген на Bacilllus) заедно с минимум репликони за размножаване на В. Subtilis. След успешна мутагеназа в E.coli, блокът на В.Subtilis може да бъде циркуляри- 10 зирана, освобождавайки SP02 промотора да се предвижи пред α-амилазния ген при трансформация в Bacillus;
фигура 6 - рестрикционна карта на pBMa/cl Този вектор е специфичен пример за му- 15 тагенен експресионен вектор, очертан на фигура 5 /1/ и /2/: мултиплетни сайтове на клониране. Желаният ген е инсертиран в /2/. Чрез вариране на сайтовете /1/ и /2/ могат да бъ- 20 дат създадени рестрикционни сайтове за отворен /празен/ дуплекс.
FDT: транскрипционен терминатор
F1.ORI: начало на репликация, получен от фиг F 1 25
E.coli ORI: начало на репликация, получено от pBR322
BLA: ген за устойчивост на ампицилин CAT: ген за устойчивост на хлорамфеникол 30
ВАС OR1: начало на репликация от pUBl 10 Kanamycin: ген от pUBllO за устойчивост на Kanamycin /neomycin/
SP02: промотор на фага SP02;
Фигура 7 - рестрикционна карта на 35 pBMa/cGLia6
-амилазният ген на Bac.Licheniformis се включва в рВМа/С 1 като мултиплетен клониращ сайт /2/ от фигура 6. На тази фигура SP02 промоторът е означен като /2/ OR1 от 40 E.coli е означен с /4/ фигура 8 - phoA-фрагмент в рМа/c TPLia6. Изобразена е последователност от EcoRI сайта в посока 3' от ТАС-промотора до първата аминокиселина на зрялата α-амилаза. phoA 45 аминокиселинната последователност е показана под ДНК последователността;
фигура 9 - диаграма на Михаелис-Ментен за WOT и 2D5 а-амилаза.
Тази диаграма показва началната степен 50 на ензимна активност спрямо субстратната концентрация на WT и 2D5 α-амилаза. Условията за изпитване са показани в пример 8;
фигура 10 - термична инактивация на WT и D7 α-амилаза. Тази диаграма показва времето на полуживот за WT и D7 - амилази като функция от концентрацията на Са2+ при рН 5,5 и 90,5°С;
фигура 11 - термоинактивация на WT и D7 а-амилаза
Както на фигура 10 с изключение на това, че рН че 7,0;
фигура 12 - термоинактивация на WT и 2D5 а-амилаза
Диаграмата показва времето на полуживот на WT и 2D5 α-амилазата като функция от концентрацията на Са2+ при рН 7,0 и 95°С;
Фигура 13 - термоинактивация на WT и D7 α-амилаза като функция от рН;
фигура 14 - термоинактивация на WT и 2D5 α-амилаза като функция от рН;
СЪЩНОСТ НА ИЗОБРЕТЕНИЕТО
С термина “повишени качества”, използва във връзка с “мутантната α-амилаза” в настоящото описание се означават амилази с по-висока ензимна активност или по-дълъг живот в условията на приложение на втечняване на нишестето, текстилния дизайн и други индустриални процеси.
С “повишена термостабилност” се означава факта, че мутантният ензим съхранява своята активност при по-високите температури на процеса, или че съществува по-дълго при същата температура, при която съществува природния ензим.
Под “повишена киселинна /или алкална/ стабилност” се разбира, че мутантните ензими са по-стабилни при по-ниски степени на рН от природните типове ензими, от които са получени. Природните ензими са получени от щамове от род Bacillus.
Следва да се разбира, че подобрените качества на ензимите се определят от заместването на една или повече аминокиселини.
Хромозомна ДНК се изолира от микроорганизъм, синтезиращ α-амилаза. За предпочитане е микроорганизмът да е от род Bacillus, а още по-добре - от групата, съдържаща B.stearothermophilus, B.licheninformis, B.amyloliquefaciens, а най-добре е да бъде използван B.licheninformis Т5, /ЕР-А-134048/. Хромозомната ДНК се смила с помощта на под4
I .111:11 I. II ходящ рестрикционен ензим и се клонира във вектор. Могат да бъдат използвани много вероятни пътища на селекция, като например хибридизация, имунологично определяне и определяне на ензимната активност. Изборът на 5 вектор за клониране на подложена на смилане ДНК /хромозомна/ зависи от подходящите методи на селекция. Ако се използва хибридизация, няма нужда от специални мерки за предпазване. Ако определянето е имунологично 10 или основано на ензимната активност, векторът следва да съдържа експресионни сигнали. Определяне на клонове, съдържащи а-амилаза са представени на агарни пластинки, съдържащи агар. След прорастване и инкубация 15 с 12, се определят области на изпарение около позитивните клонове. Като следваща стъпка е определянето на аминокиселинната последователност, която се използва са сравнение с познати α-амилазни последователности за дава- 20 не на първото впечатление за важни аминокиселини/т.е. активни сайтове, Са2+ връзки, възможни S-SMOCTOBe/. По-добри индикации са получени чрез определяне на 3D-структурите.
Това е лабораторен начин и често се използва 25 друг подход. При липсата на ЗО-структури, програмите за определяне на вторични структурни елементи /т.е. а-спирала, β-структури са успешно използвани за определяне и евентуални терциерни структурни елементи, като β-цилиндър. За литературно потвърждение (виж Janin, J. and Wodack, S.J., Progr. Biophys. molec. Biol. 1983,42, 21-78). Може да се предприеме значително аминокиселинно заместване. Стабилността на протеиновата структура се определя чрез чистата разлика в свободната енергия между нагънатата и свободна конформация на протеина. Тъй като протеиновият остатък се ограничава до по-малки конформации от другите аминокиселини, конфигуралната ентропия на ненагънатия /свободен/ протеин се намалява и по този начин стабилността се увеличава, когато една аминокиселина се замества с пролин. Друго полезно заместване е това на глицин с аланин. Остатъци като треонин, валин и изолевцин с разклонени β-въглеродни вериги, ограничават конформацията на гръбнака повече от неразклонените остатъци.
До колкото част от термостабилността на някои протеини се дължи на солевите мостове, полезно е да се въведат лизинови и аргининови остатъци /Tomozie SJ.and Klibanov А.М., J.Biol.Chem, 1988, 263,3092-3096). Нещо повече, заместването на лизинови с аргининови остатъци може да повиши стабилността на солевите мостове тъй като аргининът е в състояние да образува допълнителни Н-връзки. /вж. Wigby, D.b. et.al., Biochem. Biophys. Ries.Comm. 1987, 149,927-929/. Отбелязва ce, че деамидизацията на аспарагина и глутамина причиняват сериозни нарушения на ензимната структура, като чрез заместване са неамидни остатъци може да се избегне такова нарушение. Заместването на аминокиселини се осъществява за предпочитане чрез мутагенеза на ниво ДНК.
Принципно, експерименталната мутагеназа може да се проведе директно върху изолираните клонове. Обаче, инсерцията за предпочитане се клонира върху мутагенно/експресионен вектор. Възможна е, случайна мутагенеза също и сайт-насочена мутагенеза. В смисъл, че се образува огромно количество мутантни клонове по този метод, и доколкото 3Dструктурата от α-амилазата е известна като способна да осъщесатвява доказани предположения за сайт-насочена мутагенеза, ние решихме да реализираме случайна мутагенеза в специфични области.
Следното е възможният подход за осъщесатвяване на настоящото изобретение:
Най-напред генът се модифицира чрез въвеждане на “тихи” рестрикционни сайтове. Въвеждането на силни рестрикционни сайтове също е възможно. Така става възможна деленията на специфични области от гена. След това като втори момент, генът се клонира в плазмид. Тази комбинация от фаг и плазмид улеснява продукцията на едноверижна ДНК. Други начини за получаване на едноверижна ДНК също са възможни. Чрез хибридизация на смес на ДНК от двойноверижен вектор (положителен инсерт), с векторно-инсерционна комбинация, съдържаща празнина в инсерцията, се получава хетеродуплексна ДНК с нужната празнина /вж. Morinaga, Y.et al. 1984 /Biotechnology, 2,636/.
Тази празнота се използва за химична и ензимна мутагенеза. Ние използвахме бисулфитния метод /Folk and Hofstetter, Cell, 1983, 33,585/ и един ензимен метод /модифицирана версия на Lehtovaara et.al., Prot. End., 1988,2,63/. Тези методи могат да бъдат при5
I ложени по същия начин, като всеки единичен нуклеотид в празнината се замества с три други нуклеотида /наситена мутагенеза/. Последният метод може да бъде приложен по различни начини. По един от тях, един синтетичен 5 праймер се хибридизира с празнината. След това се провежда реакция, на удължаване, при която дезоксинуклеотидът, комплементарен на първия дезоксинуклеотид 3' от праймера, липсва. По принцип всичките три дезоксинукле- 10 отида могат да бъдат включени по този начин. Това може да бъде постигнато както чрез използване на смес от три дезоксинуклеотида, така и чрез използване на три различни реакции, всяка от които съдържа само един дезок- 15 синуклеотид. Друг начин е използването на метода за получаване на случайни клонове. Тук четири отделни реакции се провеждат, всяка от които съдържа един лимитиращ дезоксинуклеотид. Това дава вторични вериги, които спи- 20 рат преди всеки единичен нуклеотид. Следващите стъпки могат да се осъществяват, както е описано по-горе. И двата метода -бисулфитният и ензимно-мутагенетичният се използват за получаване на мутанти. 25
За изпитване на ензимните свойства, удобно е клонираните гени да бъдат експресирани в същия гостоприемник, който е бил използван по време на мутагенетичните експерименти. По принцип това може да бъде всеки 30 гостоприемник, който е подходящ за включване на мутагенетичен експресионен вектор. Особено удобни за работа са E.coli, например E.coli WK6. След прорастване на колониите, те се прехвърлят в петрита с агар, към който 35 се прибавят нишесте и буфери с различни стойности на pH. Позитивните клонове могат да бъдат открити чрез образуваните ореоли. Скриниране в микротитърни панички е подходящо за селекция по термостабилност, киселинно- и, алкалоустойчивост, стабилност спрямо соли и др.
Подходящите щамове-гостоприемници за продукция на мутантнаа-амилаза включват способни на трансформация микроорганизми, в които може да се осъществи ескспресия на аамилаза. Специфичните щамове-гостоприемници от същите видове или родове, от които са получени α-амилазите са адаптирани като щамовете на Bacillus. Един амилазен негативен щам Bacillus се използва за предпочитане пред аамилазен и протеазен негативен щам Bacillus.
Например, използва се в B.licheniformis T9 за получаване на голямо количество мутантни а-амилази.
Методът за получаване на -амилазата включва етапите:
а/ култивиране на клетките при условията, при които се получава мутантната аамилаза и б/ изолиране на мутантната а-амилаза от културата.
За предпочитане е α-амилазите, които се продуцират, да се секретират в културалната среда /по време на ферментацията/, което улеснява извличането й. За целта може да се използва всяка подходяща сигнална последователност да постигане на секрецията.
Експресионните α-амилази се секретират от клетките и могат да бъдат пречистени след това по който и да е подходящ метод. Гелфилтрация и моно Q хроматография са примери за такива методи. Изолираната аамилаза се тестува за термоинактивация при различни концентрации на Са2+ /0,5-15 мМ/и извън pH-интервала от 5,5-8,0. Тестуването се осъществява при условията на приложение. Специфичните мутантни α-амилази се изпитват при специфичните условия на нишестени разтвори при pH 5,5 и 5,25. По-нататък се тестуват приложенията за текстилен дизайн. Свойствата на някои мутанти, които бяха скринирани, се адаптират за желаните условия за провеждане на метода.
Настоящото изобретение разкрива получаване на α-амилази с повишени термостабилност, стабилност при pH под 6,5 и над 7,5. Броят на аминокиселинните замествания не е от значение дотолкова, доколкото активността на мутантния протеин е същата или подобра от тази на природния ензим. Мутантните α-амилази се отличават от природния ензим най-малко по една аминокиселина, за предпочитане от 1 до 10 аминокиселини. Специфичните мутанти с подобрени свойства включват мутантни α-амилази, съдържащи едно или повече аминокиселинни замествания при последователните позиции 111, 133, 149 /номерирането е съответно на от α-амилаза Вас. licheniformis. Между предпочитаните аминокиселини и заместените са Ala-III-Thr, His133-Tyr, Thr-149-Ile.
Такива мутантни ензими имат повишени способности при pH под 6,5 и/или над 7,5.
Проявяват се и с повишена жизнеустойчивост при високи температури, например до 110°С.
Повечето от α-амилазните продукти са получени от бактериални източници, в частност Bacillus, например B.subtilis, B.licheniformis, B.stearothermophilus, B.coagulans, B.amyloliquefaciens.
Тези ензими имат висока степен на хомоложност и идентичност (Juuki et al., J.Biochem., 1985,98, 1147; Nakajima et al., Appl. Microbiol. Biotechnol., 1986, 23, 355). Поради това, познанията за подходящите мутации, получени от една от тези α-амилази, могат да бъдат използвани за подобряване на други амилази.
По-долу са описани експерименталните методи, използвани в изобретението. Примерите илюстрират изобретението без да го ограничават.
МАТЕРИАЛИ И МЕТОДИ
1. Основни техники на клониране
Техниките на клониране са използвани, както са описани в книгата на T.Maniatis et al., 1982, Molecular Cloning, Cold Spring Harbor Lab.,; E.M.Ausubel et.al., 1987, Current Profocols in Molecutar Biology, John Wiley & Sons Jnc., New Jork; B.Perbal, 1988, A Practical Gnide to Molecular Cloning, 2 nd edition, John Wileu & Sous Jnc., N. Тези книги описват детайлно начина на конструиране и нарастване на ДНК молекулите и процедурите са създаване на генни библиотеки, за секвениране и мутация на ДНК и за ензимно моделиране на ДНК молекулите.
2. Химична мутагенеза
Клонираната ДНК може да бъде третирана in vitro с химикали с цел предизвикване на мутации в ДНК. Ако мутациите са насочени към аминокиселини, кодиращи триплетни кодони, мутанният протеин може да бъде продуциран чрез мутантната клонирана ДНК. Метод за химична мутагенеза с добавяне на натриев бисулфит е описан от Shortle and Botstein (Methods Bnzymd., 1983,100457).
Предпочитан метод е описан от Folk и Hofstetter (Cell, 1983,33,585). Други методи за мутагенеза са описани от Smith, Ann, Rev. Genrt., 1985,19 423. Изключително полезен е за изобретението метода, описан от Ausubel at al., ibid.
3. Мутагенеза на дар-дуплексната ДНК
Методът, основан на дар-дуплексния подход /Kramer et al., 1984, Nucl. Acids Res.12, 9441 / и плазмид (плазмид/фагов хибрид) се прилага, като същността му касае междинна дуплексна ДНК, състояща се от верига, с липсваща аминокиселинна част /-верига/, включваща природен маркер за резистентност към антибиотик и верига /+ верига/носеща amberмутация, в гена, придаващ резистентност към антибиотици. След ренатурация на ДНК, мутантният олигонуклеотид се включва in vitro в съдържащата празнина верига по време на попълването й и на реакцията на завършване. Получените молекули се използват за трансформация на несъвършения /MutS/ гостоприемник, в който връзката между очакваната мутация и маркера за резистентност към антибиотика е запазена. Смесената плазмидна популация, изолирана от този щам, след това се подлага на сегрегация в супресор-негативен щам-гостоприемник. Трансформантите се поставят в среда, съдържаща антибиотик, което дава възможност за селекция на поколение, получено от носещата празнина верига.
Двойната векторна система рМа/с5-8, която бе описана от P.Stanssens et al. (Nucl.Acids.Res., 1989,17,4441/, е съставена от следните елементи:
позиция 11-105: бактериофаг fd, терминатор
-”- 121-215: бактериофаг fd, терминатор
-”- 221-307: плазмид рВР322 позиция 2069-2153/
-”- 313-768: начало на репликация от бактериофаг fl (позиция 5482-5943)
772-2571: начало на репликация и β-лактамазен ген от плазмид pBR 322
-”- 2572-2685:транспозон Тп903
2519-2772:триптофанов терминатор /двоен/
-”- 2773-3729: транспозон Тп9, хлорамфеникол-ацетил трансферазен ген
3730-3803: сайт на мултиплен клониране
Последователността е изобразена на фигура 1.
Във вектора от рМа тип, нуклеотид 3409 е изменен от G на А, докато във вектора от
II IIIΛ,ΙΙΙΙΙΙΙΙΙ.ΙΙΙΙΙ тип рМс, нуклеотид 2238 е изменен от G на С, създавайки amber-стоп кодони в ацетил-трансферазния и β-лактамазния ген, като посочените гени се инактивират.
Всички последователности се получават 5 от Genbank /National Nucleic Acid Seqnence Data Bsnk NIN USA/. Плазмидът pMc5-8 е депозиран под номер DSM 4566. За да осъществи мутагенезата, ДНК-фрагментът мишена се клонира в мултиплетен сайт на клониране от рМа.5-8. 10 След това се конструира дар-дуплексът между рМа 5-8, съдържащ мишената ДНК и рМс5-8.
Единичната верига, с празнина съдържаща мишенната ДНК, може да бъде подложена на мутагенезис с мутагенетичен олигонуклеотид, с дълги синтетични олигонуклеотиди, с ниско ниво неинкорпорирани нуклеотиди, с химически или ензимно неинкорпорирани нуклеотиди, а също и със случайни мутагенични PCR. За детайлно описание, вж. Ausubel et al., 20 ibid, or Perbal ibid. Като алтернатива на in vitro мутагенезата може да се използва in vivo мутагенеза, а също и въздействие с W-лъчи или химикали или с прилагане на мутация-предизвикващи щам E.coli. /Fowler et al., J.Bacteriol, 25 1986, 167, 130/.
Мутагенетичните нуклеотиди могат да се синтезират с използването на апарати, производство на Applied Bio Systems.
4. Случайна мутагенеза чрез ензимно не- 30 инкорпориране на нуклеотиди дар-дуплексът рМа/рМс може да се подложи на удължаване с праймери и ниенкорпорационна мутагенеза, както е описано в Proc. Natl. Acad.Sci.USA, 1982, 79, 1588/ от B.C.Cun- 35 nigham and J.A.Wells /Prot.Eng,1987,1,319/, или чрез модификация на тази процедура е описана от LehtoVaara et al.,/ Prot.Eng., 1988,2,63/.
Този метод е основан на контролирано използване на полимерази. Четири популации 40 от ДНК молекули най-напред са генерирани от праймер елонгация на дар-дуплекса рМа/ рМс в празнината на веригата, така че да завършват случайно, в празнината, но точно преди известния тип бази/преди A,C,G, или Т респективно/. Всяка от тези четири популации след това се подлага на мутации в отделни реакции на неинкорпорация, където правилната база може да бъде пропусната. По този начин всички типове мутации на заместване на бази 50 могат да бъдат генерирани при всяка позиция на празнината. Използването на секвенза /ТМ/ /U.S. Brochemical Corporation/ се предпочита пред използването на Klenow-полимеразата. Нещо повече, MoMuLV обратна транскриптаза се използва вместо A.M.V.обратна транскриптаза, приложена от LehtoVaara et.al./ibid/.
За да се обезпечи заместването при единичен сайт, се представя следната модификация на протокола, описан от Lehto Vaara et.al, ibid. В буфера с обратна транскриптазата не присъстват три, а само един неинкорпориран нуклеотид. Например, А-база-специфичната смес за ограничаване на елонгацията се инкубира в три различни реакции с 250 М dCTP, 250 μΜ dGTP и 250 μΜ dTTP, респективно.
За получаване пълния комплект от четирите бази-специфични смеси за ограничаване елонгацията се провежда комплекс от 12 отделни реакции на неинкорпориране. След инкубация за 1,5 h при 42°С, се добавя следа от всички четири дезоксинуклеотида в концентрация от 0,5 mM, след което реакцията се провежда при температура 37°С за най-малко 20 min. Пробите след това се подлагат на реакция по Lehto Vaara et. al., c модификация, състояща се в това, че се прилага броима селекция, основана на рМа/c вектор, а не се осъществява такава за урацил-съдържащата ДНК верига.
5. Продукция на мутантни а-амилази Трансформантите на E.coli, щам WK6 / Zell,R. и Fritz,H.J. EMBO-J., 1987,6,1809/, съдържащи експресионен вектор и продуциращи всяка една от α-амилазните конструкти, се инокулират в ТВ среда /10 ml/ при 30°С. ТВ средата се състои от 0,017 М КН2РО4 0,072МК2НР04 12g/l Bactotripton 24 g/1 Bacto дрождев екстракт, 0,4% глицерин и антибиотик /ампицилин с рМа или хлорамфеникол с рМс конструкти/. Пробите от културата се използват за инокулация на 250 ml ТВ в двулитрови колби. Към OD*600 от 10-12, се добавя 0,1 мМ IPTG /изопропил^-б-тиогалактопиранозид/ и инкубацията продължава още 12-16 h.
* OD = оптична плътност
6. Пречистване на мутантните а-амилази
Клетките се отделят чрез центрофугиране и след тава се ресуспендират в буфер, съдържащ 20% захароза при 0°С. След повторно центрофугиране, клетките се ресуспендират в студена вода. Клетъчните останки се отстраняват чрез трето центрофугиране и сус8 пернатантата се довежда до стойност на pH 8,0 с 20 мМ TRIS буфер. СаС12 се добавя до крайна концентрация от 50 мМ. Материалът се третира при висока температура за 15 min при 70°С и неразтворимият материал се отстранява чрез центрофугиране. Супернатантната се филтрира през 0,22 μ филтър Millipore и се концентрира до 1/10-та от началния обем.
По-нататък пречистването протича чрез гелфилтрация /върху TSK HW-55-Мегск/ и Mono Q хроматография. Преди хроматография върху mono S, pH на ензимно активните фракции се довежда до 4,8 чрез натриев ацетат. аамилазата се елуира с 250 мМ NaCl. За да бъде избегната инактивацията, pH веднага се довежда до 8.
Примери
Пример 1.Молекулярно клониране нааамилазен ген от Bac.licheniformis.
Хромозомална ДНК, изолирана от Вас. licheniformis Т5 /ЕР-А-134048; CBS 470,83/ се смила с рестрикционен ензим EcoRi и се присъединява към EcoRi сайта на pLIBllO /Grycsan.T.J. et.al., I.Bacteriol, 1978,134, p.318/. Сместа се трансформира в Bac.subtilis 1А40 / Bacillus Centtic Stoce Center/. Резистентните на неомицин колонии се тестуват за а-амилазна продукция на Н1 агарни плочки /DIFCO/ с добавка на 0,4 g/Ι нишесте /Zulkowsky sAarch, Атегк/. След култивирането и инкубация с газообразен 12, позитивната колония с голям чист ореал се селекционира за по-нататъшно характеризиране. Плазмидът, изолиран от тази позитивна колония, съдържа 3,4 kb EcoRl-EcoRI фрагмент, произхождащ от Bacillus licheniformis Т5. Този плазмид е наречен pGB33 /ЕР-А134048; CBS 466.83/. Инсъртът кодираща-амилаза се присъединява към синтетична към ShineDalgarno последователност и бактериофагният протомор SPO2, резултирайки в плазмида pProm SPO2 /вж.ЕР-А-0224294; CBS 696.85/. Нуклеотидната последователност на инсерцията от PProm SPO2, така както е определена по метода на Sanger /Proc.Natl.Acad.Sci. USA, 1977,74,6463/, е показана на фигура 2. Последователността показва едно голяма отворена рамка на разтичате, кодираща една α-амилаза, която е идентична на α-амилазната последователност на Bac.lichemiformis така, както е определена от Yuuki. Първите 29 аминокиселини са сигнална последователност, която се изразява по време на секрецията на α-амилазата. Номерацията на аминокиселините съгласно описанието на настоящото изобретение е така както при зрелия протеин.
Последователността на Yuuki се различава през следните позиции: при позиция 134 един Arg присъства вместо Leu; при позиции 310 един Ser присъства вместо Gly; при позиция 320 присъства Ala вместо Ser.
Пример 2. Конструиране на мутагенетично/експресионни вектори рМаТПаб.
Плазмидът pPROM SPO2 се смила EcoRi и Bell и 1,8 kb EcoRI-BclI инсъртът се пречиства и клонира рМа5-8 смлян с EcoRI-BamHI. Този вектор рМа5-8 е осигурен преди това с модифициран мултиплен на сайт клониране. Фрагментът BamHI-HIndlll, започващ от позиция 3767 към позиция 3786 на фигура 1, се заменя със синтетична ДНК последователност, така както се чете от позиция 5647 до 5660 на фиг.З. Това се провежда, за да се превърне от някои рестрикционни сайтове вътре в а-амилазния ген в уникални. Получената а-амилаза, съдържаща рМа5-8 производен, се смила с EcoRi и BamHI и се присъединява към синтетичен ДНК фрагмент, носещ копие от ТАС промотор /De Boer at al., Proc. Natl. Acad.Sci. USA, 1983,80,21. Последователността на този синтетичен ДНК фрагмент е изобразена заедно с крайния α-амилазен мутагенетичен /експресионен вектор pMaTLia6 на фигура 3, от позиция 3757 към позиция 3859. Този вектор се окомплектовка чрез въвеждане на няколко слаби рестрикционни сайта, които се очаква да предизвикват празнини в α-амилазния ген по време на мутагенетичния експеримент /фигура 4/. За тази цел се правят следните мутации, използвайки сайт -насочен олигонуклеотиден мутагенезис:
- Spel сайта се вкарва чрез “тиха” мутация
Т49Т и S50S
ACG -7 ACT AGC -> AGT
- Narl сайта се вкарва чрез тиха мутация:
А269А
GCG -> GCC
- BstE II сайта се вкарва непосредствено до TAG стоп кодона в посока 5'
TAGAAGAGC TAGGTGACC
Този α-амилазен мутагенетичен вектор рМаТПаб се адаптира за мутагенезис и дардуплексния метод. Двойноверижната плазмидна рМаТПаб ДНК, изготвена чрез смилане с
II IIII,II»ШИ I подходящи рестрикционни ензими, се циркуляризира до едноверижни pMcTLia6 ДНК.
Резултатните едноверижни празнини се подлагат на сайт-насочен мутагенезис, на химичен мутагенезис и на случайна ензимна 5 мутагенеза, както е описано в експерименталната част.
Присъствието на TAG промотора пред α-амилазния ген дава възможност за индуцирана експресия на α-амилаза в Е.coli чрез до- 10 бавяне на IPTG.
Плазмидът рМаТ1аб в E.coli WK6 е депозиран като CBS 255.89 на 2 юни 1989 г.
Пример 3. Конструиране на Bacillus /Е. coli/ совалков вектор за мутагенеза и експресия. 15 Този вектор дава възможност за мутагенезис на един инсериран ген в E.coli и незабавна експресия в Bacillus. Избраният начин за конструиране на вектора предвижда комбиниране на плазмида рМВПО /Grycsan, lbld/./c рМа/с 20 двойна векторна система, така че:
1. Блокът на Вас. subtilis може да се отстрани чрез единичен рестрикционно /свързващ експеримент.
2. Различни α-амилазни гени и промо- 25 тори могат лесно да бъдат клонирани в този вектор.
3. След рециркулация, клонираният ген следва да бъде под контрола на подходящ промотор от Bacillus. 30
4. По време мутагенезата в E.coli, промоторът от Bacillus и структурният а-амилазен ген са физически разединени, предпазвайки от летална акумулация наа-амилаза в E.coli.
Схематичното описание на совалковия 35 вектор е показан на фиг.5. Структурата на финалната версия на вектора рВМа /с1 е представено на фигура 6. Векторът pBMal е депозиран под N CBS 252.89 на 2 юни 1989. Векторът е конструиран както следва: 40
- EcoRI - SnaBI фрагментът от pLIBllO, носещ REP -гена и NeoR гена, се пречиства и клонира в смлян с EcoRI - Smal рМС8
- EcoRI -Hindlll фрагментът от този рМС8 се клонира в смлян с EcoRI-Hindlll рМа5- 45 8, резултирайки в плазмида рМа5-80.
- BamHI -Xbal полилинкерен фрагмент се замества със синтетичен фрагмент на ДНК, кодиращ SPO2 промотор на бактериофаг SPO2 /Williams at al., J.Bacterid 1981, 146, 1162/ плюс 50 рестрикционни сайтове за разпознаване на SacII, Apal, Xhol, SacI, Bgll, Mlul и Xbal.
- Уникалният EcoRI сайт на pMa5-80 се използва за инсертиране на полилинкерния фрагмент, конституиращ следните сайтове за разпознаване EcoRI, Smal, SacI, EcoRV, SphI, KpnlXbal и Hind III.
За специфични нужди дериватите на рВМа/с2 и рВМа/сб са развити извън рВМа/ cl.
В рВМа/с2 полилинкерът EcoRI -Hindlll от рВМа/cl се замества от съответния полилинкер на pNC19.
- В рВМа/сб в допълнение SacII сайт в полилинкера на р ВМа/cl се отстранява чрез Klenow-реакция.
Сайт-насочената мутагенеза върху аамилазният ген на Bac.licheniformis се осъществява след конструиране на РВМа/сб Lia6. Този вектор се конструира чрез свързване на BamHIHindlll фрегмент изолиран от pMaTLia6 в погоре отбелязания рВМа/сб, който се разцепва от BamHI и Hindlll. Резултатният плазмид може да бъде използван за конструиране на дардуплекси за мутагенезис в E.coli.
Резултантните мутанти се експресират в Вас.subtilis 1А40 /BGSC 1А40/ след рестрикция с SacL, свързване отново и трансформация съгл.Chand и Cohen /Mol.Gen.Genrt., 1979,168,111/.
Пример 4. Експресия в E.coli на правилна зряла α-амилаза от Вас.
licheniformis
Характеризирането на -амилазата, продуцирана от pMaTLia /Пример 2/ показва, че част от нея е с неправилен процесинг по време на секрецията. Ип2-крайната последователност изявява един допълнителен аланинов остатък за α-амилазата, продуцирана от E.coli WK 6.
Независимо, че няма данни, че това се придаде различни свойства на амилазите, се замества α-амилазната сигнална последователност със сигнална последователност за алкална фосфатаза PhoA. Към този край мутагенетичният експеримент се провежда така, че да се вкара EspI рестрикционен сайт в рМаТПаб при мястото на съединяване на сигналния пептид със зрялата α-амилаза. След смилане с FspI и BamHI, синтетичен фрагмент, кодиращ phoA сигнална последователност /Michaelis et.al., J.Bacteriol, 1983, 154, 366/, се инсертира. Последователността на тази конструкция е показана на фиг.8. а-амилазата, продуцирана от pMa/cTPLia6 притежава пра10 η
вилната NH^-крайна последователност.
Пример 5. Скриниране за стабилна аамилаза. екраниране за киселинноустойчиви α-амилазни мутанти α-амилазните мутанти, които представ- 5 ляват по-добра или по-лоша активност при ниско pH спрямо дивия тип α-амилаза, могат да бъдат селекционирани по ореолите при култивиране в петрита с нишестени среди, буферирани при различни стойности на pH след като 10 нишестето се оцветява с йоден разтвор.
Метод:
1. Прорастване
Възможните мутанти се отглеждат върху микротитърни панички. Средата, която се 15 използва е 250 μ мозъчно-сърдечно бульон DIFCO. Направени са и следните добавки:
хлорамфеникол 50 pg/ml
1. P.T.C. /SICMA/ 0,2 шМ 2Q
СаС12 2 тМ
Колониите са взети от агарните пластинки със стерилни микропипети и инокулирани в различни ямки (96) от микротитърната паничка. Във всяка паничка се включват 4 ко- 25 лонии от див тип като контроли. Микротитърните панички се поставят на 37°С за 40 h, без да се разклащат.
2. Тестуване на пластинките
След посочения период от време, в кой- 30 то α-амилазата се получава, се вземат 5 μΐ проби от всяка ямка и се поставят 2 различни вида агарни пластинки /144 х 140 mm/. Първият тип е богата на сърдечна инфузия (DIFCO) агарна пластинка + 0,4% нишесте /Zulkowsky 35 stareh - Merck/ + хлорамфеникол 50 pg/ml. След инкубация при 37°С за 16 h тази пластинка е източник на мутанти.
Вторият тип пластинки са действителните скрининг пластинки, които включват: 40
Bacto agar /DIFCO/ - 1,5%
Lulkowsky starch - 0,2%
Агарът и нишестето са разтворени в сис-
тетична водопроводна вода /STW/. Това е де- | 45 | |
минерализирана + | ||
СаС12 | 2 mM | |
MgCl2 | 1 mM | |
NaHCO3 | 2,5 mM | 50 |
BSA | 10 pg/ml |
Скрининговите пластинки са буферирани със 100-кратно разреден 5 М калиево ацетатен буфер, разтворен в тази среда. Стойността на pH в този разтвор е 4,80; 5,0 5,2 при стайна температура. Крайната стойност на pH в агарните пластинки, която бе измерена, е малко по-ниска от онази на разтвора. От всяка ямка 5 ml култура се накапва в скрининговите пластинки с различна степен на pH.
Областта на pH се избира по начина, според който остава ниска или липсва активност /или нейната липса/ на α-амилазата от див тип в пластинките с най-ниска стойност на pH.
3. Оцветяване
Скрининговите пластинки се инкубират за 2 h при 55°С. След този период те се заливат с йоден разтвор. 10 х 12-ов разтвор съдържа 30· g 12 и 70 до KI за литър.
Количеството на просветляване на петната корелира с остатъчната α-амилазна активност при даденото pH. Мутантните, които се представят по-добре от дивия тип контроли, се селекционират за втория етап от скринирането. Дивият тип ореоли са много репродуктивни в този експеримент.
4. Второ скриниране
Позитивните мутанти се взимат от обогатените пластини се пречистват на пресни HI панички + хлорамфеникол. Взимат се четири единични колонии от всеки мутант и те отново се тестуват по аналогичен начин, както при първото скриниране. В допълнение се провежда серия разреждания от тези култури с STW и тези разреждания се накапват върху скринираните панички с неутрално pH /рН = 7,0/. Сравнението с дивия тип култури дава възможност да се реши дали по-доброто представяне при ниско pH е достатъчно за много подобра α-амилазна продуктивност или до съществено по-стабилна а-амилаза.
Мутантите, които преживяват второто скриниране се характеризират чрез определяне на нуклеотидната последователност на онази част от гена, която е подложена на мутагенеза.
В. Скриниране за устойчивост на основи на а-амилазата.
Скринирането за устойчивост на алкална среда се представя по начин, аналогичен на този за устойчивост на α-амилазите на киселини. След отглеждане върху микротитърни пластинки, 5 μΐ проби се вземат от всяка ямка и се накапват върху резервна пластинка
I
и върху действителна скрининг пластинка. Последната е съставена от:
Bacto agar /DIFCO/ 1,5%
ZulcoVsicy starch 0,2% и се допълва с деминерализирана вода плюс:
СаС12 MgCl2 NaHCO BSA
Скрининг пластинките се буферират с 50 тМ карбонат/бикарбонатен буфер, pH 9,0; 9,5 и 10,0. Областта на pH е избрана по такъв 15 начин, че да е налице малка или да липсва и да е активност на дивия тип α-амилаза при по-висока степен на pH. След 2 h инкубация при 55°С разтвор на 12 се излива върху пластинките. Онези мутанти, които дават по-добър 20 ореол от дивият тип ензими, са селекционирани с оглед второ скриниране. Това второ скриниране се провежда по аналогичен начин, както за киселиноустойчивост.
С. Скриниране за термостабилни а-ами- 25 лазни мутанти α-амилазните мутанти, които се представят по-добре или по-зле при висока температура от дивият тип α-амилаза, могат също така да бъдат подбрани чрез сравнение на ореолите върху петрита с нишесте причинени от остатъчната амилазна активност в културалния бульон след нагряване.
Метод:
1. мутантите се отглеждат по същия начин, както за pH скрининг
2. Мутантите се репликират върху HI агарни пластинки, както при рН-скрининга
3. Отделните ямки от микротитърните пластинки се затварят с подвижни капачета /Flow laboratories/ за предпазване на бульонната култура от изпарение по време на температурното третиране.
4. Микротитърните пластинки се загряват на водна баня за 1 h при 95°С. След това се поставят в центрофуга за събиране на тотална проба на дъното на микротитърната пластинка.
5. Скринирането за термостабилни мутанти се извършва както следва:
От всяка ямка по 5 ц1 от културата се накапва върху неутрални скрининг пластинки /вж.рН скрининг/. Тези пластинки се инкубират за 1 h при 55°С.
След оцветяване на нишестето с йоден разтвор, мутантите и контролите могат да се кринират за остатъчна α-амилазна активност чрез сравняване на ореолите.
В случаите, че остатъчната активност е твърде висока, трябва да бъдат направени серия разреждания и да се накапват върху скрининг пластинките, за да се отделят мутантите, които са по-термостабилни от дивия тип ензими.
6. Възможно интересуващите ни мутанти се тестуват по-нататък така, както бе направено при pH скриниг метода.
Комбинация от скрининг тип А или В с тип С може да бъде приложена, ако е желана комбинация от свойства. Например след първото скриниране за стабилност към алкални вещества, второто скриниране за термостабилност също може да бъде проведено. Онези мутанти, които бележат позитивност и в двата теста, могат да бъдат подбрани като кандидати, проявяващи желаните свойства.
Пример 6. Бисулитен мутагенезис на рМаТНаб.
Едноверижни ДНК се присъединяват към pMcTLia6, смлян с Sacll-Clal с оглед получаване на хетеродуплекс с празнина, започваща от позиция 4315 до 4569 /фигура 3/. Този хетеродуплекс се подлага на бисулфитен мутагенеза /вж.експериментално/.
След трансформация в E.coli WK6 mut S/Zell,R.and Fritz Η.I. ibid./ и селекциониране върху хлорамфеникол, съдържащи агарни пластинки /50 pg/ml/, плазмидните области се изолират и трасформират в E.coli WK6. E.coli WK6 Mut S се депозира като CBS 472.88,E.coli WK6 се депозира като CBS 473.88. Получените трансформанта се отглеждат в BHI среда /DIFCO/, съдържаща 2,0 тМ СаС12, 50 μg/ml хлорамфеникол и 0,20 тМ IPTG / SIGMA/ в продължение на 40 h при 37°С в микротитърни ямки без клатене. Скринингът за pH устойчиви мутанти се провежда, както е описано в пример 5.
Около 300 CmR трансформанти се скринират. Честотата на мутациите, както са определени чрез ДНК секвениране е около 0,4 мутантни/молекули на ямка. Един киселиноустойчив мутант, D7, се идентифицира след pH скрининг. Секвенирането на този мутант разкрива H133Y мутация, получена от мутация на кодиращия типлет от САС в ТАС.
Мутантът D7 също се определя като позитивен в термостобилна скрининг проба /Пример 5/. 5
Секвенирането ДНК се осъщестява върху едноверижна ДНК със специфичен олигонуклеотид, оформен като начало точно преди фрагмента SacII-Clal. В отделен мутагенетичен експеримент се скринират 1000 CmR 10 трансформанта. Друг киселиноустойчив мутант, 2D5, се идентифицира след pH скриниране. Този мутант има следните мутации:
Н133У САС -> ТАС
T149I АСА -> АТА
Бисулфитният мутагенезис се прилага така, както бе описано току що върху ClalSall празнината, която започва от позиция 4569 към позиция 4976 на фигура 3. Скринират се около 300 CmR трасформанти /честота на мутациите 0,6 мутации/молекула/. Не са намерени киселиноустойчиви трансформанти. Открити са много киселинолабилни мутанти. Измежду тези лабилни мутанти някои могат да притежават изменение в pH спектъра, което е резултат от по-висока стабилност на фенотипа при алкални въздействия.
Пример 7. Ензимен мутагенезис на рМа
TLia6 30
Едноверижен pMaTLia6 (фигура 4) е свързан с MpcTLia6 смлян с Clal-Sall, за да се получи хетеродуплексна последователност от позиция 4569 до 4976 (фигура 3). Дуплексът с празнината се подлага на ензимна мутагенеза за неинкорпориране, както е описано в експерименталната част.
Пробита, получена след dATP-лимитирана праймер на елонгация се разцепва на три части и се инкубира в присъствие на обратна 40 транскриптаза с dCTP. GTP и dTTP, респективно. След инкубация при 37°С за 10 min, следа от всички четири dNTP и полимераза на Кленов, както и Т4-ДНК лигаза се добавя, за да се завърши елонгацията до напълно дву- 45 верижни молекули.
Тези молекули се трансформират в E.coli WK6 MutS и плазмидите се отделят. Тези плазмиди се трансформират последователно в E.coli WK6 и колониите се селекционират върху съ- 50 държащи хлорамфеникол (50 pg/ml) агарни пластинки. Получените мутанти се скринират за стабилност на α-амилазата, както е описано в пример 5.
В друг експеримент празнината SpelSacII се подлага на лимитирана праймерна елонгация с dATP, dCTP,DGTP и dTTP респективно. Тези праймери се подлагат на мутация чрез неинкорпориране /вж. експерименталната част/. 100 CmR трансформанти се тестуват върху pH пластинки /пример 5/ и мутант М29 се идентифицира като по-стабилен при ниско pH. Последователността на мутацията се определя като: А111Т GCG —> TCG
Пример 8. Свойства на стабилните мутанти
Два от мутантите, получени по бисулфитните мутагенични експерименти, се характеризират по-нататък. Както е описано преди, ДНК секвенирането подсказа със следните аминокиселинни замествания:
- D7 съдържа тирозин при позиция 133 вместо хистидин /D7 = H133Y/
- 2D5 съдържа D7 мутация и освен това треонин 149 е заместена от изолевцин /2D5 = H133Y, Т1491/.
а. Измерване на ензимната активност
Ензимната активност на α-амилаза WT В.licheniformis и мутантите се измерва с използване на 4-нитрофенил-малтопентаозид /4NPDP5/ като субстрат, при което се получават нитрофенол и малтопентаозата и тази реакция може да бъде последвана от измерване на изменението в OD405. Изпитването е проведено при 35°С в 50 mM MOPS, 50 тМ NaCl, 2тМ СаС12/ pH 7,15/ и 0-1 тМ 4NP-DP5.
Наличните стойности са измерени и Енитрофенолът е взет като 10 000 1/М/ст. Фигура 9 показва резултатите за WT и 2D5 аамилази Vmax и Кт се измерват и са дадени в Таблица 1:
Vmax /цт | ю1/min/mg/ | Кт/тМ/ |
WT | 66,7 ± 0,9 | 0,112 ± 0,005 |
2D5 | 66,3 ± 0,7 | 0,119 ± 0,004 |
От данните в таблица 1 се вижда, че мутацията на α-амилаза 2D5 не влияе съществено върху ензимната активност.
в/ Влияние на Са2+ върху термоинактивацията
Експериментите за термична инактивация се провеждат върху WTD7 и 2D5 при различни концентрации на Са. Процедурата е както следва:
I
1/ Деметализация
Ензим /2-3 mg/ml/, диализиран за 24 h срещу χ 1 L 20 mM <MOPS mM EDTA mM EGTA ,рН 7,0 χ 1 L 20 тМ MOPS pH 7,0
2/ Реметализация
- 500 μΐ буфер 100 тМ /например MeS, MOPS, EPPS/*
- 145 μΐ деметаизиран ензим /например 2,15 mg/ml/
- 100 μΐ СаС12 /100, 50,30,20,10,5 или
2,5 тМ/
- χ μΐ K2S40 /ЮОтМ/
- /255 - х/ Н20 | |
крайна [СаС12] тМ | крайна [K2SOJ тМ |
0,25 | 14,75 |
0,5 | 14,5 |
1 | 14 |
2 | 13 |
3 | 12 |
5 | 10 |
10 | 0 |
* - pH MES e.g. 6,77 при стайна температура ще даде 6,0 при 90° / /рКа 6,15 рКа/ °C = - 0,011/
- рКа е от таблица на Merck амфотерен буфер
3. Топлинна инактивация ml ензимен разтвор, предварително инкубиран при стайна температура, се подлага на загряване при 90,5°С или 95°С в затворени тефлонови съдове при концентрация от около 0,2 mg/ml. Проби от по 50 μΐ се взимат през равни интервали от 0 до 6-тия час със спринцовка и се охлаждат върху лед. Остатъчната активност се определя с 4NP-DP5 /0,5 шМ/.
Времето на полуживот се определя чрез GRAPHPAD
Фигури 10 и 11 показват времето на полуживот /LD50/ за WT и D7 α-амилазите при рН 5,5 и 7,0 респективно, като функция от конструкцията на Са2+ при 90,5°С. Са2+ зависимостта на 2D5 се определя само при рН 7,0 при 95°С /фигура 12/. Може да се види, че зависимостта на мутантите от Са2+ не е различна от тази за WT.
с. Термостабилност на мутантните а-амилази при различни стойности на рН
Зависимостта на термоинактивацията от рН за D7 и 2D5 се определя при 90,5 и при
95°С респективно, използвайки буфера, както бе описано по-горе при 1 тМ Са2+ концентрация. Може да се заключи, че термостабилността и за D7 и за 2D5 е много увеличена 5 над (два пъти за 2D5) над пълния рН интервал (фигури 13 и 14).
Пример 9. Продукция на мутантни ензими в Bacillus
Мутации в α-амилаза от Вас lichenifor10 mis, които са идентифицирани чрез експресия в E.coli WK6, се трансформират в експресионен вектор от Bacillus по два различни начина:
а/ С помощта на уникални рестрикционни сайтове вътре в α-амилазния ген (фиг.4), 15 фрагментите, носещи мутацията, се изолират от pMaTLia6 мутанти и се субклонират в хомоложни позиции на рВМаб. Последният плазмид, който може да бъде реплициран както в E.coli и така и в Bacillus, впоследствие се 20 смила със SacI и се рециркулизира с Т4 ДНК лигаза. След трансформация в Вас. Subtilis 1А40, се получава високо ниво на а-амилаза под контрола на SPO2 промотора. Рециркуларизираният pBMa6Lia6, е наречен рВ6.1ла6,за 25 да се отбележи отстраняването на E.coli участък от вектора.
в/ рВМаб.Lia6 едноверижна ДНК се събира отново от E.coli и циркуляризира с двуверижна ДНК рВПсб, смила се до получаване 30 на дар-дуплекс с очакваната празнина върху α-амилазния ген. Тази празнина след това се подлага на сайт насочена мутегенеза с един олигонуклеотид /както бе описано в експерименталната част/, който кодира желаната 35 мутация. рВМсб Lia6 векторът след това се трансформира в pBMc.Lia6 тип вектор, както бе описано по-горе. Комбинация от различни едноверижни мутации могат да се осъществят чрез метод а/ако мутациите са в различни 40 празнини, като за предпочитане, обаче се използва метод в/.
мутациите на мутантите D7 и 2D5 се прехвърлят в рВМаб.Lia6 по метода а/ чрез замяна на SacII-Sall фрагментите α-амилаза45 та се извлича от културалната среда на трансформирания Вас.subtilis 1А40. Супернатантите от двата мутанта се подлагат на скрининг процедурите от примерите и е потвърдено, че и двата мутанта, продуцират а-ами50 лаза, която е по-киселиноустойчива и по-термостабилна от α-амилазата, продуцирана от природния тип pB6.Lia6.
1.1 ;ill!l! I II II
Фенотипът на α-амилазните мутации в Bacillus по този начин не се различава от фенотипа на E.coli.
Мутантите pB6.Lia6 се трансформират в Вас. licheniformis T9, който е протеазно негативен, α-амилазно негативен дериват от Bac.licheniformis Т5 (EP-0253455,CBS 470.83). Гостоприемникът T9 се използва за получаване на високо ниво на α-амилазни мутанти в хомоложна система. Отстраняването на хромозомния α-амилазен ген, превръща този щам в особено подходящ за продукция на мунатна α-амилаза, без контаминация от природния тип α-амилаза повече. Ензимът, получен от този щам, се използва за изпитване за промишлено приложение. Демонстрирано е индустриланото приложение на мутантите pB6.Lia6.2D5 и pB6.Lia6.D7.
Пример 10. Тест за прилагане на мутантна α-амилаза при условията на разграждане на нишесте.
Методът за разграждане на нишесте включва: поставяне на нишестето в контакт с мутантната α-амилаза за достатъчно време и при условия, при които α-амилазата разгражда нишестето.
За тестуване на мутантната а-амилаза 2D5 в по-реални обстоятелства, ферментационната култура се пречиства /от пример 9/ чрез ултрафилтрация и се формира ензимът с 50% пропиленгликол.
Тестуват се три проби:
893701: WT В.licheniformis Т5 α-амилаза
1530 TAU/g 893703: 2D5 Мутант, изготвен като WT 2820 TAU/g Maxamyl 0819 Търговски проби 7090 TAU/o
Една TAU единица за /термостабилност на α-амилаза се определя като количествто ензим, което превръща при стандартни условия 1 mg нишесте за 1 min в продукт, имащ еднаква абсорбция както оцветяването на йодна реакция - 620 nm. Стандартните условия са рН 6,6 ; 30°С; реакционно време - 20 min. Съответното оцветяване е 25 g СоС12.6Н20,3,84 g К2Сг207 и 1 ml HCI /1М/ в 100 ml дестилирана вода.
1. Тест на набъбване при ниско рН /5,5 и 5,25/
Температурата на изливаното нишесте се увеличава до 110 ± 5°С толкова бързо, кол кото е възможно и се запазва за 6 min.
Набъбването се провежда в непрекъснат поток /5,4 Ι/h/. Три проби от 135 ml /1,5 min на разреждане/ са взети след 45,60 и 75 min от разреждането и се оставят при 95°С за 2 h. След този период, 50 ml от пробите се подкиселяват с 0,4 ml H2SO41N до получаване на рН 3,5 и се поставят на водна баня за 10 min, за да бъде спряна ензимната активност преди Д.Е. определянето.
Оставащата част от пробата се охлажда за определяне остатъчната ензимна активност.
Изливаната смес е:
3,3 kg пшенично нишесте Д. 88% /2,904 kg сухо нишесте/ 5,45 1 вода /40 Т.Н./
Суха субстанция на изливаното нишесте е 33% рН се коригира до 5,5 с 1N сярна киселина или IN NaOH. Ензимна концентрация: 4,4 TAU/g сухо нишесте.
Скоростта на потока се проверява два или три пъти по време на третирането.
2. Определяне на Д.Е.
Суха субстанция от набъбналото нишесте се проверява с рефрактомер /около 34%/. Д.Е. се определя чрез известния lane Eynon метод. Резултатите са показани на фигура 15.
3. Остатъчна ензимна активност
Остатъчната ензимна активност в набъбването нишесте е определена чрез амилографа на Варбендер.
g картофено нишесте
390 ml дестилирана вода при 50°С ml Трисбуфер 0,05 М, рН 6,50 ml 1аС12.2Н20 за 30 g/l
Температурата се повишава до 80°С /1,5°С/ min/, докато вискозитетът се стабилизира /10 min/, 5 ml разредено набъбнало нишесте /7о до 50 ml с дестилирана вода/ се добавя, измерва се увеличението на вискозитета след 20 min, който вискозитет е функция на ензимната активност. Стандартна крива с позната ензимна концентрация позволява да се определи остатъчната активност в TAU.
Мутантът 2D5 се представя забележително по-добре при рН <5,5 и 110°С от WT ензима. С мутант 2D5 е получено увеличение от 2-3 ДЕ единици при рН 5,25.
Пример 11. Тест за приложение на мутантна α-амилаза при условията за текстилния дизайн
Декорацията на текстил включва поставяне на текстилна материя в контакт с мути15 шиш рала α-амилаза за достатъчно време и при условия, при които текстилната материя се декорира.
За тестуване на индустриалната приложимост на алкалните α-амилазни мутанти, тес- 5 тът се провежда за стабилност ри 20°С в следния разтвор:
1,4% Н202 /35% /
1,0-1,5% Сода каустик/100%/
15-20 ml/Ι натриев силикат /38 Ве/
0,3-0,5%1 Алкилбензен сулфонат /Ланарил N.A.-ICI/
0,5-1,0% Органичен стабилизатор /Тинокларит G/ j4
След инкубация за 2,5 h, -амилазните мутанти, се подбират по техните желани свойства, следва да имат някаква остатъчна ензимна активност.
Claims (13)
1. Мутантна α-амилаза, представляваща експресионен продукт на мутантна ДНК последователност, кодираща α-амилаза, харак- 25 теризираща се с това, че има най-малко една заместена аминокиселина в сравнение с природната α-амилаза и че мутантната а-амилаза проявява едно или повече подобрени биологични свойства в сравнение с природната а- 30 амилаза, като подобрена термостабилност, повишена стабилност при pH под 6,5 и/или повишена стабилност при pH над 7,5.
2. Мутантна α-амилаза, съгласно претенция 1, характеризираща се с това, че природ- 35 ната ДНК последователност, кодираща а-амилаза, е получена от микроорганизми от род Bacillus.
3. Мутантна α-амилаза, съгласно претенция 2, характеризираща се с това, че микроор- 40 ганизмите са избрани от групата, съдържаща B.stearothermophilus, В. licheniformis, B.amyloliquefaeiens.
4. Мутантна α-амилаза, съгласно която и да е претенция от 1 до 3, характеризираща 45 се с това, че мутантната α-амилаза, различна от природната мутантна α-амилаза, се получава от В.licheniformis чрез аминокиселинно заместване при една или повече от позициите 111, 133 и 149 или при съответните позиции 50 във всяка хомоложна мутантна а-амилаза.
5. Мутантна α-амилаза, съгласно която и да е претенция от 1 до 4, характеризираща се с това, че съдържа една или повече от следните заместени аминокиселини:
Ala-111-Thr, His-133-Tyr, Thr-149-Ile.
6. Мутантна ДНК последователност, кодираща мутантна α-амилаза, съгласно коя да е претенция от 1 до 5.
7. Експресионен вектор, съдържащ мутантна ДНК последователност, съгласно претенция 6.
8. Клетка-гостоприемник, съдържаща експресионния вектор, съгласно претенция 7.
9. Клетка-гостоприемник, природно неспособна да продуцира екстрацелуларни амилолитични ензими преди трансформация, характеризираща се с това, че се трансформира с експресионния вектор, съгласно претенция 7.
10. Клетка-гостоприемник, съгласно претенция 9, характеризираща се с това, че е щам В.licheniformis T9.
11. Метод за получаване на мутантна α-амилаза с подобрени биохимични свойства, характеризиращ се с това, че включва:
- мутагенеза на ДНК последователност, кодираща а-амилаза;
- инкорпориране на мутантната ДНК последователност в експресионен вектор;
- трансформиране с експресионния вектор, съдържащ мутантната ДНК последователност на клетка-гостоприемник, подходяща за експресия и продукция на мутантната аамилаза;
- култивиране на трансформираните клетки, както са определени във всяка една от претенции 8-10, при условията на получаване на мутантна α-амилаза и - изолиране на мутантната α-амилаза от културалната среда.
12. Метод за разграждане на нишесте, в който се прилага мутантна α-амилаза, характеризиращ се с това, че нишестето се поставя в контакт с мутантна α-амилаза, както е определено във всяка една претенция от 1 до 5, за време и при условия присъщи за ензимната реакция.
13. Метод за декорация на текстил, в който се прилага мутантна α-амилаза, характеризиращ се с това, че текстилната материя се поставя в контакт с мутантна а-амилаза, както е определено във всяка една претенция от 1 до 5, за време и при условия, присъщи за ензимната реакция.
Приложение: 14 фигури
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP89201735 | 1989-06-29 | ||
PCT/EP1990/001042 WO1991000353A2 (en) | 1989-06-29 | 1990-06-27 | MUTANT MICROBIAL α-AMYLASES WITH INCREASED THERMAL, ACID AND/OR ALKALINE STABILITY |
Publications (2)
Publication Number | Publication Date |
---|---|
BG93814A BG93814A (bg) | 1993-12-24 |
BG61081B1 true BG61081B1 (bg) | 1996-10-31 |
Family
ID=8202426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BG93814A BG61081B1 (bg) | 1989-06-29 | 1991-02-11 | МУТАНТНИ МИКРОБИАЛНИ α-АМИЛАЗИ С ПОВИШЕНА ТЕРМИЧНА, КИСЕЛИННА И/ИЛИ АЛКАЛНА УСТОЙЧИВОСТ |
Country Status (17)
Country | Link |
---|---|
US (1) | US5364782A (bg) |
EP (1) | EP0410498B1 (bg) |
JP (2) | JP3086249B2 (bg) |
KR (1) | KR0165550B1 (bg) |
CN (1) | CN1050220A (bg) |
AT (1) | ATE166922T1 (bg) |
BG (1) | BG61081B1 (bg) |
BR (1) | BR9006818A (bg) |
CA (1) | CA2030554C (bg) |
DD (1) | DD301620A9 (bg) |
DE (1) | DE69032360T2 (bg) |
DK (1) | DK0410498T3 (bg) |
ES (1) | ES2117625T3 (bg) |
FI (1) | FI103285B1 (bg) |
IE (1) | IE902369A1 (bg) |
PT (1) | PT94560B (bg) |
WO (1) | WO1991000353A2 (bg) |
Families Citing this family (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992019744A1 (en) * | 1991-05-06 | 1992-11-12 | Valio, Finnish Co-Operative Dairies' Association | ACID α-AMYLASE |
EP0672154A1 (en) * | 1991-11-14 | 1995-09-20 | Novo Nordisk A/S | A PROCESS FOR EXPRESSING GENES IN $i(BACILLUS LICHENIFORMIS) |
WO1994013792A1 (en) * | 1992-12-09 | 1994-06-23 | Yoshiyuki Takasaki | NOVEL ACID- AND HEAT-RESISTANT α-AMYLASE, PROCESS FOR PRODUCING THE SAME, AND METHOD OF LIQUEFYING STARCH BY USING THE SAME |
DK154292D0 (da) * | 1992-12-23 | 1992-12-23 | Novo Nordisk As | Nyt enzym |
CA2155831C (en) * | 1993-02-11 | 2009-11-10 | Richard L. Antrim | Oxidatively stable alpha-amylase |
EP0670367B1 (en) * | 1993-05-19 | 2003-08-13 | Kao Corporation | LIQUEFYING ALKALINE [alpha]-AMYLASE, PROCESS FOR PRODUCING THE SAME, AND DETERGENT COMPOSITION CONTAINING THE SAME |
EP2199386A1 (en) | 1993-10-08 | 2010-06-23 | Novozymes A/S | Amylase variants |
US5830837A (en) * | 1994-11-22 | 1998-11-03 | Novo Nordisk A/S | Amylase variants |
BR9407767A (pt) * | 1993-10-08 | 1997-03-18 | Novo Nordisk As | Variante de enzima &-amilase uso da mesma construção de DNA vetor de express o recombinante célula processos para produzir uma &-amilase hibrida e para preparar uma variante de uma &-amilase aditivo detergente e composições detergentes |
TW268980B (bg) * | 1994-02-02 | 1996-01-21 | Novo Nordisk As | |
WO1995026397A1 (en) * | 1994-03-29 | 1995-10-05 | Novo Nordisk A/S | Alkaline bacillus amylase |
TW255887B (en) * | 1994-05-25 | 1995-09-01 | Lilly Co Eli | Synthesis of benzoquinolinones |
WO1995035382A2 (en) * | 1994-06-17 | 1995-12-28 | Genecor International Inc. | NOVEL AMYLOLYTIC ENZYMES DERIVED FROM THE B. LICHENIFORMIS α-AMYLASE, HAVING IMPROVED CHARACTERISTICS |
WO1996017056A1 (en) * | 1994-12-02 | 1996-06-06 | Institut Pasteur | Hypermutagenesis |
KR100511499B1 (ko) * | 1995-02-03 | 2005-12-21 | 노보자임스 에이/에스 | 소정 특성을 가지는 알파-아밀라제 돌연변이체를 디자인하는 방법 |
US7115409B1 (en) | 1995-02-03 | 2006-10-03 | Novozymes A/S | α-amylase mutants |
US6440716B1 (en) | 1995-02-03 | 2002-08-27 | Novozymes A/S | α-amylase mutants |
CN101381712A (zh) * | 1995-02-03 | 2009-03-11 | 诺维信公司 | 淀粉酶变体 |
AR000862A1 (es) * | 1995-02-03 | 1997-08-06 | Novozymes As | Variantes de una ó-amilasa madre, un metodo para producir la misma, una estructura de adn y un vector de expresion, una celula transformada por dichaestructura de adn y vector, un aditivo para detergente, composicion detergente, una composicion para lavado de ropa y una composicion para la eliminacion del |
US6093562A (en) * | 1996-02-05 | 2000-07-25 | Novo Nordisk A/S | Amylase variants |
KR19980702782A (ko) * | 1995-03-09 | 1998-08-05 | 혼 마가렛 에이. | 녹말 액화 방법 |
US5736499A (en) * | 1995-06-06 | 1998-04-07 | Genencor International, Inc. | Mutant A-amylase |
JP3025627B2 (ja) | 1995-06-14 | 2000-03-27 | 花王株式会社 | 液化型アルカリα−アミラーゼ遺伝子 |
AR003020A1 (es) * | 1995-07-24 | 1998-05-27 | Procter & Gamble | Composicion detergente que comprende una amilasa de estabilidad oxidativa aumentada y un sistema surfactante especifico. |
JPH11514219A (ja) * | 1995-09-13 | 1999-12-07 | ジェネンコア インターナショナル インコーポレーテッド | 好アルカリ性で好熱姓の微生物およびそれから得られる酵素 |
ES2432519T3 (es) | 1996-04-30 | 2013-12-04 | Novozymes A/S | Mutantes de alfa-amilasa |
US6197070B1 (en) | 1996-05-15 | 2001-03-06 | The Procter & Gamble Company | Detergent compositions comprising alpha combination of α-amylases for malodor stripping |
US5958739A (en) * | 1996-06-06 | 1999-09-28 | Genencor International Inc. | Mutant α-amylase |
US6066779A (en) * | 1997-04-28 | 2000-05-23 | Yan's Heterosis & Herbicide, Inc. | Crop heterosis and herbicide |
US6080568A (en) * | 1997-08-19 | 2000-06-27 | Genencor International, Inc. | Mutant α-amylase comprising modification at residues corresponding to A210, H405 and/or T412 in Bacillus licheniformis |
US6361989B1 (en) | 1997-10-13 | 2002-03-26 | Novozymes A/S | α-amylase and α-amylase variants |
ES2322825T3 (es) | 1997-10-13 | 2009-06-29 | Novozymes A/S | Mutantes de alfa-amilasa. |
CA2308119C (en) | 1997-10-30 | 2014-06-03 | Novo Nordisk A/S | .alpha.-amylase mutants |
CN100497614C (zh) | 1998-06-10 | 2009-06-10 | 诺沃奇梅兹有限公司 | 甘露聚糖酶 |
US6410295B1 (en) | 1999-03-30 | 2002-06-25 | Novozymes A/S | Alpha-amylase variants |
KR100808517B1 (ko) | 1999-03-30 | 2008-02-29 | 노보자임스 에이/에스 | α-아밀라제 변이체 |
WO2001016348A1 (en) * | 1999-09-01 | 2001-03-08 | Novozymes A/S | Maltogenic amylase-modified starch derivatives |
EP2298875B1 (en) | 2000-03-08 | 2015-08-12 | Novozymes A/S | Variants with altered properties |
DK1307547T3 (da) | 2000-07-28 | 2006-03-20 | Henkel Kgaa | Hidtil ukendt amylolytisk enzym fra Bacillus sp. A 7-7 (DSM 12368) samt vaske- og rengöringsmidler med dette hidtil ukendte amylolytiske enzym |
US20020155574A1 (en) * | 2000-08-01 | 2002-10-24 | Novozymes A/S | Alpha-amylase mutants with altered properties |
WO2002010355A2 (en) | 2000-08-01 | 2002-02-07 | Novozymes A/S | Alpha-amylase mutants with altered stability |
DK1337648T3 (da) | 2000-11-28 | 2008-01-07 | Henkel Kgaa | Ny cyclodextrin-glucanotransferase (CGTase) fra Bacillus agaradherens (DSM 9948) samt vaske- og rengöringsmidler med denne nye cyclodextrin-glucanotransferase |
JP3753945B2 (ja) | 2001-02-14 | 2006-03-08 | ヒゲタ醤油株式会社 | 大腸菌とブレビバチルス属細菌間のプラスミドシャトルベクター |
DE60234523D1 (de) | 2001-05-15 | 2010-01-07 | Novozymes As | Alpha-amylasevariante mit veränderten eigenschaften |
DE10138753B4 (de) * | 2001-08-07 | 2017-07-20 | Henkel Ag & Co. Kgaa | Wasch- und Reinigungsmittel mit Hybrid-Alpha-Amylasen |
DE10163748A1 (de) | 2001-12-21 | 2003-07-17 | Henkel Kgaa | Neue Glykosylhydrolasen |
CN1754020B (zh) * | 2002-12-20 | 2010-05-12 | 诺维信北美公司 | 织物、纤维或纱线的处理 |
WO2005001065A2 (en) | 2003-04-01 | 2005-01-06 | Genencor International, Inc. | Variant humicola grisea cbh1.1 |
ES2554635T3 (es) | 2004-07-05 | 2015-12-22 | Novozymes A/S | Variantes de alfa-amilasa con propiedades alteradas |
DE102004047777B4 (de) | 2004-10-01 | 2018-05-09 | Basf Se | Alpha-Amylase-Varianten mit erhöhter Lösungsmittelstabilität, Verfahren zu deren Herstellung sowie deren Verwendung |
CN100396777C (zh) * | 2005-10-28 | 2008-06-25 | 南开大学 | 一种嗜热碱性α-淀粉酶及其编码基因 |
EP1876285A1 (de) * | 2006-07-05 | 2008-01-09 | DyStar Textilfarben GmbH & Co. Deutschland KG | Kombinierte Entmineralisierung und Entschlichtung von Textilfasermaterialien |
DK2215202T3 (da) | 2007-11-05 | 2017-11-27 | Danisco Us Inc | VARIANTER AF BACILLUS sp. TS-23 ALPHA-AMYLASE MED ÆNDREDE EGENSKABER |
EP2215110A2 (en) | 2007-11-05 | 2010-08-11 | Danisco US, Inc., Genencor Division | Alpha-amylase variants with altered properties |
AU2009212526A1 (en) | 2008-02-04 | 2009-08-13 | Danisco Us Inc. | TS23 alpha-amylase variants with altered properties |
CA2726265A1 (en) | 2008-06-06 | 2009-12-10 | Danisco Us Inc. | Geobacillus stearothermophilus alpha-amylase (amys) variants with improved properties |
CA2726274C (en) * | 2008-06-06 | 2018-11-20 | Danisco Us Inc. | Variant alpha-amylases from bacillus subtilis and methods of use, thereof |
MX2011003178A (es) | 2008-09-25 | 2011-04-21 | Danisco Inc | Mezclas de alfa-amilasa y metodos para usar esas mezclas. |
WO2011076897A1 (en) | 2009-12-22 | 2011-06-30 | Novozymes A/S | Use of amylase variants at low temperature |
DK2521774T3 (en) | 2010-01-04 | 2016-09-26 | Novozymes As | ALFA AMYLASE VARANTS AND POLYNUCLEOTIDES CODING THESE |
EP2357220A1 (en) | 2010-02-10 | 2011-08-17 | The Procter & Gamble Company | Cleaning composition comprising amylase variants with high stability in the presence of a chelating agent |
CN102869759B (zh) | 2010-02-10 | 2015-07-15 | 诺维信公司 | 在螯合剂存在下具有高稳定性的变体和包含变体的组合物 |
US9434932B2 (en) | 2011-06-30 | 2016-09-06 | Novozymes A/S | Alpha-amylase variants |
WO2014194054A1 (en) | 2013-05-29 | 2014-12-04 | Danisco Us Inc. | Novel metalloproteases |
WO2014194032A1 (en) | 2013-05-29 | 2014-12-04 | Danisco Us Inc. | Novel metalloproteases |
JP6367930B2 (ja) | 2013-05-29 | 2018-08-01 | ダニスコ・ユーエス・インク | 新規メタロプロテアーゼ |
WO2014194034A2 (en) | 2013-05-29 | 2014-12-04 | Danisco Us Inc. | Novel metalloproteases |
WO2015089441A1 (en) | 2013-12-13 | 2015-06-18 | Danisco Us Inc. | Serine proteases of bacillus species |
EP3910057A1 (en) | 2013-12-13 | 2021-11-17 | Danisco US Inc. | Serine proteases of the bacillus gibsonii-clade |
US10005850B2 (en) | 2013-12-16 | 2018-06-26 | E I Du Pont De Nemours And Company | Use of poly alpha-1,3-glucan ethers as viscosity modifiers |
EP3789407B1 (en) | 2013-12-18 | 2024-07-24 | Nutrition & Biosciences USA 4, Inc. | Cationic poly alpha-1,3-glucan ethers |
US20150232785A1 (en) | 2014-02-14 | 2015-08-20 | E I Du Pont De Nemours And Company | Polysaccharides for viscosity modification |
US9695253B2 (en) | 2014-03-11 | 2017-07-04 | E I Du Pont De Nemours And Company | Oxidized poly alpha-1,3-glucan |
JP6585698B2 (ja) | 2014-03-21 | 2019-10-02 | ダニスコ・ユーエス・インク | バチルス(Bacillus)種のセリンプロテアーゼ |
EP3158043B1 (en) | 2014-06-19 | 2021-03-10 | Nutrition & Biosciences USA 4, Inc. | Compositions containing one or more poly alpha-1,3-glucan ether compounds |
US9714403B2 (en) | 2014-06-19 | 2017-07-25 | E I Du Pont De Nemours And Company | Compositions containing one or more poly alpha-1,3-glucan ether compounds |
WO2016061438A1 (en) | 2014-10-17 | 2016-04-21 | Danisco Us Inc. | Serine proteases of bacillus species |
US20180010074A1 (en) | 2014-10-27 | 2018-01-11 | Danisco Us Inc. | Serine proteases of bacillus species |
WO2016069552A1 (en) | 2014-10-27 | 2016-05-06 | Danisco Us Inc. | Serine proteases |
US20170335306A1 (en) | 2014-10-27 | 2017-11-23 | Danisco Us Inc. | Serine proteases |
EP3212783B1 (en) | 2014-10-27 | 2024-06-26 | Danisco US Inc. | Serine proteases |
EP3212782B1 (en) | 2014-10-27 | 2019-04-17 | Danisco US Inc. | Serine proteases |
CN108064306B (zh) | 2014-12-23 | 2022-11-01 | 营养与生物科学美国4公司 | 酶促产生的纤维素 |
EP3294884B1 (en) | 2015-05-13 | 2021-01-27 | Danisco US Inc. | Aprl-clade protease variants and uses thereof |
WO2016201040A1 (en) | 2015-06-09 | 2016-12-15 | Danisco Us Inc. | Water-triggered enzyme suspension |
DK3307427T3 (da) | 2015-06-09 | 2023-11-06 | Danisco Us Inc | Osmotisk sprængnings-kapsler |
WO2016201069A1 (en) | 2015-06-09 | 2016-12-15 | Danisco Us Inc | Low-density enzyme-containing particles |
WO2016205755A1 (en) | 2015-06-17 | 2016-12-22 | Danisco Us Inc. | Bacillus gibsonii-clade serine proteases |
US20190153417A1 (en) | 2015-11-05 | 2019-05-23 | Danisco Us Inc | Paenibacillus sp. mannanases |
CN108603183B (zh) | 2015-11-05 | 2023-11-03 | 丹尼斯科美国公司 | 类芽孢杆菌属物种和芽孢杆菌属物种甘露聚糖酶 |
WO2017083229A1 (en) | 2015-11-13 | 2017-05-18 | E. I. Du Pont De Nemours And Company | Glucan fiber compositions for use in laundry care and fabric care |
US10844324B2 (en) | 2015-11-13 | 2020-11-24 | Dupont Industrial Biosciences Usa, Llc | Glucan fiber compositions for use in laundry care and fabric care |
JP6997706B2 (ja) | 2015-11-13 | 2022-01-18 | ニュートリション・アンド・バイオサイエンシーズ・ユーエスエー・フォー,インコーポレイテッド | 洗濯ケアおよび織物ケアにおいて使用するためのグルカン繊維組成物 |
JP2019500058A (ja) | 2015-12-09 | 2019-01-10 | ダニスコ・ユーエス・インク | α−アミラーゼ組み合わせ変異体 |
US20180362946A1 (en) | 2015-12-18 | 2018-12-20 | Danisco Us Inc. | Polypeptides with endoglucanase activity and uses thereof |
CN105802940B (zh) * | 2016-04-18 | 2019-04-16 | 广西大学 | 一种地衣芽胞杆菌高温α-淀粉酶突变体及其应用 |
WO2017192692A1 (en) | 2016-05-03 | 2017-11-09 | Danisco Us Inc | Protease variants and uses thereof |
CN109072213A (zh) | 2016-05-05 | 2018-12-21 | 丹尼斯科美国公司 | 蛋白酶变体及其用途 |
US11661567B2 (en) | 2016-05-31 | 2023-05-30 | Danisco Us Inc. | Protease variants and uses thereof |
JP7152319B2 (ja) | 2016-06-17 | 2022-10-12 | ダニスコ・ユーエス・インク | プロテアーゼ変異体およびその使用 |
WO2018085524A2 (en) | 2016-11-07 | 2018-05-11 | Danisco Us Inc | Laundry detergent composition |
CN110312794B (zh) | 2016-12-21 | 2024-04-12 | 丹尼斯科美国公司 | 吉氏芽孢杆菌进化枝丝氨酸蛋白酶 |
US20200392477A1 (en) | 2016-12-21 | 2020-12-17 | Danisco Us Inc. | Protease variants and uses thereof |
US11453871B2 (en) | 2017-03-15 | 2022-09-27 | Danisco Us Inc. | Trypsin-like serine proteases and uses thereof |
EP3601515A1 (en) | 2017-03-31 | 2020-02-05 | Danisco US Inc. | Delayed release enzyme formulations for bleach-containing detergents |
MX2019014556A (es) | 2017-06-30 | 2020-02-07 | Danisco Us Inc | Particulas que contienen enzimas de baja aglomeracion. |
EP3717643A1 (en) | 2017-11-29 | 2020-10-07 | Danisco US Inc. | Subtilisin variants having improved stability |
CA3086202A1 (en) | 2017-12-21 | 2019-06-27 | Danisco Us Inc. | Enzyme-containing, hot-melt granules comprising a thermotolerant desiccant |
MX2020008302A (es) | 2018-02-08 | 2020-10-14 | Danisco Us Inc | Partículas de matriz de cera térmicamente resistentes para encapsulación de enzimas. |
US20210214703A1 (en) | 2018-06-19 | 2021-07-15 | Danisco Us Inc | Subtilisin variants |
EP3799601A1 (en) | 2018-06-19 | 2021-04-07 | Danisco US Inc. | Subtilisin variants |
WO2020047215A1 (en) | 2018-08-30 | 2020-03-05 | Danisco Us Inc | Enzyme-containing granules |
JP2022503923A (ja) | 2018-09-27 | 2022-01-12 | ダニスコ・ユーエス・インク | 医療用器具を洗浄するための組成物 |
US20230028935A1 (en) | 2018-11-28 | 2023-01-26 | Danisco Us Inc | Subtilisin variants having improved stability |
US20220220419A1 (en) | 2019-05-24 | 2022-07-14 | Danisco Us Inc | Subtilisin variants and methods of use |
WO2020247582A1 (en) | 2019-06-06 | 2020-12-10 | Danisco Us Inc | Methods and compositions for cleaning |
WO2022047149A1 (en) | 2020-08-27 | 2022-03-03 | Danisco Us Inc | Enzymes and enzyme compositions for cleaning |
WO2023225459A2 (en) | 2022-05-14 | 2023-11-23 | Novozymes A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
US20240117275A1 (en) | 2021-01-29 | 2024-04-11 | Danisco Us Inc. | Compositions for cleaning and methods related thereto |
EP4363565A1 (en) | 2021-06-30 | 2024-05-08 | Danisco US Inc. | Variant lipases and uses thereof |
WO2023034486A2 (en) | 2021-09-03 | 2023-03-09 | Danisco Us Inc. | Laundry compositions for cleaning |
CN117957318A (zh) | 2021-09-13 | 2024-04-30 | 丹尼斯科美国公司 | 含有生物活性物质的颗粒 |
WO2023114936A2 (en) | 2021-12-16 | 2023-06-22 | Danisco Us Inc. | Subtilisin variants and methods of use |
CN118715318A (zh) | 2021-12-16 | 2024-09-27 | 丹尼斯科美国公司 | 枯草杆菌蛋白酶变体及其用途 |
WO2023114939A2 (en) | 2021-12-16 | 2023-06-22 | Danisco Us Inc. | Subtilisin variants and methods of use |
WO2023168234A1 (en) | 2022-03-01 | 2023-09-07 | Danisco Us Inc. | Enzymes and enzyme compositions for cleaning |
CN114875057A (zh) * | 2022-06-14 | 2022-08-09 | 中农华威生物制药(湖北)有限公司 | 一种可高效表达饲用低温酸性α-淀粉酶的枯草芽孢杆菌的构建方法 |
WO2023250301A1 (en) | 2022-06-21 | 2023-12-28 | Danisco Us Inc. | Methods and compositions for cleaning comprising a polypeptide having thermolysin activity |
WO2024050339A1 (en) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Mannanase variants and methods of use |
WO2024050346A1 (en) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Detergent compositions and methods related thereto |
WO2024050343A1 (en) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Subtilisin variants and methods related thereto |
WO2024102698A1 (en) | 2022-11-09 | 2024-05-16 | Danisco Us Inc. | Subtilisin variants and methods of use |
CN115806959A (zh) * | 2022-12-23 | 2023-03-17 | 山东隆科特酶制剂有限公司 | 碱性淀粉酶突变体及其应用 |
WO2024163584A1 (en) | 2023-02-01 | 2024-08-08 | Danisco Us Inc. | Subtilisin variants and methods of use |
WO2024186819A1 (en) | 2023-03-06 | 2024-09-12 | Danisco Us Inc. | Subtilisin variants and methods of use |
WO2024191711A1 (en) | 2023-03-16 | 2024-09-19 | Nutrition & Biosciences USA 4, Inc. | Brevibacillus fermentate extracts for cleaning and malodor control and use thereof |
CN117305279B (zh) * | 2023-10-08 | 2024-03-26 | 态创生物科技(广州)有限公司 | 高活性和高耐热性的α-淀粉酶突变体及其制备方法和应用 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394443A (en) * | 1980-12-18 | 1983-07-19 | Yale University | Method for cloning genes |
CA1170202A (en) * | 1981-01-15 | 1984-07-03 | Susan Mickel | Process for cloning the gene coding for a thermostable alpha-amylase into escherichia coli and bacillus subtilis |
WO1985000382A1 (en) * | 1983-07-06 | 1985-01-31 | Gist-Brocades N.V. | Molecular cloning and expression in industrial microorganism species |
US4740461A (en) * | 1983-12-27 | 1988-04-26 | Genetics Institute, Inc. | Vectors and methods for transformation of eucaryotic cells |
US4717662A (en) * | 1985-01-31 | 1988-01-05 | Miles Laboratories, Inc. | Thermal stabilization of alpha-amylase |
ATE93541T1 (de) * | 1985-07-03 | 1993-09-15 | Genencor Int | Hybride polypeptide und verfahren zu deren herstellung. |
US5024943A (en) * | 1985-11-07 | 1991-06-18 | Gist-Brocades | Regulatory region cloning and analysis plasmid for bacillus |
DK311186D0 (da) * | 1986-06-30 | 1986-06-30 | Novo Industri As | Enzymer |
NO872932L (no) * | 1986-07-18 | 1988-01-19 | Gist Brocades Nv | Fremgangsmaate for fremstilling av proteiner med faktorviiiaktivitet ved hjelp av mikrobielle vertsceller, eksprimeringsvektorer, vertsceller, antibiotika. |
EP0285123A3 (en) * | 1987-04-03 | 1989-02-01 | Stabra AG | A method for complete mutagenesis of nucleic acids |
WO1989001520A1 (en) * | 1987-08-11 | 1989-02-23 | Cetus Corporation | Procaryotic xylose isomerase muteins and method to increase protein stability |
-
1990
- 1990-06-27 AT AT90201706T patent/ATE166922T1/de not_active IP Right Cessation
- 1990-06-27 WO PCT/EP1990/001042 patent/WO1991000353A2/en active IP Right Grant
- 1990-06-27 ES ES90201706T patent/ES2117625T3/es not_active Expired - Lifetime
- 1990-06-27 EP EP90201706A patent/EP0410498B1/en not_active Expired - Lifetime
- 1990-06-27 BR BR909006818A patent/BR9006818A/pt not_active Application Discontinuation
- 1990-06-27 DK DK90201706T patent/DK0410498T3/da active
- 1990-06-27 DE DE69032360T patent/DE69032360T2/de not_active Expired - Lifetime
- 1990-06-27 US US07/623,953 patent/US5364782A/en not_active Expired - Lifetime
- 1990-06-27 KR KR1019910700227A patent/KR0165550B1/ko not_active IP Right Cessation
- 1990-06-27 CA CA002030554A patent/CA2030554C/en not_active Expired - Lifetime
- 1990-06-27 JP JP02509959A patent/JP3086249B2/ja not_active Expired - Lifetime
- 1990-06-29 PT PT94560A patent/PT94560B/pt not_active IP Right Cessation
- 1990-06-29 DD DD90342352A patent/DD301620A9/de unknown
- 1990-06-29 CN CN90106811A patent/CN1050220A/zh active Pending
- 1990-06-29 IE IE236990A patent/IE902369A1/en unknown
-
1991
- 1991-02-11 BG BG93814A patent/BG61081B1/bg unknown
- 1991-02-25 FI FI910907A patent/FI103285B1/fi active
-
1999
- 1999-10-27 JP JP11305433A patent/JP2000197491A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
IE902369L (en) | 1990-12-29 |
WO1991000353A2 (en) | 1991-01-10 |
FI910907A0 (fi) | 1991-02-25 |
ES2117625T3 (es) | 1998-08-16 |
FI103285B (fi) | 1999-05-31 |
ATE166922T1 (de) | 1998-06-15 |
BG93814A (bg) | 1993-12-24 |
US5364782A (en) | 1994-11-15 |
CA2030554A1 (en) | 1990-12-30 |
FI103285B1 (fi) | 1999-05-31 |
EP0410498A2 (en) | 1991-01-30 |
BR9006818A (pt) | 1991-08-06 |
DE69032360D1 (de) | 1998-07-09 |
CN1050220A (zh) | 1991-03-27 |
EP0410498A3 (en) | 1991-11-06 |
JPH04500756A (ja) | 1992-02-13 |
DE69032360T2 (de) | 1998-12-03 |
AU638263B2 (en) | 1993-06-24 |
AU5953890A (en) | 1991-01-17 |
DK0410498T3 (da) | 1999-03-22 |
KR0165550B1 (ko) | 1999-01-15 |
JP3086249B2 (ja) | 2000-09-11 |
WO1991000353A3 (en) | 1991-02-21 |
PT94560B (pt) | 1998-01-30 |
EP0410498B1 (en) | 1998-06-03 |
PT94560A (pt) | 1991-02-08 |
IE902369A1 (en) | 1991-06-19 |
JP2000197491A (ja) | 2000-07-18 |
KR920701449A (ko) | 1992-08-11 |
CA2030554C (en) | 2001-08-28 |
DD301620A9 (de) | 1993-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BG61081B1 (bg) | МУТАНТНИ МИКРОБИАЛНИ α-АМИЛАЗИ С ПОВИШЕНА ТЕРМИЧНА, КИСЕЛИННА И/ИЛИ АЛКАЛНА УСТОЙЧИВОСТ | |
KR102375732B1 (ko) | 바실러스 리체니포르미스에서 단백질 생산을 증가시키기 위한 조성물 및 방법 | |
EP1419255B1 (de) | Eine neue gruppe von alpha-amylasen sowie ein verfahren zur identifizierung und gewinnung neuer alpha-amylasen | |
EP1066374B1 (en) | Amylolytic enzyme variants | |
US5817498A (en) | Pullulanase producing microrganisms | |
JP2018532413A (ja) | タンパク質発現の増強およびその方法 | |
JPH04507346A (ja) | アルカリ性タンパク質分解酵素およびその製造方法 | |
JPH0829091B2 (ja) | ハイブリッドpma配列の製造方法及び該方法に使用するベクター | |
WO2020156903A1 (en) | Cognate foldase co-expression | |
AU629959B2 (en) | Mutant enzyme having reduced stability under industrial application conditions | |
WO2011049227A1 (en) | Modified promoter | |
CN115335503A (zh) | 用于增强芽孢杆菌属细胞中蛋白质产生的组合物和方法 | |
AU638263C (en) | Mutant microbial alpha-amylases with increased thermal, acid and/or alkaline stability | |
WO2024146919A1 (en) | Use of foldases to improve heterologous expression of secreted molecules | |
WO2024040043A1 (en) | Expression systems for phosphatases | |
CN117769597A (zh) | 用于增强芽孢杆菌属细胞中蛋白质产生的组合物和方法 | |
EP1710303A1 (en) | Amylolytic enzyme variants |