Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Design of functional interval observers for non‐linear fractional‐order systems

Published: 28 May 2020 Publication History

Abstract

This paper considers the problem of designing functional interval observers for a class of non‐linear fractional‐order systems with bounded uncertainties. First, interval observers for linear functions of the state vector of the considered system are designed. Then, conditions for the existence of such interval observers are established and an effective algorithm for computing unknown observer matrices is provided in this paper. Finally, numerical examples and simulation results are given to illustrate the effectiveness of the proposed design method.

References

[1]
C. P. Li and F. R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Spec. Top. 193 (2011), 27–47.
[2]
R. Koeller, Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), 299–307.
[3]
J. A. Gallegos and M. A. Duarte, On the Lyapunov theory for fractional order systems, Appl. Math. Comput. 287‐288 (2016), 161–170.
[4]
R.‐J. Liu et al., Robust disturbance rejection for uncertain fractional order systems, Appl. Math. Comput. 322 (2018), 79–88.
[5]
A. L. Wu and Z. G. Zeng, Boundedness, Mittag‐Leffler stability and asymptotical ω‐periodicity of fractional‐order fuzzy neural networks, Neural Netw. 74 (2016), 73–84.
[6]
A. L. Wu, Z. G. Zeng, and X. G. Song, Global Mittag‐Leffler stabilization of fractional‐order bidirectional associative memory neural networks, Neurocomputing 177 (2016), 489–496.
[7]
X. J. Yang, Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat‐transfer problems, Therm. Sci. 21 (2017), 161–171.
[8]
X. J. Yang, H. M. Srivastava, and J. A. Tenreiro Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci. 20 (2016), 753–756.
[9]
X. J. Yang and J. A. Tenreiro Machado, A new fractional operator of variable order: application in the description of anomalous diffusion, Phys. A, Stat. Mech. Appl. 481 (2017), 276–283.
[10]
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations North‐Holland Mathematics Studies, Vol. 204, Elsevier Science BV, Amsterdam, 2006.
[11]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[12]
V. Lakshmikantham, Fractional Differential Equations, Academic Press, San Diego, 1999.
[13]
M. V. Thuan and D. C. Huong, New results on stabilization of fractional‐order nonlinear systems via an LMI approachs, Asian J. Control 20 (2018), 1–10.
[14]
D. C. Huong and M. V. Thuan, Design of unknown input reduced‐order observers for a class of nonlinear fractional‐order time‐delay systems, Int. J. Adapt. Control Signal Process. 32 (2018), 412–423.
[15]
E. A. Boroujeni and H. R. Momeni, Non‐fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, Signal Process. 92 (2012), 2365–2370.
[16]
T. Kaczorek, Reduced‐order fractional descriptor observers for fractional descriptor continuous‐time linear system, Bull. Polish Acad. Sci.: Tech. Sci. 62 (2014), 889–895.
[17]
T. Kaczorek, Reduced‐order perfect nonlinear observers of fractional descriptor discrete‐time nonlinear systems, Int. J. Appl. Math. Comput. Sci. 27 (2017), 245–251.
[18]
H. Trinh, D. C. Huong, and S. Nahavandi, Observers design for positive fractional‐order interconnected time‐delay, Systems. Trans. Inst. Meas. Control. (2018). https://doi.org/10.1177/0142331218757864
[19]
Y. H. Lan, H. X. Huang, and Y. Zhou, Observer‐based robust control of α(1 ≤ α < 2) fractional‐order uncertain systems: a linear matrix inequality approach, IET Contr. Theory Appl. 6 (2012), 229–234.
[20]
Y. Li, Y. Q. Chen, and S. H. Ahn, Fractional‐order iterative learning control for fractional‐order linear systems, Asian J. Control. 13 (2011), 54–63.
[21]
I. N'doye, M. Darouach, and M. Zasadzinski, Design of unkown input fractional‐order observers for fractional‐order systems, Int. J. Appl. Math. Comput. Sci. 23 (2013), 491–500.
[22]
I. N'doye et al., H adaptive observer for nonlinear fractional‐order systems, Int. J. Adapt. Control Signal Process. 31 (2017), 314–331.
[23]
T. Kaczorek, Perfect nonlinear observers of fractional descriptor continuous‐time nonlinear systems, Fract. Calc. Appl. Anal. 19 (2016), 775–784.
[24]
T. Kaczorek, Reduced‐order fractional descriptor observers for a class of fractional descriptor continuous‐time nonlinear systems, Int. J. Appl. Math. Comput. Sci. 26 (2016), 277–283.
[25]
D. Efimov et al., Interval observers for time‐varying discrete‐time systems, IEEE Trans. Autom. Control 58 (2013), 3218–3224.
[26]
D. Efimov, W. Perruquetti, and A. Zolghadri, Control of nonlinear and LPV systems: Interval observer‐based framework, IEEE Trans. Autom. Control 58 (2013), 773–782.
[27]
Y. Wang, M. B. David, and R. Rajesh, Interval observer design for LPV systems with parametric uncertainty, Automatica 60 (2015), 79–85.
[28]
Z. He and W. Xie, Control of nonlinear switched systems with average dwell time: Interval observer‐based framework, IET Contr. Theory Appl. 10 (2016), 10–16.
[29]
J. L. Gouzé, A. Rapaport, and M. Z. Hadj‐Sadok, Interval observers for uncertain biological systems, Ecol. Model. 133 (2000), 45–56.
[30]
L. Farina and S. Rinaldi, Positive Linear Systems Theory and Applications, John Wiley, New York, 2000.
[31]
F. Mazenc and O. Bernard, Interval observers for linear time‐invariant systems with disturbances systems, Automatica 47 (2011), 140–147.
[32]
Z. Shu et al., Positive observers and dynamic outputfeedback controllers for interval positive linear systems, IEEE Trans. Circuits Syst. I 55 (2008), 3209–3222.
[33]
M. Moisan and O. Bernard, Robust interval observers for global Lipschitz uncertain chaotic systems, Syst. Control Lett. 59 (2010), 687–694.
[34]
D. Efimov et al., Interval estimation for LPV systems applying high order sliding mode techniques, Automatica 48 (2012), 2365–2371.
[35]
Z. He and W. Xie, Control of non‐linear systems based on interval observer design, IET Contr. Theory Appl. 4 (2018), 543–548.
[36]
D.K. Gu, L.W. Liu and G.R. Duan, Functional interval observer for the linear systems with disturbances, IET Contr. Theory Appl. (2018). https://doi.org/10.1049/iet-cta.2018.5113
[37]
S. E. Hamdi et al., Interval state observer design for fractional systems, 10th Int. Multi‐conf. Syst. Signals Devices (SSD), Hammamet, Tunisia, 2013, pp. 1–6.
[38]
T. Raïssi and M. Aoun, On robust pseudo state estimation of fractional order systems, 5th Int. Symp. Positive Systems, Rome, Italy, 2016, pp. 97–111.
[39]
F. Cacace et al., Positive System, Lecture Notes in Control and Information Sciences. Rome: Springer, 2017.
[40]
I. Petras, Fractional‐Order Nonlinear Systems, Springer, Berlin, 2011.
[41]
I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[42]
T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer‐Verlag, Berlin Heidelberg, 2011.
[43]
D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models and Applications, John Wiley, New York, 1979.
[44]
F. Cacace, A. Germani, and C. Manes, A new approach to design interval observers for linear systems, IEEE Trans. Autom. Control 60 (2015), 1665–1670.
[45]
G. R. Duan, Generalized Sylvester equations: Unified parametric solutions. Boca Raton:CRC Press, Taylor & Francis Group, (2014).
[46]
B. Zhou and G. R. Duan, A new solution to the generalized Sylvester matrix equation AV − EVF = BW, Syst. Control Lett. 55 (2006), 193–198.
[47]
J. D. Murray, Mathematical Biology. New York:Springer‐Verlag, 1990.

Cited By

View all

Index Terms

  1. Design of functional interval observers for non‐linear fractional‐order systems
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Asian Journal of Control
        Asian Journal of Control  Volume 22, Issue 3
        May 2020
        364 pages
        ISSN:1561-8625
        EISSN:1934-6093
        DOI:10.1002/asjc.v22.3
        Issue’s Table of Contents

        Publisher

        John Wiley & Sons, Inc.

        United States

        Publication History

        Published: 28 May 2020

        Author Tags

        1. functional interval observers
        2. non‐linear fractional‐order systems
        3. uncertain systems

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 28 Sep 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)Fractional order internal model control of non‐minimum phase and time‐delayed plantsAsian Journal of Control10.1002/asjc.301525:4(3208-3229)Online publication date: 2-Jul-2023
        • (2022)Parametric Design of Functional Interval Observer for Time-Delay Systems with Additive DisturbancesCircuits, Systems, and Signal Processing10.1007/s00034-021-01906-341:5(2614-2635)Online publication date: 1-May-2022
        • (2020)Reduced nonlinear unknown inputs observer using mean value theorem and patternsearch algorithmAutomatica (Journal of IFAC)10.1016/j.automatica.2019.108708112:COnline publication date: 1-Feb-2020
        • (2020)Interval functional observers for time‐delay systems with additive disturbancesInternational Journal of Adaptive Control and Signal Processing10.1002/acs.314934:9(1281-1293)Online publication date: 1-Sep-2020

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media