Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Interval functional observers for time‐delay systems with additive disturbances

Published: 01 September 2020 Publication History

Summary

This article considers the design of interval functional observers to estimate a linear function of the state vector of time‐delay systems subject to both input and output additive disturbances. Two novel functional observers are proposed and designed such that they bound the set of all admissible values of a linear function of the state vector at each instant of time. By contrast to interval observers currently available in the literature, both observers proposed in this article utilize multiple delayed output measurement and have a more general structure. This trade‐off feature overcomes some drawbacks in previous work and enables interval functional observers to be designed for a wider class of time‐delay systems. Conditions for the existence of interval functional observers are derived and an effective design algorithm for computing unknown observer matrices is provided. Two illustrative examples are given to show the advantages and effectiveness of our design method.

References

[1]
Gouzé JL, Rapaport AD, Hadj‐Sadok MZ. Interval observers for uncertain biological systems. Ecol Model. 2000;133:45‐56.
[2]
Bernard O, Gouzé JL. Closed loop observers bundle for uncertain biotechnological models. J Process Control. 2004;14:765‐774.
[3]
Moisan M, Bernard O, Gouzé JL. Near optimal interval observers bundle for uncertain bioreactors. Automatica. 2009;45:291‐295.
[4]
Moisan M, Bernard O. Robust interval observers for global Lipschitz uncertain chaotic systems. Syst Control Lett. 2008;59:687‐694.
[5]
Mazenc F, Bernard O. Interval observers for linear time‐invariant systems with disturbances systems. Automatica. 2011;47:140‐147.
[6]
Mazenc F, Niculescu SL, Bernard O. Exponentially stable interval observers for linear systems with delay. SIAM J Control Optim. 2012;50:286‐305.
[7]
Zheng G, Efimov D, Perruquetti W. Design of interval observer for a class of uncertain unobservable nonlinear systems. Automatica. 2016;63:167‐174.
[8]
Zheng G, Efimov D, Bejarano FJ, Perruquetti W, Wang H. Interval observer for a class of uncertain nonlinear singular systems. Automatica. 2016;71:159‐168.
[9]
Gu DK, Liu LW, Duan GR. Functional interval observer for the linear systems with disturbances. IET Control Theory Appl. 2018;12:2562‐2568.
[10]
Huong DC. Design of functional interval observers for non‐linear fractional‐order systems. Asian J Control. 2020;22:1127‐1137.
[11]
Efimov D, Perruquetti W, Richard JP. Interval estimation for uncertain systems with time‐varying delays. Int J Control. 2013;86:1777‐1787.
[12]
Huong DC, Thuan MV. On reduced‐order linear functional interval observers for nonlinear uncertain time‐delay systems with external unknown disturbances. Circ Syst Signal Process. 2019;38:2000‐2022.
[13]
Trinh H, Huong DC, Hien LV, Nahavandi S. Design of reduced‐order positive linear functional observers for positive time‐delay systems. IEEE Trans Circ Syst II Exp Briefs. 2017;64:555‐559.
[14]
Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. New York, NY: John Wiley & Sons; 2000.
[15]
Efimov D, Fridman LD, Raïssi T, Seydou R. Interval estimation for LPV systems applying high order sliding mode techniques. Automatica. 2012;48:2365‐2371.
[16]
Efimov D, Raïssi T. Design of interval observers for uncertain dynamical systems. Autom Remote Control. 2016;77:191‐225.
[17]
Chebotarev S, Efimov D, Raïssi T, Zolghadri A. Interval observers for continuous‐time LPV systems with L1/L2 performance. Automatica. 2015;58:82‐89.
[18]
Degue KH, Efimov D, Richard JP. Stabilization of linear impulsive systems under dwell‐time constraints: interval observer‐based framework. Eur J Control. 2018;42:1‐14.
[19]
Depature C, Sicard P, Bouscayrol A, Lhomme W, Boulon L. Comparison of backstepping control and inversion‐based control of a range extender electric vehicle. Paper presented at: Proceedings of the 2014 IEEE Vehicle Power and Propulsion Conference (VPPC). 2014. https://doi.org/10.1109/VPPC.2014.7007028.
[20]
Syed SA, Lhomme W, Bouscayrol A. Modeling of power split device with clutch for heavy‐duty millitary vehicles. Paper presented at: Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference; 2011. https://doi.org/10.1109/VPPC.2011.6043134.
[21]
Churilov A, Medvedev A, Shepeljavyi A. Mathematical model of non‐basal testosterone regulation in the male by pulse modulated feedback. Automatica. 2009;45:78‐85.
[22]
Nam PT, Trinh H, Pathirana PN. Reachable set bounding for nonlinear perturbed time‐delay systems: the smallest bound. Appl Math Lett. 2015;43:68‐71.
[23]
Raïssi T, Efimov D, Zolghadri A. Interval state estimation for a class of nonlinear systems. IEEE Trans Automat Control. 2012;57(2):260‐265.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Adaptive Control and Signal Processing
International Journal of Adaptive Control and Signal Processing  Volume 34, Issue 9
September 2020
190 pages
ISSN:0890-6327
EISSN:1099-1115
DOI:10.1002/acs.v34.9
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 01 September 2020

Author Tags

  1. external disturbances
  2. interval functional observers
  3. reduced‐order interval observers
  4. time‐delay systems

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Sep 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media