editing
proposed
editing
proposed
editing
proposed
editing
proposed
editing
proposed
editing
proposed
Hartosh Singh Bal and Gaurav Bhatnagar, <a href="https://arxiv.org/abs/1903.09619">Prime number conjectures from the Shapiro class structure</a>, arXiv:1903.09619 [math.NT], 2019. See function S(n) , p. 2.
The n-th term is the sum of lengths of iteration chains to get fixed points (=1) for the Euler totient function from 1 to n.
Hartosh Singh Bal, and Gaurav Bhatnagar, <a href="https://arxiv.org/abs/1903.09619">Prime number conjectures from the Shapiro class structure</a>, arXiv:1903.09619 [math.NT], 2019. See function S(n) p. 2.
Paul Erdos, Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, <a href="/A000010/a000010_1.pdf">On the normal behavior of the iterates of some arithmetic functions</a>, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]
H. Harold Shapiro, <a href="https://www.jstor.org/stable/2303988">An arithmetic function arising from Phi-function</a>, American Math. Monthly , Vol. 50:, No. 1 (1943), pp. 18-30.
f[1] = 0; f[n_] := f[n] = f[EulerPhi[n]] + 1; Accumulate[Array[f, 100]] (* Amiram Eldar, Nov 27 2024 *)
Amiram Eldar, <a href="/A060606/b060606_1.txt">Table of n, a(n) for n = 0..10000</a>
approved
editing