Isolation and Characterization of a Lytic Phage PaTJ Against Pseudomonas aeruginosa
<p>Identification and morphology of <span class="html-italic">Pseudomonas</span> phage PaTJ. (<b>A</b>) Plaques for the isolation of <span class="html-italic">Pseudomonas</span> phage PaTJ on a wild-type MPAO1 lawn after double layer agar plating (top), and the PaTJ plaques selected for further phage propagation were indicated by red arrows. The plate used for the preparation of high titer phage lysate in this study (bottom). (<b>B</b>) TEM images of negatively stained phage PaTJ particles are presented at two magnifications. Representative images were shown.</p> "> Figure 2
<p>One-step growth curve and killing kinetics of PaTJ. (<b>A</b>) The one-step growth curve of PaTJ on the <span class="html-italic">P. aeruginosa</span> strain MPAO1 was conducted at MOI 0.1, and three independent cultures were used. The data are presented as mean ± SD. (<b>B</b>) Killing curves of <span class="html-italic">P. aeruginosa</span> strain MPAO1 by PaTJ were generated at various MOIs (1000, 100, 10, 1, 0.1, and 0.00001). The growth of MPAO1 cells without the addition of phages (MOI = 0) was used as the control. (<b>C</b>) Phage titers in cultures in B at MOIs 10 and 0.1, and the data are presented as mean ± SD.</p> "> Figure 3
<p>PaTJ uses T4P as its receptor. The PaTJ phages were serially diluted by a factor of 10 and were plated onto lawns of the wild-type MPAO1 strain as well as two T4P mutant strains, Δ<span class="html-italic">pilC</span> and Δ<span class="html-italic">pilA</span>, respectively. Three independent phage samples were utilized and were designated as #1, #2, and #3.</p> "> Figure 4
<p>Comparative genome analysis of the <span class="html-italic">P. aeruginosa</span> phages PaTJ, Rocky, vB-Pa-PAC4, and PAE1.</p> "> Figure 5
<p>The maximum likelihood tree based on the whole genome sequences of phage PaTJ (red) and the available phages listed in <a href="#app1-viruses-16-01816" class="html-app">Supplementary Table S2</a>.</p> "> Figure 6
<p>MPAO1 cells were infected with phage PaTJ at an OD<sub>600</sub> of 1.0 with MOI 0.01 for 30 min. Normalized gene expression (lgRPKM) of all PaTJ-encoding genes was shown on the left. The gene clusters with continuous similar expression patterns were also depicted on the right, and genes encoding hypothetical proteins were shown in gray. Phage structural proteins were depicted in blue, while those encoding homologs of known phage accessory proteins were depicted in brown. MCP, major capsid protein. Three independent cultures were used for both groups.</p> "> Figure 7
<p>The impact of PaTJ infection on expression of host genes. Normalized expression of MPAO1 genes in samples in <a href="#viruses-16-01816-f006" class="html-fig">Figure 6</a> was also analyzed. Only KEGG pathways related to metabolism were significantly enriched and the expression levels (lgRPKM) of genes in enriched pathways were depicted in heatmaps. Three independent cultures were used for both groups.</p> "> Figure 8
<p>Biofilms in a static growth phase were exposed to PaTJ phages, and the residual biofilm was assessed at 0, 4, and 8 h post-infection. The relative biofilm was calculated by comparing it to the initial time point (time 0) when the PaTJ phages were introduced at different MOIs. Three independent cultures were used for each MOI and the data were presented as the mean ± standard deviation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Phage Isolation and Purification
2.3. Transmission Electron Microscopy (TEM)
2.4. One-Step Growth Curve
2.5. Gene Knockout in P. aeruginosa MPAO1
2.6. Killing Dynamics
2.7. Phage Genome Isolation, Sequencing, Annotation, and Comparative Genome Analysis
2.8. Genome Comparison
2.9. Phylogenetic Tree Analysis
2.10. RNA Isolation and Strand-Specific RNA Sequencing
2.11. Biofilm Degradation
3. Results
3.1. Plaque and Phage Morphology of PaTJ
3.2. One-Step Growth Curve and Killing Kinetics of PaTJ
3.3. Receptor of Phage PaTJ
3.4. Genomic Features of Phage PaTJ
3.5. Expression Pattern of PaTJ Encoding Genes During Infection
3.6. PaTJ Affects Host Metabolism During Infection
3.7. Potential of PaTJ in Biofilm Degradation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- Nathan, C. Resisting antimicrobial resistance. Nat. Rev. Microbiol. 2020, 18, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2022, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2014, 13, 42–51. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem 2021, 5, 726–749. [Google Scholar] [CrossRef]
- D’Herelle, F. Bacteriophage as a treatment in acute medical and surgical infections. Bull. N. Y. Acad. Med. 1931, 7, 329–348. [Google Scholar]
- Brives, C.; Pourraz, J. Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Commun. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef]
- Dedrick, R.M.; Guerrero-Bustamante, C.A.; Garlena, R.A.; Russell, D.A.; Ford, K.; Harris, K.; Gilmour, K.C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R.T.; et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant. Nat. Med. 2019, 25, 730–733. [Google Scholar] [CrossRef]
- Eskenazi, A.; Lood, C.; Wubbolts, J.; Hites, M.; Balarjishvili, N.; Leshkasheli, L.; Askilashvili, L.; Kvachadze, L.; van Noort, V.; Wagemans, J.; et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant. Nat. Commun. 2022, 13, 302. [Google Scholar] [CrossRef]
- Fabijan, A.P.; Lin, R.C.Y.; Ho, J.S.; Maddocks, S.; Ben Zakour, N.L.; Iredell, J.R.; Therapy, W.B. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 2020, 5, 652. [Google Scholar] [CrossRef]
- Pirnay, J.-P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; De Soir, S.; Glonti, T.; Spiessens, A.; Vanden Berghe, E.; Green, S.; et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: A multicentre, multinational, retrospective observational study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef]
- Teney, C.; Poupelin, J.C.; Briot, T.; Le Bouar, M.; Fevre, C.; Brosset, S.; Martin, O.; Valour, F.; Roussel-Gaillard, T.; Leboucher, G.; et al. Phage therapy in a burn patient colonized with extensively drug-resistant Pseudomonas aeruginosa responsible for relapsing ventilator-associated pneumonia and bacteriemia. Viruses 2024, 16, 1080. [Google Scholar] [CrossRef]
- Strathdee, S.A.; Hatfull, G.F.; Mutalik, V.K.; Schooley, R.T. Phage therapy: From biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.J.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2020, 19, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z.Y. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Drenkard, E.; Ausubel, F.M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002, 416, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Teklemariam, A.D.; Al-Hindi, R.R.; Alharbi, M.G.; Alotibi, I.; Azhari, S.A.; Qadri, I.; Alamri, T.; Esmael, A.; Harakeh, S. Isolation and characterization of a novel lytic phage, vB_PseuP-SA22, and its efficacy against carbapenem-resistant Pseudomonas aeruginosa. Antibiotics 2023, 12, 497. [Google Scholar] [CrossRef]
- Sillankorva, S.; Neubauer, P.; Azeredo, J. Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol. 2008, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Akremi, I.; Merabishvili, M.; Jlidi, M.; Haj Brahim, A.; Ben Ali, M.; Karoui, A.; Lavigne, R.; Wagemans, J.; Pirnay, J.-P.; Ben Ali, M. Isolation and characterization of lytic Pseudomonas aeruginosa bacteriophages isolated from sewage samples from Tunisia. Viruses 2022, 14, 2339. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Yang, X.; Wang, S.; Yang, Y.; Zhou, H.; Li, C.; Xue, B.; Zhang, X.; Zhao, C.; Shen, Z.; et al. Isolation and characterization of two homolog phages infecting Pseudomonas aeruginosa. Front. Microbiol. 2022, 13, 946251. [Google Scholar]
- Shi, Z.; Hong, X.; Li, Z.; Zhang, M.; Zhou, J.; Zhao, Z.; Qiu, S.; Liu, G. Characterization of the novel broad-spectrum lytic phage Phage_Pae01 and its antibiofilm efficacy against Pseudomonas aeruginosa. Front. Microbiol. 2024, 15, 1386830. [Google Scholar] [CrossRef]
- Daugelavicius, R.; Daujotaite, G.; Bamford, D.H. Lysis physiology of Pseudomonas aeruginosa infected with ssRNA phage PRR1. Viruses 2024, 16, 645. [Google Scholar] [CrossRef]
- Guo, Y.; Tang, K.; Sit, B.; Gu, J.; Chen, R.; Shao, X.; Lin, S.; Huang, Z.; Nie, Z.; Lin, J.; et al. Control of lysogeny and antiphage defense by a prophage-encoded kinase-phosphatase module. Nat. Commun. 2024, 15, 7244. [Google Scholar] [CrossRef]
- Bertani, G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 1951, 62, 293–300. [Google Scholar] [CrossRef]
- Sharma, S.; Datta, S.; Chatterjee, S.; Dutta, M.; Samanta, J.; Vairale, M.G.; Gupta, R.; Veer, V.; Dwivedi, S.K. Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa. Sci. Rep. 2021, 11, 19393. [Google Scholar] [CrossRef]
- Hoang, T.T.; Karkhoff-Schweizer, R.R.; Kutchma, A.J.; Schweizer, H.P. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998, 212, 77–86. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Xuan, G.; Lin, H.; Wang, J. Expression of a phage-encoded Gp21 protein protects Pseudomonas aeruginosa against phage infection. J. Virol. 2022, 96, JVI0176921. [Google Scholar] [CrossRef] [PubMed]
- Akhverdian, V.Z.; Khrenova, E.A.; Bogush, V.G.; Gerasimova, T.V.; Kirsanov, N.B. Wide distribution of transposable phages in natural Pseudomonas aeruginosa populations. Genetika 1984, 20, 1612–1619. [Google Scholar] [PubMed]
- Nobrega, F.L.; Vlot, M.; de Jonge, P.A.; Dreesens, L.L.; Beaumont, H.J.E.; Lavigne, R.; Dutilh, B.E.; Brouns, S.J.J. Targeting mechanisms of tailed bacteriophages. Nat. Rev. Microbiol. 2018, 16, 760–773. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Tang, K.; Lin, J.; Gao, X.; Guo, Y.; Wang, X. Filamentous prophage capsid proteins contribute to superinfection exclusion and phage defence in Pseudomonas aeruginosa. Environ. Microbiol. 2022, 24, 4285–4298. [Google Scholar] [CrossRef]
- Bradley, D. A study of pili on Pseudomonas aeruginosa. Genet. Res. 1972, 19, 39–51. [Google Scholar] [CrossRef]
- Thanabalasuriar, A.; Scott, B.N.V.; Peiseler, M.; Willson, M.E.; Zeng, Z.; Warrener, P.; Keller, A.E.; Surewaard, B.G.J.; Dozier, E.A.; Korhonen, J.T.; et al. Neutrophil extracellular traps confine Pseudomonas aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe 2019, 25, 526–536.e4. [Google Scholar] [CrossRef]
- Hoiby, N.; Ciofu, O.; Bjarnsholt, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010, 5, 1663–1674. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal. Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Papacostas, G.; Grant, G.D.; Hall, S. Risk of Pseudomonas aeruginosa antimicrobial resistance using time series analysis of antibiotic usage. J. Pharm. Pract. Res. 2024, 54, 209–216. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, C.; Shen, W.; Huang, G.; Le, S.; Lu, S.; Li, M.; Zhao, Y.; Wang, J.; Rao, X.; et al. Global transcriptomic analysis of interactions between Pseudomonas aeruginosa and bacteriophage PaP3. Sci. Rep. 2016, 6, 19237. [Google Scholar] [CrossRef] [PubMed]
- Lavigne, R.; Lecoutere, E.; Wagemans, J.; Cenens, W.; Aertsen, A.; Schoofs, L.; Landuyt, B.; Paeshuyse, J.; Scheer, M.; Schobert, M.; et al. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19. mBio 2013, 4, e00061–e13. [Google Scholar] [CrossRef] [PubMed]
- Ravantti, J.J.; Ruokoranta, T.M.; Alapuranen, A.M.; Bamford, D.H. Global transcriptional responses of Pseudomonas aeruginosa to phage PRR1 infection. J. Virol. 2008, 82, 2324–2329. [Google Scholar] [CrossRef] [PubMed]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmolle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef]
- Bagge, N.; Hentzer, M.; Andersen, J.B.; Ciofu, O.; Givskov, M.; Hoiby, N. Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2004, 48, 1168–1174. [Google Scholar] [CrossRef]
- Gupta, K.; Marques, C.N.H.; Petrova, O.E.; Sauer, K. Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J. Bacteriol. 2013, 195, 4975–4987. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Rousset, F.; Depardieu, F.; Miele, S.; Dowding, J.; Laval, A.L.; Lieberman, E.; Garry, D.; Rocha, E.P.C.; Bernheim, A.; Bikard, D. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe 2022, 30, 740–753.e5. [Google Scholar] [CrossRef]
- LeRoux, M.; Srikant, S.; Teodoro, G.I.C.; Zhang, T.; Littlehale, M.L.; Doron, S.; Badiee, M.; Leung, A.K.L.; Sorek, R.; Laub, M.T. The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA. Nat. Microbiol. 2022, 7, 1028–1040. [Google Scholar] [CrossRef]
- Zhang, T.; Tamman, H.; Coppieters, T.; Wallant, K.; Kurata, T.; Leroux, M.; Srikant, S.; Brodiazhenko, T.; Cepauskas, A.; Talavera, A.; et al. Direct activation of a bacterial innate immune system by a viral capsid protein. Nature 2022, 612, 132–140. [Google Scholar] [CrossRef]
- Owen, S.V.; Wenner, N.; Dulberger, C.L.; Rodwell, E.V.; Bowers-Barnard, A.; Quinones-Olvera, N.; Rigden, D.J.; Rubin, E.J.; Garner, E.C.; Baym, M.; et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 2021, 29, 1620–1633.e8. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.K.; Fitzpatrick, A.D.; Schwartzkopf, C.M.; Faith, D.R.; Jennings, L.K.; Coluccio, A.; Hunt, D.J.; Michaels, L.A.; Hargil, A.; Chen, Q.; et al. A filamentous bacteriophage protein inhibits type IV pili to prevent superinfection of Pseudomonas aeruginosa. mBio 2022, 13, e0244121. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Zhang, X.; Liu, T.; Guo, Y. Isolation and Characterization of a Lytic Phage PaTJ Against Pseudomonas aeruginosa. Viruses 2024, 16, 1816. https://doi.org/10.3390/v16121816
Gu J, Zhang X, Liu T, Guo Y. Isolation and Characterization of a Lytic Phage PaTJ Against Pseudomonas aeruginosa. Viruses. 2024; 16(12):1816. https://doi.org/10.3390/v16121816
Chicago/Turabian StyleGu, Jiayu, Xinqiao Zhang, Tianlang Liu, and Yunxue Guo. 2024. "Isolation and Characterization of a Lytic Phage PaTJ Against Pseudomonas aeruginosa" Viruses 16, no. 12: 1816. https://doi.org/10.3390/v16121816
APA StyleGu, J., Zhang, X., Liu, T., & Guo, Y. (2024). Isolation and Characterization of a Lytic Phage PaTJ Against Pseudomonas aeruginosa. Viruses, 16(12), 1816. https://doi.org/10.3390/v16121816