Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Multiple-Fluid SPH Simulation Using a Mixture Model

Published: 23 September 2014 Publication History

Abstract

This article presents a versatile and robust SPH simulation approach for multiple-fluid flows. The spatial distribution of different phases or components is modeled using the volume fraction representation, the dynamics of multiple-fluid flows is captured by using an improved mixture model, and a stable and accurate SPH formulation is rigorously derived to resolve the complex transport and transformation processes encountered in multiple-fluid flows. The new approach can capture a wide range of real-world multiple-fluid phenomena, including mixing/unmixing of miscible and immiscible fluids, diffusion effect and chemical reaction, etc. Moreover, the new multiple-fluid SPH scheme can be readily integrated into existing state-of-the-art SPH simulators, and the multiple-fluid simulation is easy to set up. Various examples are presented to demonstrate the effectiveness of our approach.

Supplementary Material

ren (ren.zip)
Supplemental movie and image files for, Multiple-Fluid SPH Simulation Using a Mixture Model

References

[1]
R. Ando and R. Tsuruno. 2010. Vector fluid: A vector graphics depiction of surface flow. In Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering (NPAR'10). ACM Press, New York, 129--135.
[2]
K. Bao, X. Wu, H. Zhang, and E. Wu. 2010. Volume fraction based miscible and immiscible fluid animation. Comput. Animat. Virtual Worlds 21, 3--4, 401--410.
[3]
M. Becker and M. Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). Eurographics Association, 209--217.
[4]
L. Boyd and R. Bridson. 2012. Multiflip for energetic two-phase fluid simulation. ACM Trans. Graph. 31, 2, 16:1--16:12.
[5]
O. Busaryev, T. K. Dey, H. Wang, and Z. Ren. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4, 63:1--63:8.
[6]
P. W. Cleary. 1996. New implementation of viscosity: Tests with couette flows. Tech. rep. DMS-C96/32, CSIRO Division of Math and Statistics.
[7]
P. W. Cleary, S. H. Pyo, M. Prakash, and B. K. Koo. 2007. Bubbling and frothing liquids. ACM Trans. Graph. 26, 3.
[8]
A. Colagrossi and M. Landrini. 2003. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 2, 448--475.
[9]
C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji. 2011. Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton, FL.
[10]
F. Dagenais, J. Gagnon, and E. Paquette. 2012. A prediction-correction approach for stable SPH fluid simulation from liquid to rigid. In Proceedings of the Computer Graphics International.
[11]
M. Desbrun and M. Paule Gascuel. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation. Springer, 61--76.
[12]
L. M. Gonzalez, J. M. Sanchez, F. Macia, and A. Souto-Iglesias. 2009. Analysis of WCSPH laminar viscosity models. In Proceedings of the 4th ER-COFTAC SPHERIC Workshop on SPH Applications.
[13]
J. Gregson, M. Krimerman, M. B. Hullin, and W. Heidrich. 2012. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans. Graph. 31, 4, 52:1--52:10 (to appear).
[14]
J.-M. Hong and C.-H. Kim. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3, 915--920.
[15]
J.-M. Hong, H.-Y. Lee, J.-C. Yoon, and C.-H. Kim. 2008. Bubbles alive. ACM Trans. Graph. 27, 3, 48:1--48:4.
[16]
X. Hu and N. Adams. 2006. A multi-phase {SPH} method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 2, 844--861.
[17]
I. Ihm, B. Kang, and D. Cha. 2004. Animation of reactive gaseous fluids through chemical kinetics. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 203--212.
[18]
M. Ihmsen, N. Akinci, G. Akinci, and M. Teschner. 2012. Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28, 6--8, 669--677.
[19]
B. Kang, Y. Jang, and I. Ihm. 2007. Animation of chemically reactive fluids using a hybrid simulation method. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 199--208.
[20]
N. Kang, J. Park, J. Noh, and S. Y. Shin. 2010. A hybrid approach to multiple fluid simulation using volume fractions. Comput. Graph. Forum 29, 2, 685--694.
[21]
R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutre, and M. Gross. 2005. A unified lagrangian approach to solid-fluid animation. In Proceedings of the 2nd Eurographics/IEEE/VGTC Conference on Point-Based Graphics (SPBG'05). Eurographics Association, 125--133.
[22]
B. Kim. 2010. Multi-phase fluid simulations using regional level sets. ACM Trans. Graph. 29, 6, 175:1--175:8.
[23]
B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3.
[24]
D. Kim, O.-Y. Song, and H.-S. Ko. 2010. A practical simulation of dispersed bubble flow. ACM Trans. Graph. 29, 70:1--70:5.
[25]
P.-R. Kim, H.-Y. Lee, J.-H. Kim, and C.-H. Kim. 2012. Controlling shapes of air bubbles in a multi-phase fluid simulation. Vis. Comput. 28, 6--8, 597--602.
[26]
N. I. Kolev. 2005. Multiphase Flow Dynamics 1: Fundamentals. Springer.
[27]
S. Liu, Q. Liu, and Q. Peng. 2011. Realistic simulation of mixing fluids. Vis. Comput. 27, 3, 241--248.
[28]
F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819.
[29]
M. Manninen, V. Taivassalo, and S. Kallio. 1996. On the mixture model for multiphase flow. http://www.vtt.fi/inf/pdf/publications/1996/P288.pdf.
[30]
V. Mihalef, B. Unlusu, D. Metaxas, M. Sussman, and M. Y. Hussaini. 2006. Physics based boiling simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'06). Eurographics Association, 317--324.
[31]
M. K. Misztal, K. Erleben, A. Bargteil, J. Fursund, B. B. Christensen, J. A. Bærentzen, and R. Bridson. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'12). Eurographics Association, 97--106.
[32]
J. Monaghan. 1992. Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543--574.
[33]
J. J. Monaghan and A. Rafiee. 2013. A simple sph algorithm for multi-fluid flow with high density ratios. Int. J. Numer. Methods Fluids 71, 5, 537--561.
[34]
P. Mullen, A. McKenzie, Y. Tong, and M. Desbrun. 2007. A variational approach to eulerian geometry processing. ACM Trans. Graph. 26, 3.
[35]
M. Muller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). Eurographics Association, 154--159.
[36]
M. Muller, B. Solenthaler, R. Keiser, and M. Gross. 2005. Particle-based fluid-fluid interaction. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). ACM Press, New York, 237--244.
[37]
M. B. Nielsen and O. Osterby. 2013. A two-continua approach to eulerian simulation of water spray. ACM Trans. Graph. 32, 4, 67:1--67:10.
[38]
J. Park, Y. Kim, D. Wi, N. Kang, S. Y. Shin, and J. Noh. 2008. A unified handling of immiscible and miscible fluids. Comput. Animat. Virtual Worlds 19, 3--4, 455--467.
[39]
S. Premoze, T. Tasdizen, J. Bigler, A. E. Lefohn, and R. T. Whitaker. 2003. Particle-based simulation of fluids. Comput. Graph. Forum 22, 3, 401--410.
[40]
B. Solenthaler and R. Pajarola. 2008. Density contrast sph interfaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'08). Eurographics Association, 211--218.
[41]
B. Solenthaler, J. Schlafli, and R. Pajarola. 2007. A unified particle model for fluid-solid interactions: Research articles. Comput. Animat. Virtual Worlds 18, 1, 69--82.
[42]
G. H. Yeoh and J. Tu. 2009. Computational Techniques for Multiphase Flows. Butterworth-Heinemann.
[43]
H. Zhu, X. Liu, Y. Liu, and E. Wu. 2006. Simulation of miscible binary mixtures based on lattice boltzmann method: Research articles. Comput. Animat. Virtual Worlds 17, 3--4, 403--410.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 5
August 2014
152 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2672594
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 September 2014
Accepted: 01 April 2014
Revised: 01 March 2014
Received: 01 September 2013
Published in TOG Volume 33, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Physically based animation
  2. fluid simulation
  3. miscible and immiscible fluids
  4. mixture model
  5. multiphase and multicomponent flow
  6. smoothed particle hydrodynamics
  7. volume fraction model

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)113
  • Downloads (Last 6 weeks)9
Reflects downloads up to 28 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Kinetic Simulation of Turbulent Multifluid FlowsACM Transactions on Graphics10.1145/365817843:4(1-17)Online publication date: 19-Jul-2024
  • (2024)An Induce-on-Boundary Magnetostatic Solver for Grid-Based FerrofluidsACM Transactions on Graphics10.1145/365812443:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Neural Monte Carlo Fluid SimulationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657438(1-11)Online publication date: 13-Jul-2024
  • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
  • (2024)Multiphase Viscoelastic Non-Newtonian Fluid SimulationProceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation10.1111/cgf.15180(1-12)Online publication date: 21-Aug-2024
  • (2024)Physically-based simulation for oil leakage and diffusion on river using heterogeneous graph attention networkHeliyon10.1016/j.heliyon.2024.e2518710:3(e25187)Online publication date: Feb-2024
  • (2024)Influence of external magnetic field on nanofluid dynamics using a two-phase Lattice Boltzmann Mixture Model at low Reynolds numbersChemical Engineering Research and Design10.1016/j.cherd.2024.09.035210(670-683)Online publication date: Oct-2024
  • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
  • (2024)A Parallel Ice Melting Simulation Based on ParticleBiologically Inspired Cognitive Architectures 202310.1007/978-3-031-50381-8_23(197-207)Online publication date: 14-Feb-2024
  • (2024)Fluid SimulationEncyclopedia of Computer Graphics and Games10.1007/978-3-031-23161-2_55(725-730)Online publication date: 5-Jan-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media