Nothing Special   »   [go: up one dir, main page]

login
Search: keyword:new
     Sort: relevance | references | number | modified | created      Format: long | short | data
The terms of A329447 sorted into increasing order.
+0
0
0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49, 50, 55, 56, 57, 58, 59, 60, 66, 67, 68, 69, 70, 77, 78, 79, 80, 88, 89, 90, 99, 100, 112, 113, 114, 115, 116, 117, 118, 119, 120, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 138, 139, 140, 145, 146, 147, 148
OFFSET
1,2
COMMENTS
Is there an independent characterization of these numbers?
CROSSREFS
Cf. A329447.
KEYWORD
nonn,base,new
AUTHOR
N. J. A. Sloane, Nov 11 2024
STATUS
approved
Numbers k for which A276085(k) is not a multiple of 4 and has at least one divisor of the form p^p, with p an odd prime, where A276085 is fully additive with a(p) = p#/p.
+0
0
174, 232, 282, 325, 376, 438, 462, 474, 539, 584, 606, 616, 632, 654, 678, 798, 808, 872, 904, 906, 931, 966, 978, 1002, 1064, 1074, 1075, 1105, 1127, 1182, 1208, 1288, 1302, 1304, 1336, 1398, 1432, 1506, 1519, 1576, 1626, 1662, 1736, 1755, 1842, 1864, 1866, 2008, 2168, 2216, 2226, 2340, 2425, 2442, 2456, 2488, 2514
OFFSET
1,1
FORMULA
{k such that A377868(k) < A377874(k)}.
EXAMPLE
A276085(55) = 216 = 2^3 * 3^3, which although it has a divisor of the form p^p, with p an odd prime, it is also a multiple of 4, and therefore 55 is NOT included in this sequence.
A276085(174) = 223092873 = 3^3 * 3 * 1063 * 2591, which has a divisor of the form p^p, with p an odd prime and therefore 174 is included in this sequence.
A276085(1104299) = 11231250 = 2 * 3 * 5^5 * 599, thus 1104299 is included.
PROG
(PARI)
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1, primepi(f[k, 1]-1), prime(i))); };
A377868(n) = if(isprime(n), 1, my(x=A276085(n), pp); forprime(p=2, , pp = p^p; if(!(x%pp), return(0)); if(pp > x, return(1))));
isA377875(n) = ((A083345(n)%2) && !A377868(n));
CROSSREFS
Setwise difference A369003 \ A377869.
Setwise difference A377873 \ A369002.
KEYWORD
nonn,new
AUTHOR
Antti Karttunen, Nov 11 2024
STATUS
approved
A variant of Golomb's sequence (A001462): the n-th digit of the sequence gives the number of times n appears, with a(1) = 1 and a(2) = 2.
+0
0
1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19
OFFSET
1,2
COMMENTS
This sequence is a base-10 variant of A167500.
Numbers corresponding to positions of zeros do not appear in the sequence.
This sequence first differ from A001462 for n = 169: a(169) = 31 whereas A001462(169) = 29.
PROG
(PARI) \\ See Links section.
CROSSREFS
Cf. A001462, A167500, A377863 (missing numbers), A377896.
KEYWORD
nonn,base,new
AUTHOR
Rémy Sigrist, Nov 10 2024
STATUS
approved
Numbers missing from A377862.
+0
0
30, 32, 34, 36, 38, 154, 156, 158, 160, 162, 164, 166, 168, 320, 340, 342, 370, 372, 408, 410, 412, 454, 456, 458, 460, 508, 510, 512, 514, 516, 570, 571, 573, 574, 576, 577, 579, 580, 582, 583, 585, 586, 588, 591, 594, 597, 600, 603, 606, 609, 612, 615, 618
OFFSET
1,1
COMMENTS
Also numbers k such that A377896(k) = 0.
This sequence is infinite.
LINKS
Rémy Sigrist, PARI program
EXAMPLE
A377862(168) = 29, A377862(169) = 31, so 30 is a term.
PROG
(PARI) \\ See Links section.
CROSSREFS
KEYWORD
nonn,base,new
AUTHOR
Rémy Sigrist, Nov 10 2024
STATUS
approved
a(n) is the number of occurrences of n in A377862.
+0
0
1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 5, 1
OFFSET
1,2
COMMENTS
Equivalently, the list of successive digits of A377862.
LINKS
Rémy Sigrist, PARI program
FORMULA
a(n) = 0 iff n belongs to A377863.
PROG
(PARI) \\ See Links section.
CROSSREFS
KEYWORD
nonn,base,new
AUTHOR
Rémy Sigrist, Nov 11 2024
STATUS
approved
Parity of A083345(n), where A083345(n) = n' / gcd(n,n') = numerator of Sum(e/p: n=Product(p^e)).
+0
0
0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0
OFFSET
1
COMMENTS
This is one's complement of A369001. See more comments and formulas in that sequence.
FORMULA
a(n) = A000035(A083345(n))
a(n) = A166486(A276085(n)).
a(n) = 1 - A369001(n).
For all n >= 1, a(n) >= A165560(n), a(n) >= A377868(n).
EXAMPLE
A083345(174) = 151, therefore a(174) = 1. Note also that A276085(174) = 223092873 is not a multiple of 4.
PROG
(PARI) A377874(n) = { my(f=factor(n)); (numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1])))%2); };
CROSSREFS
Parity of A083345. One's complement of A369001.
Characteristic function of A369003, whose complement A369002 gives the positions of 0's.
Cf. A000035, A165560, A166486, A276085, A369980 (run lengths).
Differs from A377868 at the positions given by A377875.
KEYWORD
nonn,easy,new
AUTHOR
Antti Karttunen, Nov 11 2024
STATUS
approved
Numbers i for which A194627(i) is prime.
+0
0
2, 3, 9, 11, 29, 75, 77, 101, 105, 107, 221, 225, 235, 257, 315, 321, 323, 357, 363, 389, 411, 417, 431, 453, 455, 461, 501, 509, 515, 519, 557, 635, 645, 655, 689, 795, 799, 851, 885, 887, 911, 915, 921, 923, 933, 977, 989, 1029, 1033, 1037, 1071, 1073, 1145, 1167, 1175, 1187, 1197, 1201, 1241
OFFSET
1,1
LINKS
FORMULA
A194627(a(n)) = A377791(n).
A377791(n) = (n-1)^2 + (a(n)-n)^2 + 1.
EXAMPLE
a(3) = 9 because the third prime in A194627 is A194627(9) = 41.
MAPLE
v:= 1: p:= 0: q:= 0: np:= 0: R:= NULL:
for i from 1 while np < 100 do
if isprime(v) then p:= p+1; R:= R, i; np:= np+1 else q:= q+1 fi;
v:= p^2 + q^2 + 1;
od:
R;
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Robert Israel, Nov 10 2024
STATUS
approved
Primes in A194627.
+0
0
2, 3, 41, 59, 593, 4787, 4937, 8699, 9281, 9491, 44201, 45491, 49429, 59219, 90197, 93251, 93893, 115211, 118661, 136523, 152501, 156467, 166949, 184571, 185477, 189851, 225353, 232091, 236981, 239963, 277577, 364571, 375569, 386731, 428873, 577307, 581941, 662339, 717161, 718931, 758501, 763811
OFFSET
1,1
LINKS
FORMULA
a(n) = A194627(A377882(n)).
a(n) = (n-1)^2 + (A377882(n)-n)^2 + 1.
EXAMPLE
a(3) = 41 because the third prime in A194627 is A194627(9) = 41.
MAPLE
v:= 1: p:= 0: q:= 0: np:= 0: R:= NULL:
for i from 1 while np < 100 do
if isprime(v) then p:= p+1; R:= R, v; np:= np+1 else q:= q+1 fi;
v:= p^2 + q^2 + 1;
od:
R;
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Robert Israel, Nov 10 2024
STATUS
approved
Cogrowth sequence of the 16-element quasihedral group SD16 = <S,T | S^8, T^2, STS^5T>.
+0
0
1, 1, 1, 4, 28, 136, 544, 2080, 8128, 32512, 130816, 524800, 2099200, 8390656, 33550336, 134201344, 536854528, 2147516416, 8590065664, 34359869440, 137438691328, 549754765312, 2199022206976, 8796095119360, 35184380477440, 140737496743936, 562949936644096
OFFSET
0,4
COMMENTS
Gives the even terms, all the odd terms are 0.
Also called QD16, Q8:C2. Gap identifier 16,8.
FORMULA
G.f.: (6*x^3-7*x^2+5*x-1) / ((4*x-1) * (4*x^2-2*x+1)).
CROSSREFS
Cf. A047849 (D4), A007582 (D8), A071930 (Q8), A377840 (C8 X C2), A377883 (M4(2)).
KEYWORD
nonn,easy,new
AUTHOR
Sean A. Irvine, Nov 10 2024
STATUS
approved
G.f. A(x) = Sum_{n>=0} a(n)*x^n where a(n) = Sum_{k=0..n-1} [x^k] A(x)^(k*(n-k)) for n >= 1 with a(0) = 1.
+0
0
1, 1, 2, 8, 55, 525, 6202, 85842, 1350421, 23687392, 457238998, 9620344475, 219011293036, 5363006495793, 140567134618434, 3927060955253388, 116510112059820553, 3658928109471912657, 121273249515650581850, 4231012832296844451474, 155003839703746214942229, 5949765253601511005012122
OFFSET
0,3
COMMENTS
Compare to C(x) = Sum_{n>=0} c(n)*x^n where c(n) = Sum_{k=0..n-1} [x^k] C(x)^(n-k) for n >= 1 with c(0) = 1, holds when C(x) is the g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) a(n) = Sum_{k=0..n-1} [x^k] A(x)^(k*(n-k)) for n >= 1, with a(0) = 1.
(2) A(x) = 1 + x*Sum_{n>=0} x^n/n! * ( d^n/dy^n A(y)^n/(1 - x*A(y)^n) ) evaluated at y = 0.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 55*x^4 + 525*x^5 + 6202*x^6 + 85842*x^7 + 1350421*x^8 + 23687392*x^9 + 457238998*x^10 + 9620344475*x^11 + 219011293036*x^12 + ...
By definition, a(n) equals the sum of the coefficients of x^k in A(x)^(k*(n-k)), k = 0..n-1, for n >= 1, as illustrated below.
a(1) = [x^0] A(x)^0;
a(2) = 1 + [x^1] A(x)^1;
a(3) = 1 + [x^1] A(x)^2 + [x^2] A(x)^2;
a(4) = 1 + [x^1] A(x)^3 + [x^2] A(x)^4 + [x^3] A(x)^3;
a(5) = 1 + [x^1] A(x)^4 + [x^2] A(x)^6 + [x^3] A(x)^6 + [x^4] A(x)^4;
a(6) = 1 + [x^1] A(x)^5 + [x^2] A(x)^8 + [x^3] A(x)^9 + [x^4] A(x)^8 + [x^5] A(x)^5;
a(7) = 1 + [x^1] A(x)^6 + [x^2] A(x)^10 + [x^3] A(x)^12 + [x^4] A(x)^12 + [x^5] A(x)^10 + [x^6] A(x)^6;
a(8) = 1 + [x^1] A(x)^7 + [x^2] A(x)^12 + [x^3] A(x)^15 + [x^4] A(x)^16 + [x^5] A(x)^15 + [x^6] A(x)^12 + [x^7] A(x)^7;
...
Explicitly,
a(1) = 1 = 1;
a(2) = 1 + 1 = 2;
a(3) = 1 + 2 + 5 = 8;
a(4) = 1 + 3 + 14 + 37 = 55;
a(5) = 1 + 4 + 27 + 128 + 365 = 525;
a(6) = 1 + 5 + 44 + 300 + 1406 + 4446 = 6202;
a(7) = 1 + 6 + 65 + 580 + 3795 + 17892 + 63503 = 85842;
a(8) = 1 + 7 + 90 + 995 + 8460 + 53088 + 258212 + 1029568 = 1350421;
...
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins as follows.
n\k 0 1 2 3 4 5 6 7
A^1 = [1, 1, 2, 8, 55, 525, 6202, 85842, ...];
A^2 = [1, 2, 5, 20, 130, 1192, 13738, 187068, ...];
A^3 = [1, 3, 9, 37, 231, 2037, 22877, 306201, ...];
A^4 = [1, 4, 14, 60, 365, 3104, 33944, 446208, ...];
A^5 = [1, 5, 20, 90, 540, 4446, 47330, 610580, ...];
A^6 = [1, 6, 27, 128, 765, 6126, 63503, 803424, ...];
A^7 = [1, 7, 35, 175, 1050, 8218, 83020, 1029568, ...];
A^8 = [1, 8, 44, 232, 1406, 10808, 106540, ...];
A^9 = [1, 9, 54, 300, 1845, 13995, 134838, ...];
A^10 = [1, 10, 65, 380, 2380, 17892, 168820, ...];
A^11 = [1, 11, 77, 473, 3025, 22627, 209539, ...];
A^12 = [1, 12, 90, 580, 3795, 28344, 258212, ...];
A^13 = [1, 13, 104, 702, 4706, 35204, 316238, ...];
A^14 = [1, 14, 119, 840, 5775, 43386, 385217, ...];
A^15 = [1, 15, 135, 995, 7020, 53088, 466970, ...];
A^16 = [1, 16, 152, 1168, 8460, 64528, 563560, ...];
...
PROG
(PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^(k*(m-k)), k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Nov 10 2024
STATUS
approved

Search completed in 0.123 seconds