Nothing Special   »   [go: up one dir, main page]

Lu et al., 2017 - Google Patents

Trajectory-based motion pattern analysis of crowds

Lu et al., 2017

Document ID
14836163373863262685
Author
Lu W
Wei X
Xing W
Liu W
Publication year
Publication venue
Neurocomputing

External Links

Snippet

Various techniques have been developed in recent years to simulate crowds, and most of them focus on collision avoidance while ignoring basic statistical spatiotemporal properties that crowd should possess. In order to improve the quality of crowd simulations, in this …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00771Recognising scenes under surveillance, e.g. with Markovian modelling of scene activity
    • G06K9/00778Recognition or static of dynamic crowd images, e.g. recognition of crowd congestion
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30781Information retrieval; Database structures therefor; File system structures therefor of video data
    • G06F17/30784Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre
    • G06F17/30799Information retrieval; Database structures therefor; File system structures therefor of video data using features automatically derived from the video content, e.g. descriptors, fingerprints, signatures, genre using low-level visual features of the video content
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
    • G06Q50/01Social networking

Similar Documents

Publication Publication Date Title
Song et al. Pedestrian trajectory prediction based on deep convolutional LSTM network
Li et al. Crowded scene analysis: A survey
Lu et al. Trajectory-based motion pattern analysis of crowds
Zhou et al. Learning collective crowd behaviors with dynamic pedestrian-agents
Ballan et al. Knowledge transfer for scene-specific motion prediction
Xu et al. Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts
Sillito et al. Semi-supervised learning for anomalous trajectory detection
Wang et al. Dairy goat detection based on Faster R-CNN from surveillance video
Ali et al. Modeling, simulation and visual analysis of crowds: a multidisciplinary perspective
Lamba et al. Crowd monitoring and classification: a survey
Modiri Assari et al. Human re-identification in crowd videos using personal, social and environmental constraints
Bour et al. Crowd behavior analysis from fixed and moving cameras
Zitouni et al. Visual analysis of socio-cognitive crowd behaviors for surveillance: A survey and categorization of trends and methods
Zalluhoglu et al. Region based multi-stream convolutional neural networks for collective activity recognition
Li et al. Measuring collectiveness via refined topological similarity
Burney et al. Crowd video classification using convolutional neural networks
Liu et al. Robust individual and holistic features for crowd scene classification
Ghatak et al. GAN based efficient foreground extraction and HGWOSA based optimization for video synopsis generation
Behera et al. Crowd characterization in surveillance videos using deep-graph convolutional neural network
Behera et al. Understanding crowd flow patterns using active-Langevin model
Liu et al. Deep fully connected model for collective activity recognition
Bourouis et al. Bayesian frameworks for traffic scenes monitoring via view-based 3D cars models recognition
Patino et al. Multiresolution semantic activity characterisation and abnormality discovery in videos
Tan et al. A data-driven path planning model for crowd capacity analysis
Kumaran et al. Classification of human activity detection based on an intelligent regression model in video sequences