OFFSET
0,11
COMMENTS
For n > 3, number of consecutive "11's" after the (n+3) "1's" in the continued fraction for sqrt(L(n+2)/L(n)) where L(n) is the n-th Lucas number A000032 (see example). E.g., the continued fraction for sqrt(L(11)/L(9)) is [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 58, 2, 4, 1, ...] with 12 consecutive ones followed by floor(11/5)=2 elevens. - Benoit Cloitre, Jan 08 2006
From Paul Curtz, May 13 2020: (Start)
Main N-S vertical of the pentagonal spiral built with this sequence is A001105:
21
20 15 15
20 14 10 10 15
20 14 9 6 6 10 15
20 14 9 5 3 3 6 10 15
20 14 9 5 2 1 1 3 6 10 16
19 14 9 5 2 0 0 0 1 3 6 11 16
19 13 9 5 2 0 0 1 3 7 11 16
19 13 8 5 2 2 1 4 7 11 16
19 13 8 4 4 4 4 7 11 16
19 13 8 8 8 7 7 11 17
18 13 12 12 12 12 12 17
18 18 18 18 17 17 17
The main S-N vertical and the next one are A000217. (End)
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
FORMULA
a(n) = floor(n/5), n >= 0.
G.f.: x^5/((1-x)(1-x^5)).
a(n) = (n - A010874(n))/5. - Hieronymus Fischer, May 29 2007
For n >= 5, a(n) = floor(log_5(5^a(n-1) + 5^a(n-2) + 5^a(n-3) + 5^a(n-4) + 5^a(n-5))). - Vladimir Shevelev, Jun 22 2010
Sum_{n>=5} (-1)^(n+1)/a(n) = log(2) (A002162). - Amiram Eldar, Sep 30 2022
MAPLE
MATHEMATICA
Table[Floor[n/5], {n, 0, 20}] (* Wesley Ivan Hurt, Dec 10 2013 *)
Table[{n, n, n, n, n}, {n, 0, 20}]//Flatten (* Harvey P. Dale, Jun 17 2022 *)
PROG
(Sage) [floor(n/5) - 1 for n in range(5, 88)] # Zerinvary Lajos, Dec 01 2009
(Haskell)
a002266 = (`div` 5)
a002266_list = [0, 0, 0, 0, 0] ++ map (+ 1) a002266_list
-- Reinhard Zumkeller, Nov 27 2012
(PARI) a(n)=n\5 \\ Charles R Greathouse IV, Dec 10 2013
(Python)
def A002266(n): return n//5 # Chai Wah Wu, Nov 08 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Incorrect formula removed by Ridouane Oudra, Oct 16 2021
STATUS
approved