Nothing Special   »   [go: up one dir, main page]

Hansen et al., 2018 - Google Patents

Soccer ball recognition and distance prediction using fuzzy Petri nets

Hansen et al., 2018

Document ID
1308893508240430382
Author
Hansen P
Franco P
Kim S
Publication year
Publication venue
2018 IEEE International Conference on Information Reuse and Integration (IRI)

External Links

Snippet

Petri net (PN) is a modeling tool to represent systems or processes. With the addition of fuzzy logic, Fuzzy Petri nets (FPN) are built to allow for systems to deal with uncertainty. The capability to deal with uncertainty is a useful tool when designing, especially for artificial …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6288Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
    • G06K9/629Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00771Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models

Similar Documents

Publication Publication Date Title
CN110168477B (en) Deep learning system for cuboid detection
Zhao et al. A fully end-to-end deep learning approach for real-time simultaneous 3D reconstruction and material recognition
Sjarif et al. Detection of abnormal behaviors in crowd scene: a review
Wu et al. Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking
Li et al. Turing learning: a metric-free approach to inferring behavior and its application to swarms
JP2021163503A (en) Three-dimensional pose estimation by two-dimensional camera
Ajagbe et al. Investigating the efficiency of deep learning models in bioinspired object detection
Zeng et al. Pixel modeling using histograms based on fuzzy partitions for dynamic background subtraction
Lu et al. Trajectory-based motion pattern analysis of crowds
JP2021176078A (en) Deep layer learning and feature detection through vector field estimation
Hansen et al. Soccer ball recognition and distance prediction using fuzzy Petri nets
CN112241758A (en) Apparatus and method for evaluating a saliency map determiner
Pajares et al. Fuzzy cognitive maps applied to computer vision tasks
Zmudzinski Deep Learning Guinea Pig Image Classification Using Nvidia DIGITS and GoogLeNet.
Yellapantula Synthesizing realistic data for vision based drone-to-drone detection
Jiang et al. Convolutional Neural Network Approach to Classifying the CIFAR-10 Dataset: How can supervised machine learning be applied as a technique on a convolutional neural network to solve the image classification problem of recognizing and classifying images in the CIFAR-10 dataset?
Muthunagai et al. Crowd Density Estimation Using Neural Network for COVID-19 and Future Pandemics
Riou et al. Seeing by haptic glance: Reinforcement learning based 3d object recognition
Örnek et al. A novel approach for visualization of class activation maps with reduced dimensions
Steffi et al. Object detection on robosoccer environment using convolution neural network
CN114693986A (en) Training method of active learning model, image processing method and device
Ohn-Bar et al. What makes an on-road object important?
Keerthikeshwar et al. Deep learning for robot vision
Grari et al. Comparative study of teachable machine for forest fire and smoke detection by drone
Chakrabarty et al. Q-learning elicited disaster management system using intelligent mapping approach