Analysis">
Banco 2
Banco 2
Banco 2
y= (0) ²-3(0) +2
y=2
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
2
A=∫ [ 0− ( X −3 X + 2 )−0 ] ⅆx
2
2
A=∫ [ −X +3 X −2 ] ⅆx
2
1
2 2 2
A=−∫ X ⅆx +3 ∫ X dx−2∫ ⅆx
2
1 1 1
2 3
−X
−∫ X ⅆx =
2
1 3
2 2
3x
3∫ xⅆx =
1 2
2
−2∫ ⅆx =-2x
1
[ ]
2
−x3 3 x 2
A= + −2 x
3 2 1
[ ][ ]
3 2 3 2
−( 2 ) +3 ( 2 ) −( 1 ) +3 ( 1 ) +5 1
A= −2(2) - −2(1) =¿ ¿ = U²
3 2 3 2 6 6
4 ac−b
2
4 (−1)(−3)−(4)2 12−16 −4
y= = = = =1
4a 4(−1) −4 −4
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
3
A=∫ [ (−X + 4 X −3 )−0 ] ⅆx
2
3
A=∫ [ −X +4 X−3 ] ⅆx
2
3 3 3
A=−∫ X ⅆx + 4∫ X dx−3 ∫ ⅆx
2
1 1 1
3 3
−X
−∫ X ⅆx =
2
1 3
3 2
4x
4 ∫ xⅆ x =
1 2
3
−3 ∫ ⅆx =-3x
1
[ ]
3
−x3
A= +2 x ²−3 x
3 1
[ ][ ]
3 3
−( 3 ) −( 1 ) 4
A= +2(3)²−3(3) - +2(1)²−3(1) = U²
3 3 3
4 ac−b
2
4 (1)(0)−(0)2 0
y= = = =0
4a 4 (1) 4
y=- (0) ²
y=0
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
0
A=∫ [ X −0 ] ⅆx
2
−2
0
A=∫ [ X ] ⅆx
2
−2
0
A=∫ X ⅆx
2
−2
0 3
X
∫ X ⅆx =
2
3
−2
[ ]
0
x3
A=
3 −2
A= [ ][ ]
( 0 )3
3
-
(−2 )3
3
8 8
A=0+ = U²
3 3
−1
A=∫ [ ( X +2 X +1 ) −0 ] ⅆx
2
−4
−1 −1 −1
A=∫ X ⅆx +2 ∫ X dx+ 1 ∫ ⅆx
2
−4 −4 −4
−1 3
∫ X 2 ⅆx = X3
−4
−1
2 ∫ xⅆx =x²
−4
−1
1 ∫ ⅆx =x
−4
[ ]
−1
x3 2
A= + x + x
3 −4
A= [ (−1 )3
3
2
+ (−1 ) +(−1) - ][
(−4 )3
3
2
+ (−4 ) +(−4) ]
−1 28
A= + ¿ 9 U²
3 3
4 ac−b
2
4 (1)(1)−(1)2 4−1 3
y= = = =
4a 4 (1) 4 4
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
2
A=∫ [ ( X + X + 1 )−0 ] ⅆx
2
2 2 2
A=∫ X ⅆx +∫ xⅆx +1∫ ⅆx
2
0 0 0
2 3
X
∫ X ⅆx =2
3
0
2 2
x
∫ xⅆx = 2
0
2
1∫ ⅆx =x
0
[ ]
2
x3 x2
A= + + x
3 2 0
A=
3 [
( 2 )3 ( 2 )2
+
2
+(2) -
3
+
2 ][
( 0 )3 ( 0 )2
+(0) ]
20
A= U²
3
4 ac−b
2
4 (1)(1)−(1)2 4−1 3
y= = = =
4a 4 (1) 4 4
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
1
A=∫ [ ( X + X + 1 )−( x) ] ⅆx
2
1
A=∫ [ ( X +1 ) ] ⅆx
2
1 1
A=∫ X ⅆx +1∫ ⅆx
2
0 0
1 3
X
∫ X ⅆx =2
3
0
1
1∫ ⅆx =x
0
[ ]
1
x3
A= + x
3 0
A= [ ][( 1 )3
3
+(1) -
( 0 )3
3
+(0) ]
4
A= U²
3
7.-calcular el área limitada entre la recta y=x-3 y el eje de las x´, con las
rectas verticales x1=1; x2=2
y=x-3
x-3=0
y= (0)-3
x=3
y=-3
px= (3,0)
py= (0,-3)
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
2
A=∫ [ 0−( X−3 ) −0 ] ⅆx
1
2
A=∫ [ (−X +3 ) ] ⅆx
1
2 2
A=−∫ Xⅆx +3∫ ⅆx
1 1
2 2
X
-∫ Xⅆx −
1 2
2
3∫ ⅆx =3x
1
[ ]
2
−x2
A= +3 x
2 1
[ ][ ]
2 2
−( 2 ) −( 1 ) 5 3
A= +3(2) - +3(1) =4− = U²
2 2 2 2
8.-calcular el área limitada entre la recta y=x+6 y el eje de las x´, con
las rectas verticales x1=4; x2=8
Función lineal
y=x+6
x+6=0
y= (0) +6
x=-6
y=6
px= (-6,0)
py= (0,6)
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
8
A=∫ [ ( X +6 )−0 ] ⅆx
4
8
A=∫ [ ( X +6 ) ] ⅆx
4
8 8
A=∫ Xⅆx + 6∫ ⅆx
4 4
8 2
∫ Xⅆx= X2
4
8
6 ∫ ⅆx =6x
4
[ ]
8
x2
A= +6 x
2 4
A=
2[
( 8 )2
+6 (8) -
( 4 )2
2 ][
+6( 4) ]
A=80−32 =48 U²
== √
−b− √ b 2−4 ac 0− (0)2−4 (1)(−4) 0− √0+16 0− √16 0−4
x 2= = = = = -2
2a 2(1) 2 2 2
y= (0) ²-4
y=-4
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
2
A 1=∫ [ 0−( X −4 ) −0 ] ⅆx
2
−2
2
A 1 ∫ [−X + 4 ] ⅆx
2
−2
2 2
A 1=−∫ X ⅆx + 4 ∫ d x
2
−2 −2
2 3
−x
−∫ x ² ⅆx =
−2 3
2
4 ∫ dx =4x
−2
[ ]
2
−x 3
A 1= +4 x
3 −2
[ ][ ]
3 3
−( 2 ) −(−2 )
A 1=¿ +4 (2) - +4−(2)
3 3
16 16 32
A 1= + = U²
3 3 3
Y=8-2X²
a=-2 b= 0 c= 8
v= (0, 8)
px1= (-2,0)
px2 =(2,0)
py= (0,8)
−b 0 0
x= = = =0
2 a 2 (−2 ) −4
4 ac−b
2
4 (−2)(8)−(0)2 −64−0 −64
y= = = = =8
4a 4 (−2) −8 −8
2
A 2=∫ [ ( 8−2 X )−0 ] ⅆx
2
−2
2
A 2=∫ [ 8−2 X ] ⅆx
2
−2
2 2
A 2=8 ∫ ⅆx −2 ∫ X ² dx
−2 −2
2
8 ∫ dx=8x
−2
2 3
−2 x
−2 ∫ x ² ⅆx =
−2 3
[ ]
2
2 x3
A 2= 8 x−
3 −2
[ ][ ]
3 3
2(2) 2(−2)
A 2=¿ 8(2)− - 8(−2)−
3 3
32 32 64
A 2= + = U²
3 3 3
64 32
AT= + =32U²
3 3
b
A=∫ [ f ( x )−g ( X ) ] ⅆx
a
3
A=∫ [ ( 2 X−2 )−0 ] ⅆx
1
3
A=∫ [ ( 2 X−2 ) ] ⅆx
1
3 3
A=2∫ Xⅆx −2∫ ⅆx
1 1
3 2
2X
2 ∫ X ⅆx =
1 2
3
−2∫ ⅆx =-2x
1
3
A=[ X 2−2 x ]1
A=¿[(3)2−2(3) ¿- [(1)2−2(1)¿
A=3+1=4U²