Nothing Special   »   [go: up one dir, main page]

Yu et al., 2009 - Google Patents

A low-area multi-link interconnect architecture for GALS chip multiprocessors

Yu et al., 2009

View PDF
Document ID
6740319654772846050
Author
Yu Z
Baas B
Publication year
Publication venue
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

External Links

Snippet

A new inter-processor communication architecture for chip multiprocessors is proposed which has a low area cost, flexible routing capability, and supports globally asynchronous locally synchronous (GALS) clocking styles. To achieve a low area cost, the proposed …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a programme unit and a register, e.g. for a simultaneous processing of several programmes
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • G06F15/17356Indirect interconnection networks
    • G06F15/17368Indirect interconnection networks non hierarchical topologies
    • G06F15/17381Two dimensional, e.g. mesh, torus
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • G06F15/78Architectures of general purpose stored programme computers comprising a single central processing unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored programme computers
    • G06F15/80Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
    • G06F15/8007Architectures of general purpose stored programme computers comprising an array of processing units with common control, e.g. single instruction multiple data processors single instruction multiple data [SIMD] multiprocessors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4004Coupling between buses
    • G06F13/4022Coupling between buses using switching circuits, e.g. switching matrix, connection or expansion network
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F1/00Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/10Energy efficient computing
    • Y02B60/12Reducing energy-consumption at the single machine level, e.g. processors, personal computers, peripherals, power supply
    • Y02B60/1232Acting upon peripherals
    • Y02B60/1235Acting upon peripherals the peripheral being a bus
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3867Concurrent instruction execution, e.g. pipeline, look ahead using instruction pipelines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3885Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units
    • G06F9/3889Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute
    • G06F9/3891Concurrent instruction execution, e.g. pipeline, look ahead using a plurality of independent parallel functional units controlled by multiple instructions, e.g. MIMD, decoupled access or execute organised in groups of units sharing resources, e.g. clusters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination

Similar Documents

Publication Publication Date Title
Horak et al. A low-overhead asynchronous interconnection network for GALS chip multiprocessors
Kasapaki et al. Argo: A real-time network-on-chip architecture with an efficient GALS implementation
Benini et al. Network-on-chip architectures and design methods
Plana et al. SpiNNaker: design and implementation of a GALS multicore system-on-chip
Bjerregaard et al. Implementation of guaranteed services in the MANGO clockless network-on-chip
Tran et al. Achieving high-performance on-chip networks with shared-buffer routers
Coates et al. The Post Office experience: Designing a large asynchronous chip
Grecu et al. Timing analysis of network on chip architectures for MP-SoC platforms
Yu et al. A low-area multi-link interconnect architecture for GALS chip multiprocessors
Psarras et al. Networks-on-chip with double-data-rate links
Tran et al. A reconfigurable source-synchronous on-chip network for GALS many-core platforms
Ax et al. Comparing synchronous, mesochronous and asynchronous NoCs for GALS based MPSoCs
Feng et al. Heterogeneous die-to-die interfaces: Enabling more flexible chiplet interconnection systems
Fischer et al. FlooNoC: A multi-Tb/s wide NoC for heterogeneous AXI4 traffic
Huang et al. A voting approach for adaptive network-on-chip power-gating
Bertozzi et al. Cost-effective and flexible asynchronous interconnect technology for GALS systems
Qian et al. FSNoC: a flit-level speedup scheme for network on-chips using self-reconfigurable bidirectional channels
Sievers et al. Evaluation of interconnect fabrics for an embedded MPSoC in 28 nm FD-SOI
Kasapaki et al. Router designs for an asynchronous time-division-multiplexed network-on-chip
Beerel et al. Low power and energy efficient asynchronous design
Fischer et al. FlooNoC: A 645-Gb/s/link 0.15-pJ/B/hop open-source NoC with wide physical links and end-to-end AXI4 parallel multistream support
Pontes et al. Hermes-AA: A 65nm asynchronous NoC router with adaptive routing
Gibiluka et al. BAT-Hermes: a transition-signaling bundled-data NoC router
Bahn et al. On design and application mapping of a Network-on-Chip (NoC) architecture
Silvano et al. Low power networks-on-chip