Ejercicios Algebra
Ejercicios Algebra
Ejercicios Algebra
DE PUEBLA
FACULTAD DE ECONOMÍA
DOCENTE:
HARO ÁLVAREZ GONZALO
TAREA 1
MATERIA:
ALGEBRA
EQUIPO 4:
INTEGRANTES:
VÁSQUEZ CORONA JOSÉ DE JESÚS
VÁZQUEZ RAMÍREZ SINOÉ
VEGA HERNÁNDEZ JOCKSAN
VELA MARTÍNEZ BRENDA JIMENA
VÉLEZ MONTERROSAS ALEXANDER
XINETL PÉREZ SHERLYN
YAHUITL MENDOZA LUIS ANTONIO
ZAVALETA TORRES DAIRAMI
ZAYAS MÉNDEZ MAYELA AIDE
1) Simplifica las expresiones
2
41. 2 (−a )( 3−a ) R :2 a −6 a
2 2
42. (−37 p ) ( 2 q ) ( q− p ) R :−74 pq +74 p q
2
43. x (−2 )(−x−4 ) R :2 x +8 x
2
45.−x ( x−2 )+ 2 ( x−1 ) R :−x + 4 x−2
2 2
−x + 2 x +2 x−2=−x + 4 x -2
46.−2 (−3 x ) (−2 y+ 1 )−(− y ) ( 4−5 x ) R :−17 xy +6 x +4 y
47. 2 x+ 5−2 ( x+ 2 ) R :1
2 x+5−2 x−4=1
3 x−t−2 x+ 2t=x +t
2 x−2 y−x=x−2 y
2 2
50. 4 x ( x+ y )−x R :3 x + 4 xy
2 2 2
4 x + 4 xy −x =3 x + 4 xy
24. ( 2x ÷ 2z ) ÷ 4z R : 1x
2 z 2 2 4 4 4 z z 1
÷ = × = ÷ = × = =
x 2 x z xz xz xz 4 xz x
25. ( 23xt ÷ 4xt ) ÷ 23t R : 4xt
2 2
2 xt x 2 xt 4 t 8 t 2t 8 t 3 8t 4 t
÷ = × = ÷ = × = =
3 4t 3 x 3x 3 3 x 2t 2 x x
2 z 4
z 2 z (16
26. ÷ ÷ R : 3
z )
2
z 4 z z z 2 8 2 16
÷ = × = ÷ = × =
2 z 2 4 8 z z 2 z z3
( )
3
2 xt x 2t 16 t
27. ÷ ÷ R:
3 4t 3 9x
2 3
x 2t x 3 3 x 2 xt 8 t 2 xt 16 t
÷ = × = 2÷ = × =
4t 3 4t 2t 8t 3 3x 3 9x
1 1 −1
28. − R :
6 2 3
1 3 1 1 −2 −1
= − = =
2 66 3 6 3
1 1 1
29. + R:
10 15 6
1 3 1 2 3 2 5 1
= = + = =
10 10 15 30 30 30 30 6
1 1
−
2 3 37
49. R:
1 1 60
+
4 5
1 3 1 23 2 11 5 1 4
= , = − = = , =
2 6 3 6 6 6 6 4 20 5 20
5 4 9 1 9 1 10 9 27 10 27 37
+ = + = , = + =
20 20 20 6 20 6 60 20 60 60 60 60
−3
( x2 y ) 1
33. 2
R:
( xy ) x y5
8
−6 −3
x y 1
2 2
= 8 5
x y x y
−1
( a b−2 ) 3
34. −2 −1
R : ab
a b
−1 2 2 3
a b a b 3
−2 −1
= =ab
a b a
(−2 xy )3
35. 3
R :−8 y 2
x y
3 3
−8 x y 2
3
=−8 y
x y
−1
(−a b2 c ) −a
36. −2 −1
R: 3
a bc b
−1 −2 −1 2
−a b c a c −a
−2 −1
= 3
= 3
a bc −ab c b
(−3 x )2
37. R :3
−3 x 2
2
9x
2
=3
−3 x
−1
(2 x2 y ) 1
38. 3 2
R: 6 7
(−2 x y ) 2
8x y
−1 −2 −1
2 x y 1
4 6
= 6 7
4x y 8x y
3
( x −3 y 4 ) y 16
40. 2
R : 13
(−3 x 2 y−2 ) 9x
−9 12 16
x y y
4 −4
= 13
9x y 9x
−1 −1 1
49. ( xy ) ( x + y ) R :
−1 −1
y+x
2 2
−2 −1 a b
50. ( a + b ) R : 2 2
−2
b +a
( )
−1 2 2 2 2
1 1 b +a a b
2
+ 2 = 2 2
= 2 2
a b a b b +a
( )( ) ( )
2
7 3 3 15
51. + R: 2
x 14 x 2x 4x
2 2 2
21 9 84 x +126 x 210 x 15
2
+ 2= 4
= 4
= 2
14 x 4 x 56 x 56 x 4x
( ) ( )
−1 2
−3 6 1 7
52. x − R: 2
5x 2x 12 x
( )( )
−2
3 5x 1 5x 1 5 1
x − 2
= − 2= 2− 2
6 4x 6 4x 6x 4x
2 2 2
−20 x −6 x 14 x 7
4
= 4
= 2
20 x 24 x 12 x
2 2
3y 2 9 y +4 x
53. 3
+ R: 3
10 x 15 xy 30 x y
( )( )
2 2 2
3y 3y 2x 2 9 y +4 x
∙ 3
+ 2
∙ = 3
3 y 10 x 2 x 15 xy 30 x y
2
5 2 x ( 25 x−8 )
54. − R :
12 x−3 15 x−2 60
2
5 x 3 2 x 2 25 x 3−8 x 2 x ( 25 x−8 )
− = =
12 15 60 60
2
1 1 5x
55. −2
+ −2 R :
2x 3x 6
2 2 2 2 2
x x 3 x +2 x 5 x
+ = =
2 3 6 6
4
1 1 y
56. −4
− −4 R :
4x 3y 12
4 4 4
3 y −4 y y
=
12 12
4) Simplifica las expresiones
25 1
x 3/ 7 y 2 /5
35. −1 /7 1/ 5 R : x 7 y 5
x y
3 1
3+ −
7 7 () 3 1
x+ +
7 7
3+
4
7
21 4
+
25
x =3 =x =x 7 7
=x 7
2 1 1
−
y5 5
=y5
25 1
x 7 y5
4 /9 −3/ 4
a b 4 8
36. 2 / 9 −1/ 2 R : p q
a b
( )( )
9 −3 4 −3
a4 b 4 a9 −
9 9
4 2 2
b 4
4 ( )
−3 −1
−
2
−3 2
+
−1 2 −1
2
∙ −1
= 2
=a =a 9 −1
=b =b 4 4
=b4 9
=a ∙ b 4
a9 b 2 a9 b 2
( )
2 4 1 2 4
∙10 ∙ 10
=p q =
4 8
¿ ρ5 q 5 = p5 q5
( ) ( )
10 2 4 10
p−1/ 5 q2 /5
37. R : p5 q 5
p−3 /5 q−2/ 5
1
p 5 −1 −3
5
−
5 ( ) 2
5
3
=p =p
5
p
2
q5
2 −2
5
− ( )
5
4
5 (
2
5
4 10
5 )
2
=9 =q = ρ q
5
q
−1 ∕ 3
( x 2 y ) ( x y )1 ∕ 4
38. 1 ∕ 12
( x y−2 )
−1 1 −1 −2 −1
(2 ∙− )
( x 2 y ) 3 =x 3
y 3 =x 3
y 3
1 1 1
( xy ) 4 =x 4 y 4
1 1 1 −1
( x y ) =x 12 y (−2 ∙1 /12 )=x 12 y 6
−2 12
−2 −1 1 1
3 3
x y ∙x4 y4
1 −1
x 12 y 6
1
1
1 12 y 12
1
y = 1
2 2
x x
11
2 x 5/ 2 x 2/3 6x 6
39. 3 / 4 ÷ 2 /5 R : 7
y 3y
y 20
5 2 5 2 11
2 5 2 5 6
2x 3y 2∙ 3 ∙ x ∙ y 6x
3
∙ 2
= 3 2
= 7
4 3 4 3 20
y x y ∙x y
1 −2 4 −3
1∕ 5 −2 ∕ 5
40. (−2 x 2 y ) ( 4−1 x y−2 ) R :−2 5 4 5
x5 y 5
1 1 1 1 2 1
(−2 x 2 y ) 5 =(−2 ) 5 x (2 ∙1 ) y 5 =−2 5 x 5 y 5
( 4−1 × y −2) 5 =4 5 x 5 y 5 =(−2 5 x 5 y 5 ) ∙ ( 4 5 x 5 y )=−2 ∙ 4
2 −2 2 −4 1 2 1 −2 2 −4 1 −2 2 2 1 4
+ −
5 5 5 5 5 5 5
∙x ∙y
1 −2 4 −3
¿−2 5 4 5
x5 y 5
11
−5
()
7 /8
2 /3 7 a a 24 a2
50. a ∙b ∙ ∙ R:
b 23
b
2
b 56
() a 78 a 8
b
= 7
b8
2 7 11 16 21 11 48 2
+ + = + + = =2=a
3 8 24 24 24 24 24
−5 7 23 −40 49 23 112 −2
− − = − − = =−2=b
7 8 56 56 56 56 56
2
a
2
b
3m 2m m m m 2m
2 ∙3 ∙ 5 ∙6 2 ∙3 1
51. m 3 m/ 2 m
R : 3m 3m = m m
8 ∙ 9 ∙ 10 2 ∙3 2 3
m m m m
6 =( 2. 3 ) =2 ∙ 3
3 m
8 =( 2 ) =2
m 3m
3m
3 m /2
9 2
=( 32 ) =3 3 m
m 2m
m m m 2 ∙3 1
10 =( 2∙ 5 ) m=2 ∙5 = 3m 3m
= m m
2 ∙3 2 3
2 2
( x a +b ) ( y a+b )
52. 2 a−b
R : x8 +3 b−2 a y3 b
( xy )
( )( )( )
a c b a c b
x x x a−c b−a ( a−c ) + ( b−a ) b−c
53. b ⋅ c ⋅ a R : x ∙ x =x =x
x x x
a b a+b
x x x a+ b−b−c a−c
b c
= b+c =x =x
x x x
b c b +c
x x x b +c−c−a b−a
c a
= c+ a =x =x
x x x
( )( )( )
a+b b +c c+a
x x x 4−c−a
54. 2b 2c 2a
R:x
x x x
2 ( 3−5 x )=6−10 x=3 { x 2−5 [ x + ( 6−10 x ) ] }=x+ ( 6−10 x )=x +6−10 x=−9 x +6=3 { x 2−5 (−9 x+6 ) }=−5 (−9 x
2 {a −2 a [−5 a +3 a+10 ] }
2 2
−2 a [ −5 a +3 a+ 10 ]=10 a −6 a −20 a
2 3 2
( a+ 2 )( 3 a−1 )
( a+ 2 )( 3 a−1 )=a ∙3 a+ a ∙ (−1 ) +2 ∙ 3 a+2 ∙ (−1 ) =3 a2−a+6 a−2=3 a 2+5 a−2
2 2 3 2 2 3
6 x −8 xy x y +2 x y
55. + 2 2
R : 4 x−2 y
2 xy x y
2
6 x y −8 xy=2 xy (3 x−4 x )
2 xy ( 3 y−4 y )
2 xy
3 2 2 3
x y +2 x y 3 2 2 3 2 2
2 2
=x y +2 x y =x y ( x+ 2 y )
x y
2 2
x y ( x +2 y )
x2 y2
3 x−4 y + x+ 2 y
3 x+ x=4 x
−4 y +2 y=−2 y=4 x−2 y
4 2
3 x −9 x y 4 x −8 xy ( y−x )( y + x)
2 3 2
56. 3
− 2
R:
3x y 2x y xy
3 x 4−9 x 2 x2 =3 x 2 ( x 2−3 y 2 )
3 x 2 ( x 2−3 y 2 ) x 2−3 y 2 2 ( x2 −2 y 2 )
3
= =¿
3x y xy xy
( x ¿ ¿ 2−3 y )−2(x −2 y )
2 2 2
¿
xy
( x 2−3 y 2 )−2 x 2 +4 y 2
2 2 2 2 2 2
x −2 x −3 y + 4 y =−x + y
x−2 √ x2 +5 x +6
2
−x + 2 x
−3 x
+3 x−6
0
58. ( 6 x 2+ x −1 ) ÷ ( 3 x−1 ) R :2 x +1
2 x+1
3 x−1 √ 6 x + x−1
2
2
−6 x +2 x
3x
−3 x+ 1
0
59. ( t 2 +1 ) ÷ ( t−1 ) R :t +2
t+ 2
t−1 √ t 2 +1
2
−t +1+
2+¿
−2 t+2
2
2 x−3 √ 6 x 2−5 x +1
2
−6 x +9 x
+4 x
−4 x+ 6
7
61. ( x 3+ 2 x 2 + x+ 5 ) ÷ ( x +2 ) R : x2
2
x
x +2 √ x 3 +2 x2 + x +5
3 2
x −2 x
−1 x−2
3
2 ( 3 xz −8 y−12 x+ 2 yz )
2 ( 3 x ( z−4 ) −8 y +2 yz )
2
13. x −16 R :(x−4)( x+ 4)
2 2
x −4
(x−4)(x +4)
2
14. 4 y −25 R :(2 y−5)(2 y+ 5)
2 2
2 y −25
( 2 y )2−5
(2 y−5)(2 y +5)
2 2 2 2 2 2 2 2
58. x y −a y −b x +a b R :(x−a)(x+ a)( y−b)( y+ b)
y 2 ( x 2−a2 ) −b2 x2 + a2 b 2
y 2 ( x 2−a2 ) −b2 ¿
2 2 2 2
59. x y −9 y −4 x + 36 R :(x−3)(x +3)( y−2)( y +2)
y 2 ( x 2−9 ) −4 ( x 2−9 )
( x 2−9 )( y 2−4 )
( x−3 )( x +3 ) ( y −2)( y+2)
2 2 2 2 2
60. 5u v + 20 v + 15u −6 0 R : 5(u−2)(u+ 2)(v +3)
5 ( u2 v 2−4 v2 +3 u2−12 )
5 ( v ( u −4 ) +3 ( u −4 ) )
2 2 2
5 ( u2−4 ) ( v 2 +3 )
2
5(u−2)(u+2)(v +3)
8) Efectúe y simplifique las operaciones
2
x 5 x−6
3. − R : x−2
x−3 x−3
2
x −(5 x−6) x2 −5 x +6 2 ( x−2 ) ( x−3 )
= =x −5 x +6=( x−2 ) ( x−3 )= =x−2
x−3 x−3 x−3
2
2−3 x x
4. + R : x−2
x−1 x−1
( x−1 ) ( x−2 )
2−3 x + x 2=( x−1 ) ( x−2 )= =x−2
x−1
2 x+ 1 5 x +7
5. +3 R :
x +2 x +2
3 x−2 x −4
6. −2 R :
x +1 x−1
−2 ( x+ 1 ) −2 x−2 3 x −2 2 x +2 ( 3 x−2 ) −( 2 x +2 )
−2= = = − = =( 3 x−2 )
x +1 x +1 x+ 1 x +1 x+ 1
x−4
( 2 x+ 2 )=3 x−2−2 x−2=x−4=
x−1
( )( )
2 2
x −1 x +2x 2
19. R : x + x−2
x x +1
2
x −1=( x−1 )( x +1 )
x 2+ 2 x=x ( x+ 2 )
2 2
¿ x + 2 x−x−2=x + x−2
( )( 2x+x+44 ) R : x (x+
2
x +4 x 2)
20.
2 x+6 x +3
2
x + 4 x=x ( x+ 4 )
2 x+ 6=2 ( x +3 )
2 x+ 4=2 ( x+2 )
( 2(x+ 3) x +4)(
x (x+ 4) 2(x +2)
=
x
x+3 ) ( )( x+21 )= x(xx+2)
+3
2 x +4 x −1
2
2(x +1)
21. ∙ R:
1−x 3 x +6 −3
2 x+ 4=2 ( x+2 )
2
x −1=( x−1 )( x +1 )
3 x+ 6=3 ( x +2 )
2
x −5 x−3= ( 2 x +1 ) ( x−3 )
( (( x−3 ) ( x−4 )
x−2 )( x−1 ) )( ( ( )
x +3 ) ( x+1 )
=
(x−4)( x−3)
2 x+1 )( x−3 ) (x−2)(2 x+ 1)