Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biofilm life cycle: expanding the conceptual model of biofilm formation

Abstract

Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The original five-step model of biofilm development.
Fig. 2: Variation in Pseudomonas aeruginosa biofilm architecture.
Fig. 3: Diverse surface-attached and non-surface-attached biofilm structures.
Fig. 4: Mechanisms of microbial aggregate formation.
Fig. 5: Expanded conceptual model of biofilm formation.

Similar content being viewed by others

References

  1. Costerton, J. W., Geesey, G. G. & Cheng, K. J. How bacteria stick. Sci. Am. 238, 86–95 (1978).

    CAS  PubMed  Google Scholar 

  2. McCoy, W. F., Bryers, J. D., Robbins, J. & Costerton, J. W. Observations of fouling biofilm formation. Can. J. Microbiol. 27, 910–917 (1981).

    CAS  PubMed  Google Scholar 

  3. Flemming, H.-C. et al. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. NPJ Biofilms Microbiomes 7, 10 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2013, 288–356 (2013).

    Google Scholar 

  5. Hoiby, N. et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 21 (Suppl. 1), S1–S25 (2015).

    PubMed  Google Scholar 

  6. Kolpen, M. et al. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax https://doi.org/10.1136/thoraxjnl-2021-217576 (2022).

    Article  PubMed  Google Scholar 

  7. Raghupathi, P. K. et al. Synergistic interactions within a multispecies biofilm enhance individual species protection against grazing by a pelagic protozoan. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jass, J., Roberts, S. K. & Lappin-Scott, H. M. in Enzymes in the Environment. Activity, Ecology and Applications 307–326 (Marcel Dekker Inc., 2002).

  9. Tkacz, A. & Poole, P. The plant microbiome: the dark and dirty secrets of plant growth. Plants People Planet 3, 124–129 (2021).

    Google Scholar 

  10. Annous, B. A., Solomon, E. B., Cooke, P. H. & Burke, A. Biofilm formation by Salmonella spp. on Cantaloupe melons. J. Food Saf. 25, 276–287 (2005).

    Google Scholar 

  11. Rudrappa, T., Biedrzycki, M. L. & Bais, H. P. Causes and consequences of plant-associated biofilms. FEMS Microbiol. Ecol. 64, 153–166 (2008).

    CAS  PubMed  Google Scholar 

  12. Flemming, H. C. & Wuertz, S. Bacteria and archaea on earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019). Excellent review that quantitatively explores and proves the long-standing notion that biofilm is the predominant form of prokaryotic life.

    CAS  PubMed  Google Scholar 

  13. Costerton, J. W. et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987).

    CAS  PubMed  Google Scholar 

  14. Vishwakarma, V. Impact of environmental biofilms: industrial components and its remediation. J. Basic Microbiol. 60, 198–206 (2020).

    PubMed  Google Scholar 

  15. Jurelevicius, D. et al. Long-term souring treatment using nitrate and biocides in high-temperature oil reservoirs. Fuel 288, 119731 (2021).

    CAS  Google Scholar 

  16. Alhede, M. et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS ONE 6, e27943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vitzilaiou, E., Kuria, A. M., Siegumfeldt, H., Rasmussen, M. A. & Knøchel, S. The impact of bacterial cell aggregation on UV inactivation kinetics. Water Res. 204, 117593 (2021).

    CAS  PubMed  Google Scholar 

  18. Bjarnsholt, T. et al. The importance of understanding the infectious microenvironment. Lancet Infect. Dis. 22, e88–e92 (2022).

    CAS  PubMed  Google Scholar 

  19. Cornforth, D. M., Diggle, F. L., Melvin, J. A., Bomberger, J. M. & Whiteley, M. Quantitative framework for model evaluation in microbiology research using Pseudomonas aeruginosa and cystic fibrosis infection as a test case. mBio https://doi.org/10.1128/mBio.03042-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marrie, T. J., Nelligan, J. & Costerton, J. W. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66, 1339–1341 (1982).

    CAS  PubMed  Google Scholar 

  21. Zobell, C. E. The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46, 39–56 (1943). Simple observation results in a paradigm-changing idea: bacteria like to live in communities.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thaarup, I. C. & Bjarnsholt, T. Current in vitro biofilm-infected chronic wound models for developing new treatment possibilities. Adv. Wound Care 10, 91–102 (2021).

    Google Scholar 

  23. Sternberg, C., Bjarnsholt, T. & Shirtliff, M. Methods for dynamic investigations of surface-attached in vitro bacterial and fungal biofilms. Methods Mol. Biol. 1147, 3–22 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Azeredo, J. et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 43, 313–351 (2017).

    CAS  PubMed  Google Scholar 

  25. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).

    CAS  PubMed  Google Scholar 

  26. Irie, Y. et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 109, 20632–20636 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002). The original key paper that started the concept of a biofilm life cycle and is revisited in this Review.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pamp, S. J., Sternberg, C. & Tolker-Nielsen, T. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytom. A 75, 90–103 (2009).

    Google Scholar 

  29. Klausen, M. et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48, 1511–1524 (2003).

    CAS  PubMed  Google Scholar 

  30. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).

    CAS  PubMed  Google Scholar 

  31. Moormeier, D. E. & Bayles, K. W. Staphylococcus aureus biofilm: a complex developmental organism. Mol. Microbiol. 104, 365–376 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 11, 157–168 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, Y., Xiao, Y., Liao, K., Leng, Y. & Lu, Q. Development of microalgal biofilm for wastewater remediation: from mechanism to practical application. J. Chem. Technol. Biotechnol. 96, 2993–3008 (2021).

    CAS  Google Scholar 

  34. Liu, J., Lu, H., Wu, L., Kerr, P. G. & Wu, Y. Interactions between periphytic biofilms and dissolved organic matter at soil-water interface and the consequent effects on soil phosphorus fraction changes. Sci. Total Environ. 801, 149708 (2021).

    CAS  PubMed  Google Scholar 

  35. Wu, B. C. et al. Human organoid biofilm model for assessing antibiofilm activity of novel agents. NPJ Biofilms Microbiomes 7, 8 (2021).

    CAS  PubMed  Google Scholar 

  36. Zhao, Y., Liu, H., Wang, R. & Wu, C. Interactions between dicyandiamide and periphytic biofilms in paddy soils and subsequent effects on nitrogen cycling. Sci. Total Environ. 718, 137417 (2020).

    CAS  PubMed  Google Scholar 

  37. Petrova, O. E. & Sauer, K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog. 5, e1000668 (2009). Findings reported here demonstrated, for the first time, that the formation of biofilms is coordinated by a genetic pathway that regulates morphological changes of biofilms and stage-specific transitions in a hierarchically ordered manner. Components of the genetic pathways only seemed to have a role under biofilm growth conditions.

    PubMed  PubMed Central  Google Scholar 

  38. Petrova, O. E., Gupta, K., Liao, J., Goodwine, J. S. & Sauer, K. Divide and conquer: the Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits. Environ. Microbiol. 19, 2005–2024 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. O’Toole, G. A. & Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28, 449–461 (1998).

    PubMed  Google Scholar 

  40. Davey, M. E. & O’Toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Characklis, W. G. Attached microbial growths-II. Frictional resistance due to microbial slimes. Water Res. 7, 1249–1258 (1973).

    CAS  Google Scholar 

  42. Davies, D. G., Charabarty, A. M. & Geesey, G. G. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59, 1181–1186 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Davies, D. G. & Geesey, G. G. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl. Environ. Microbiol. 61, 860–867 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Colvin, K. M. et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 14, 1913–1928 (2012).

    CAS  PubMed  Google Scholar 

  45. Bagge, N. et al. Dynamics and spatial distribution of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 48, 1168–1174 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wood, D. W., Gong, F., Daykin, M. M., Williams, P. & Pierson, L. S. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J. Bacteriol. 179, 7663–7670 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gupta, K., Marques, C. N. H., Petrova, O. E. & Sauer, K. Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J. Bacteriol. 195, 4975–4987 (2013). Findings reported here indicated that biofilm cells gain heightened tolerance to antimicrobial agents in a manner independent of biofilm biomass accumulation (demonstrating mature biofilm architecture).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wood, S. R. et al. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J. Dent. Res. 79, 21–27 (2000).

    CAS  PubMed  Google Scholar 

  49. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).

    CAS  PubMed  Google Scholar 

  50. Lequette, Y. & Greenberg, E. P. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187, 37–44 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Espinosa-Urgel, M. Resident parking only: rhamnolipids maintain fluid channels in biofilms. J. Bacteriol. 185, 699–700 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuchma, S. L., Connolly, J. P. & O’Toole, G. A. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J. Bacteriol. 187, 1441–1454 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Petrova, O. E., Schurr, J. R., Schurr, M. J. & Sauer, K. Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation. Mol. Microbiol. 86, 819–835 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sriramulu, D. D., Lünsdorf, H., Lam, J. S. & Römling, U. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol. 54, 667–676 (2005).

    PubMed  Google Scholar 

  55. Purevdorj, B., Costerton, J. W. & Stoodley, P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68, 4457–4464 (2002). Understanding the relationship between biofilm and fluid dynamics is crucial and completely overlooked in traditional microbiological systems. It impacts not only mass transfer rates but also the biofilm architecture, spatial organization and detachment.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    CAS  PubMed  Google Scholar 

  57. Serra, D. O. & Hengge, R. Stress responses go three dimensional–the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16, 1455–1471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Williamson, K. S. et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J. Bacteriol. 194, 2062–2073 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Heacock-Kang, Y. et al. Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture. Mol. Microbiol. 106, 976–985 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Haussler, S. & Fuqua, C. Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J. Bacteriol. 195, 2947–2958 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Petrova, O. E. & Sauer, K. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr. Opin. Microbiol. 30, 67–78 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Davies, D. G. in Biofilm Highlights (eds Flemming, H.-C., Wingender, J. & Szewzyk, U.) 1–28 (Springer, 2011).

  64. Steinberg, N. et al. The extracellular matrix protein TasA is a developmental cue that maintains a motile subpopulation within Bacillus subtilis biofilms. Sci. Signal. 13, eaaw8905 (2020).

    CAS  PubMed  Google Scholar 

  65. Purevdorj-Gage, B., Costerton, W. J. & Stoodley, P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151, 1569–1576 (2005).

    CAS  PubMed  Google Scholar 

  66. Valentini, M. & Filloux, A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291, 12547–12555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Römling, U., Galperin, M. Y. & Gomelsky, M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77, 1–52 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Jenal, U., Reinders, A. & Lori, C. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15, 271–284 (2017).

    CAS  PubMed  Google Scholar 

  69. Purcell, E. B. & Tamayo, R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol. Rev. 40, 753–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019).

    CAS  PubMed Central  Google Scholar 

  71. Mantzorou, A. & Ververidis, F. Microalgal biofilms: a further step over current microalgal cultivation techniques. Sci. Total Environ. 651, 3187–3201 (2019).

    CAS  PubMed  Google Scholar 

  72. Prieto-Barajas, C. M., Valencia-Cantero, E. & Santoyo, G. Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electron. J. Biotechnol. 31, 48–56 (2018).

    Google Scholar 

  73. Hao, Y. et al. Influence of dental prosthesis and restorative materials interface on oral biofilms. Int. J. Mol. Sci. 19, 3157 (2018).

    PubMed Central  Google Scholar 

  74. Chang, C.-S. & Kao, C.-Y. Current understanding of the gut microbiota shaping mechanisms. J. Biomed. Sci. 26, 59 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Pii, Y. et al. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils https://doi.org/10.1007/s00374-015-0996-1 (2015).

    Article  Google Scholar 

  76. Roth-Schulze, A. J. et al. Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp. Mol. Ecol. 27, 1952–1965 (2018).

    PubMed  Google Scholar 

  77. Monds, R. D. & O’Toole, G. A. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87 (2009).

    CAS  PubMed  Google Scholar 

  78. Dworkin, M. Developmental Biology of the Bacteria (Benjamin/Cummings Pub. Co., 1985).

  79. Brun, Y. V. & Shimkets, L. J. Prokaryotic Development 114 (ASM Press, 2000).

  80. Goodman, A. L. et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754 (2004).

    CAS  PubMed  Google Scholar 

  81. Merritt, J. H., Brothers, K. M., Kuchma, S. L. & O’Toole, G. A. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J. Bacteriol. 189, 8154–8164 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Chambers, J. R. & Sauer, K. Small RNAs and their role in biofilm formation. Trends Microbiol. 21, 39–49 (2013).

    CAS  PubMed  Google Scholar 

  83. Petrova, O. E., Schurr, J. R., Schurr, M. J. & Sauer, K. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol. Microbiol 81, 767–783 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Petrova, O. E. & Sauer, K. The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J. Bacteriol. 192, 5275–5288 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Petrova, O. E. & Sauer, K. SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J. Bacteriol. 193, 6614–6628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, K. W. K. et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 8, 894–907 (2014).

    CAS  PubMed  Google Scholar 

  87. Barken, K. B. et al. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 10, 2331–2343 (2008).

    CAS  PubMed  Google Scholar 

  88. Friedman, L. & Kolter, R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51, 675–690 (2004).

    CAS  PubMed  Google Scholar 

  89. Fabbri, S. et al. Fluid-driven interfacial instabilities and turbulence in bacterial biofilms. Env. Microbiol. 19, 4417–4431 (2017).

    CAS  Google Scholar 

  90. James, G. A., Beaudette, L. & Costerton, J. W. Interspecies bacterial interactions in biofilms. J. Ind. Microbiol. 15, 257–262 (1995).

    CAS  Google Scholar 

  91. Murga, R., Stewart, P. S. & Daly, D. Quantitative analysis of biofilm thickness variability. Biotechnol. Bioeng. 45, 503–510 (1995).

    CAS  PubMed  Google Scholar 

  92. Liu, W. et al. Low-abundant species facilitates specific spatial organization that promotes multispecies biofilm formation. Env. Microbiol. 19, 2893–2905 (2017).

    CAS  Google Scholar 

  93. Sauer, K., Steczko, J. & Ash, S. R. Effect of a solution containing citrate/methylene blue/parabens on Staphylococcus aureus bacteria and biofilm, and comparison with various heparin solutions. J. Antimicrob. Chemother. 63, 937–945 (2009).

    CAS  PubMed  Google Scholar 

  94. Allegrucci, M. et al. Phenotypic characterization of Streptococcus pneumoniae biofilm development. J. Bacteriol. 188, 2325–2335 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hall-Stoodley, L. et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296, 202–211 (2006). First paper to directly link biofilms with otitis media using molecular probes specific for three pathogens, which cause otitis media, on human middle ear mucosal epithelial biopsy samples from children with chronic otitis media and not on uninfected biopsy samples.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hall-Stoodley, L. et al. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 8, 173 (2008).

    PubMed  PubMed Central  Google Scholar 

  97. Bakaletz, L. O. Bacterial biofilms in the upper airway - evidence for role in pathology and implications for treatment of otitis media. Paediatr. Respir. Rev. 13, 154–159 (2012).

    PubMed  PubMed Central  Google Scholar 

  98. Walker, W. T. et al. Primary ciliary dyskinesia ciliated airway cells show increased susceptibility to Haemophilus influenzae biofilm formation. Eur. Respir. J. https://doi.org/10.1183/13993003.00612-2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    CAS  PubMed  Google Scholar 

  100. Tuck, B., Watkin, E., Somers, A. & Machuca, L. L. A critical review of marine biofilms on metallic materials. NPJ Mater. Degrad. 6, 25 (2022).

    Google Scholar 

  101. Hall-Stoodley, L. et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol. Med. Microbiol. 65, 127–145 (2012).

    CAS  PubMed  Google Scholar 

  102. Trego, A. C., Mills, S. & Collins, G. Granular biofilms: function, application, and new trends as model microbial communities. Crit. Rev. Environ. Sci. Technol. 51, 1702–1725 (2021). Focused and informative review on types, functions and applications of microbial granules.

    CAS  Google Scholar 

  103. Zetsche, E.-M., Larsson, A. I., Iversen, M. H. & Ploug, H. Flow and diffusion around and within diatom aggregates: effects of aggregate composition and shape. Limnol. Oceanogr. 65, 1818–1833 (2020).

    CAS  Google Scholar 

  104. Wilén, B.-M., Liébana, R., Persson, F., Modin, O. & Hermansson, M. The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality. Appl. Microbiol. Biotechnol. 102, 5005–5020 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Bjarnsholt, T. et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547–558 (2009). First paper to show, using specific 16S molecular FISH probes, P. aeruginosa in biofilm aggregates in situ in the respiratory tract in individuals with cystic fibrosis.

    PubMed  Google Scholar 

  106. Bjarnsholt, T. et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen. 16, 2–10 (2008).

    PubMed  Google Scholar 

  107. Gloag, E. S., Wozniak, D. J., Stoodley, P. & Hall-Stoodley, L. Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections. Sci. Rep. 11, 5020 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jensen, L. K. et al. Novel porcine model of implant-associated osteomyelitis: a comprehensive analysis of local, regional, and systemic response. J. Orthop. Res. 35, 2211–2221 (2017).

    CAS  PubMed  Google Scholar 

  109. Li, C., Renz, N. & Trampuz, A. Management of periprosthetic joint infection. Hip Pelvis 30, 138–146 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Dudareva, M. et al. Sonication versus tissue sampling for diagnosis of prosthetic joint and other orthopedic device-related infections. J. Clin. Microbiol. https://doi.org/10.1128/JCM.00688-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fux, C. A., Wilson, S. & Stoodley, P. Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J. Bacteriol. 186, 4486–4491 (2004). First paper demonstrating that aggregates are continually shed from biofilms and demonstrate biofilm tolerance to antibiotics.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bay, L. et al. Universal dermal microbiome in human skin. mBio https://doi.org/10.1128/mBio.02945-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Burmolle, M. et al. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. FEMS Immunol. Med. Microbiol. 59, 324–336 (2010).

    PubMed  Google Scholar 

  114. Kim, D. et al. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc. Natl Acad. Sci. USA 117, 12375–12386 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bowen, W. H., Burne, R. A., Wu, H. & Koo, H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 26, 229–242 (2018).

    CAS  PubMed  Google Scholar 

  116. Ashrafi, M. et al. Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci. Rep. 8, 9431 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Salta, M., Wharton, J. A., Blache, Y., Stokes, K. R. & Briand, J.-F. Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol. 15, 2879–2893 (2013).

    PubMed  Google Scholar 

  118. Dastgheyb, S. S. et al. Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin. Antimicrob. Agents Chemother. 59, 2122–2128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Landry, R. M., An, D., Hupp, J. T., Singh, P. K. & Parsek, M. R. Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol. Microbiol. 59, 142–151 (2006).

    CAS  PubMed  Google Scholar 

  120. Singh, P. K. et al. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764 (2000).

    CAS  PubMed  Google Scholar 

  121. Worlitzsch, D. et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Invest. 109, 317–325 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Pestrak, M. J. et al. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation. PLoS ONE 15, e0231791 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Macias-Valcayo, A. et al. Synovial fluid mediated aggregation of clinical strains of four enterobacterial species. Adv. Exp. Med. Biol. https://doi.org/10.1007/5584_2020_573 (2020).

    Article  Google Scholar 

  124. Bidossi, A., Bottagisio, M., Savadori, P. & De Vecchi, E. Identification and characterization of planktonic biofilm-like aggregates in infected synovial fluids from joint infections. Front. Microbiol. 11, 1368 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. Kragh, K. N. et al. The inoculation method could impact the outcome of microbiological experiments. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02264-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Schleheck, D. et al. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS ONE 4, e5513 (2009).

    PubMed  PubMed Central  Google Scholar 

  127. Haaber, J., Cohn, M. T., Frees, D., Andersen, T. J. & Ingmer, H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS ONE 7, e41075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kragh, K. N. et al. Inoculation method could impact the outcome of microbiological experiments. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02264-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hall-Stoodley, L. & Stoodley, P. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol. 13, 7–10 (2005).

    CAS  PubMed  Google Scholar 

  130. Secor, P. R., Michaels, L. A., Ratjen, A., Jennings, L. K. & Singh, P. K. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 115, 10780 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Secor, P. R., Michaels, L. A., Ratjen, A., Jennings, L. K. & Singh, P. K. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 115, 10780–10785 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Dastgheyb, S., Parvizi, J., Shapiro, I. M., Hickok, N. J. & Otto, M. Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J. Infect. Dis. 211, 641–650 (2015). First paper demonstrating the importance of host factors in rapid aggregation of S. aureus into biofilm-like aggregates.

    CAS  PubMed  Google Scholar 

  133. Knott, S. et al. Staphylococcus aureus floating biofilm formation and phenotype in synovial fluid depends on albumin, fibrinogen, and hyaluronic acid. Front. Microbiol. 12, 655873 (2021).

    PubMed  PubMed Central  Google Scholar 

  134. Dar, D., Dar, N., Cai, L. & Newman, D. K. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science https://doi.org/10.1126/science.abi4882 (2021). Using an innovative transcriptome-imaging approach, this article provides visual evidence of differential gene expression and heterogeneity within biofilms at the single-cell level.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dal Co, A., van Vliet, S. & Ackermann, M. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190080 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Kowalski, C. H., Morelli, K. A., Schultz, D., Nadell, C. D. & Cramer, R. A. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc. Natl Acad. Sci. USA 117, 22473–22483 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Cornforth, D. M. et al. Pseudomonas aeruginosa transcriptome during human infection. Proc. Natl Acad. Sci. USA 115, E5125–E5134 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rossi, E., Falcone, M., Molin, S. & Johansen, H. K. High-resolution in situ transcriptomics of Pseudomonas aeruginosa unveils genotype independent patho-phenotypes in cystic fibrosis lungs. Nat. Commun. 9, 3459 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kragh, K. N. et al. Role of multicellular aggregates in biofilm formation. mBio 7, e00237 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Hawes, I., Sumner, D. & Jungblut, A. D. in The Structure and Function of Aquatic Microbial Communities (ed. Hurst, C. J.) 91–120 (Springer International Publishing, 2019).

  142. Franca, R. D. G., Pinheiro, H. M., van Loosdrecht, M. C. M. & Lourenço, N. D. Stability of aerobic granules during long-term bioreactor operation. Biotechnol. Adv. 36, 228–246 (2018).

    CAS  PubMed  Google Scholar 

  143. Li, Y. et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J. Mater. Sci. Technol. 34, 1713–1718 (2018).

    CAS  Google Scholar 

  144. Bahrami, A., Khouzani, M. K. & Harchegani, B. B. Establishing the root cause of a failure in a firewater pipeline. Eng. Fail. Anal. 127, 105474 (2021).

    CAS  Google Scholar 

  145. Risse-Buhl, U. et al. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems. Water Res. 127, 211–222 (2017).

    CAS  PubMed  Google Scholar 

  146. Kirketerp-Moller, K., Stewart, P. S. & Bjarnsholt, T. The zone model: a conceptual model for understanding the microenvironment of chronic wound infection. Wound Repair Regen. 28, 593–599 (2020).

    PubMed  PubMed Central  Google Scholar 

  147. Chan, C. S. et al. The architecture of iron microbial mats reflects the adaptation of chemolithotrophic iron oxidation in freshwater and marine environments. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00796 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bay, L. et al. Bacterial aggregates establish at the edges of acute epidermal wounds. Adv. Wound Care 7, 105–113 (2018).

    Google Scholar 

  149. Ring, H. C. et al. Bacterial biofilm in chronic lesions of hidradenitis suppurativa. Br. J. Dermatol. 176, 993–1000 (2017).

    CAS  PubMed  Google Scholar 

  150. Ring, H. C. et al. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. JAMA Dermatol. 153, 897–905 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. Qvist, T. et al. Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur. Respir. J. 46, 1823–1826 (2015).

    CAS  PubMed  Google Scholar 

  152. Folsom, J. P. et al. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiol. 10, 294 (2010).

    PubMed  PubMed Central  Google Scholar 

  153. Alhede, M. et al. Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes. Med. Microbiol. Immunol. 209, 669–680 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Pamp, S. J., Gjermansen, M., Johansen, H. K. & Tolker-Nielsen, T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol. Microbiol. 68, 223–240 (2008).

    CAS  PubMed  Google Scholar 

  155. Díaz-Pascual, F. et al. Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. eLife 10, e70794 (2021).

    PubMed  PubMed Central  Google Scholar 

  156. Bjarnsholt, T. et al. The impact of mental models on the treatment and research of chronic infections due to biofilms. APMIS https://doi.org/10.1111/apm.13163 (2021).

    Article  PubMed  Google Scholar 

  157. Kirketerp-Moller, K. et al. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 46, 2717–2722 (2008).

    PubMed  PubMed Central  Google Scholar 

  158. Vasconcelos, C. et al. Lithifying microbial mats in Lagoa Vermelha, Brazil: modern Precambrian relics? Sediment. Geol. 185, 175–183 (2006).

    CAS  Google Scholar 

  159. Gilbertie, J. M. et al. Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections. PLoS ONE 14, e0221012 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Dorken, G., Ferguson, G. P., French, C. E. & Poon, W. C. K. Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. J. R. Soc. Interface 9, 3490–3502 (2012). First paper linking polymer depletion with bacterial aggregates.

    PubMed  PubMed Central  Google Scholar 

  161. O’Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30, 295–304 (1998).

    PubMed  Google Scholar 

  162. Schembri, M. A., Kjaergaard, K. & Klemm, P. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48, 253–267 (2003).

    CAS  PubMed  Google Scholar 

  163. Whiteley, M. et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413, 860–864 (2001).

    CAS  PubMed  Google Scholar 

  164. Wagner, V. E., Bushnell, D., Passador, L., Brooks, A. I. & Iglewski, B. H. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185, 2080–2095 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bagge, N. et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob. Agents Chemother. 48, 1175–1187 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ren, Y. et al. Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiol. Rev. 42, 259–272 (2018).

    CAS  PubMed  Google Scholar 

  167. Serra, D. O. & Hengge, R. Stress responses go three dimensional – the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ. Microbiol. 16, 1455–1471 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Povolotsky, T. L., Keren-Paz, A. & Kolodkin-Gal, I. Metabolic microenvironments drive microbial differentiation and antibiotic resistance. Trends Genet. 37, 4–8 (2021).

    CAS  PubMed  Google Scholar 

  169. Liao, J., Schurr, M. J. & Sauer, K. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug-efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol. 195, 3352–3363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kowalski, C. H., Morelli, K. A., Stajich, J. E., Nadell, C. D. & Cramer, R. A. A heterogeneously expressed gene family modulates the biofilm architecture and hypoxic growth of Aspergillus fumigatus. mBio https://doi.org/10.1128/mBio.03579-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Nair, H. A., Periasamy, S., Yang, L., Kjelleberg, S. & Rice, S. A. Real time, spatial, and temporal mapping of the distribution of c-di-GMP during biofilm development. J. Biol. Chem. 292, 477–487 (2017).

    CAS  PubMed  Google Scholar 

  172. Klauck, G., Serra, D. O., Possling, A. & Hengge, R. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol. 8, 180066 (2018).

    PubMed  PubMed Central  Google Scholar 

  173. Lenz, A. P., Williamson, K. S., Pitts, B., Stewart, P. S. & Franklin, M. J. Localized gene expression in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 74, 4463–4471 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Shrout, J. D. et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62, 1264–1277 (2006).

    CAS  PubMed  Google Scholar 

  175. Krasteva, P. V. et al. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327, 866–868 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Boles, B. R. & Horswill, A. R. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052 (2008).

    PubMed  PubMed Central  Google Scholar 

  177. Rumbo-Feal, S. et al. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS ONE 8, e72968 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Bielecki, P. et al. In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs. PLoS ONE 6, e24235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Potvin, E. et al. In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ. Microbiol. 5, 1294–1308 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Story for help with preparing Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Thomas Bjarnsholt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Ilana Kolodkin-Gal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aggregates

Cohesive groups of microbial cells surrounded by extracellular polymeric substances and other entrapped abiotic or biotic materials. Microbial aggregates can be surface attached, matrix associated or free floating in the liquid phase and display a biofilm-like phenotype.

Biofilms

Microbial aggregates attached or associated with a surface and embedded in a matrix. These can include single or multiple discrete aggregates or more continuous films.

Aggregation

Any biological, chemical or physical process that enables microbial cells to form an aggregate.

Growth

Expansion of aggregates by microbial growth and concomitant production of extracellular polymeric substance, whether in suspension or attached to a surface.

Attachment

Suspended single cells or aggregates adhere to a host cellular surface or an abiotic surface, either directly to the substratum or to previously attached microbial cells or clusters.

Detachment

An overarching term encompassing all phase transfer processes in which microbial cells and extracellular polymeric substances move from the surface-attached phase to a fluid-borne phase. This term is specific to surface-attached biofilms.

Dispersal

Specifically connotes an active and biologically regulated release of microbial cells from a suspended or attached biofilm aggregate.

Disaggregation

Aggregated cells, whether in suspension or associated with a surface, that shed smaller microbial aggregates or individual cells into the fluid phase.

Accumulation

The net result of attachment, aggregation, growth, disaggregation and detachment processes that leads to expansion or shrinkage of a biofilm or aggregate.

Removal

Implies the response to a mechanical, chemical or enzymatic intervention that causes attached aggregates or cells to be released from the surface.

Polymer bridging

The aggregation of microbial cells in suspension caused by polymers that adhere to cell wall components forming bridging bonds between multiple cells.

Sloughing

The release of coherent layers of surface-attached biofilm by adhesive failure (that is, at the biofilm–substratum interface), generally by fluid shear. This mechanism is specific to surface-attached biofilms.

Co-aggregation

The formation of aggregates (also known as clumps) in suspension by bacteria of different species.

Depletion aggregation

The formation of aggregates in suspension through a colloidal physics phenomenon that occurs when polymers in solution are of high enough concentration and molecular weight to initiate phase separation, ‘forcing’ microbial cells together.

Auto-aggregation

The formation of aggregates (also known as clumps) in suspension by bacteria of the same species.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauer, K., Stoodley, P., Goeres, D.M. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 20, 608–620 (2022). https://doi.org/10.1038/s41579-022-00767-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00767-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology