proposed
approved
proposed
approved
editing
proposed
Given a sequence b(n) defined by variables ab(0) to ab(5) and recursion b(n) = -(b(n-6) * a(n-2) * (b(n-4) * b(n-2)^3 - b(n-3)^3 * b(n-1)) - b(n-5) * b(n-3) * b(n-1) * (b(n-5) * b(n-2)^2 - b(n-4)^2 * b(n-1)))/(b(n-4) * (b(n-5) * b(n-3)^3 - b(n-4)^3 * b(n-2))). The denominator of b(n+1) has a factor of (b(1) * b(3)^3 - b(2)^3 * b(4))^a(n+1). For example, if gb(0) = 2, gb(1) = gb(2) = gb(3) = 1, gb(4) = 1+x, gb(5) = 4, then the denominator of b(n+1) is x^a(n+1). - Michael Somos, Nov 15 2023
Given a sequence b(n) defined by variables a(0) to a(5) and recursion b(n) = -(b(n-6) * a(n-2) * (b(n-4) * b(n-2)^3 - b(n-3)^3 * b(n-1)) - b(n-5) * b(n-3) * b(n-1) * (b(n-5) * b(n-2)^2 - b(n-4)^2 * b(n-1)))/(b(n-4) * (b(n-5) * b(n-3)^3 - b(n-4)^3 * b(n-2))). The denominator of b(n+1) has a factor of (b(1) * b(3)^3 - b(2)^3 * b(4))^a(n+1). For example, if g(0) = 2, g(1) = g(2) = g(3) = 1, g(4) = 1+x, g(5) = 4, then the denominator of b(n+1) is x^a(n+1). - Michael Somos, Nov 15 2023
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
From Amiram Eldar, Sep 17 2022: (Start)
Sum_{n>=5} 1/a(n) = 518/45 - 2*sqrt(2*(sqrt(5)+5))*Pi/3.
Sum_{n>=5} (-1)^(n+1)/a(n) = 8*sqrt(5)*arccoth(3/sqrt(5))/3 + 92*log(2)/15 - 418/45. (End)
approved
editing
(MAGMAMagma) [Round(n*(n-3)/10): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
reviewed
approved