Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning
<p>Control flow chart of teleoperation system.</p> "> Figure 2
<p>Tremor Suppression Model.</p> "> Figure 3
<p>LSTM structure diagram.</p> "> Figure 4
<p>Decomposition process of EEMD.</p> "> Figure 5
<p>EEMD-LSTM model structure diagram.</p> "> Figure 6
<p>IWOA flow chart.</p> "> Figure 7
<p>Decomposition results of EEMD.</p> "> Figure 8
<p>Modeling process in Example 1.</p> "> Figure 9
<p>Prediction results of tremor signal.</p> "> Figure 9 Cont.
<p>Prediction results of tremor signal.</p> "> Figure 10
<p>Fitness curve of each IMF component.</p> "> Figure 11
<p>Box diagram of different axes. (<b>a</b>) is the <span class="html-italic">x</span> axis, (<b>b</b>) is the <span class="html-italic">y</span> axis, and (<b>c</b>) is the <span class="html-italic">z</span> axis.</p> "> Figure 12
<p>Comparison of the effects of different activation functions.</p> "> Figure 13
<p>Prediction results of tremor signal.</p> "> Figure 14
<p>Error box diagram; (<b>a</b>) is the <span class="html-italic">x</span> axis, (<b>b</b>) is the <span class="html-italic">y</span> axis, and (<b>c</b>) is the <span class="html-italic">z</span> axis.</p> "> Figure 15
<p>Tremor data <math display="inline"><semantics> <mrow> <msup> <mrow> <mi mathvariant="normal">R</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> </semantics></math> for three axes in two cases; (<b>a</b>) Case 1; (<b>b</b>) Case 2.</p> ">
Abstract
:1. Introduction
2. Teleoperation System
2.1. Teleoperation Control System
2.2. The Mathematical Model of Tremor Suppression
2.3. Performance Evaluation Indexes
3. Model and Method
3.1. LSTM Prediction Model
3.2. EEMD-LSTM Prediction Model
3.3. Improved Whale Optimization Algorithm
3.3.1. Quasi-Reverse Learning Initializes the Population
3.3.2. Nonlinear Convergence Factor
3.3.3. Adaptive Weight Strategy
3.3.4. Gaussian Elite Variation Strategy
3.4. EEMD-IWOA-LSTM
4. Results and Discussions
4.1. Results of Example 1
4.2. The Result of Example 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
LSTM | Long Short-Term Memory |
RNN | Recurrent Neural Network |
EMD | Empirical Mode Decomposition |
EEMD | Ensemble Empirical Mode Decomposition |
EEMD-LSTM | LSTM neural Network Combined with EEMD |
WOA | Whale Optimization Algorithm |
IWOA | Improved whale optimization algorithm |
EEMD-IWOA-LSTM | LSTM Neural Network Combined with IWOA Based on EEMD |
MAE | Mean Absolute Error |
MSE | Mean Square Error |
SMAPE | Symmetric Mean Absolute Percentage Error |
Regression Coefficients |
References
- Tan, W.S.; Ta, A.; Kelly, J.D. Robotic surgery: Getting the evidence right. Med. J. Aust. 2022, 217, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Marvi, H. Opportunities and Challenges in Space Robotics. Adv. Intell. Syst. 2023, 5, 1. [Google Scholar] [CrossRef]
- Qu, J.T.; Xu, Y.N.; Li, Z.K.; Yu, Z.P.; Mao, B.J.; Wang, Y.F.; Wang, Z.Q.; Fan, Q.G.; Qian, X.; Zhang, M.; et al. Recent Advances on Underwater Soft Robots. Adv. Intell. Syst. 2024, 6, 37. [Google Scholar] [CrossRef]
- Li, G.R.; Wong, T.W.; Shih, B.; Guo, C.Y.; Wang, L.W.; Liu, J.Q.; Wang, T.; Liu, X.B.; Yan, J.Y.; Wu, B.S.; et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- González, C.; Solanes, J.E.; Muñoz, A.; Gracia, L.; Girbés-Juan, V.; Tornero, J. Advanced teleoperation and control system for industrial robots based on augmented virtuality and haptic feedback. J. Manuf. Syst. 2021, 59, 283–298. [Google Scholar] [CrossRef]
- Rubagotti, M.; Sangiovanni, B.; Nurbayeva, A.; Incremona, G.P.; Ferrara, A.; Shintemirov, A. Shared Control of Robot Manipulators with Obstacle Avoidance: A Deep Reinforcement Learning Approach. IEEE Control Syst. Mag. 2023, 43, 44–63. [Google Scholar] [CrossRef]
- Nakauchi, M.; Suda, K.; Nakamura, K.; Tanaka, T.; Shibasaki, S.; Inaba, K.; Harada, T.; Ohashi, M.; Ohigashi, M.; Kitatsuji, H.; et al. Establishment of a new practical telesurgical platform using the hinotori™ Surgical Robot System: A preclinical study. Langenbecks Arch. Surg. 2022, 407, 3783–3791. [Google Scholar] [CrossRef]
- Ansó, J.; Scheidegger, O.; Wimmer, W.; Gavaghan, K.; Gerber, N.; Schneider, D.; Hermann, J.; Rathgeb, C.; Dür, C.; Rösler, K.M.; et al. Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience. Ann. Biomed. Eng. 2018, 46, 1568–1581. [Google Scholar] [CrossRef]
- Mitchell, B.; Koo, J.; Lordachita, L.; Kazanzides, P.; Kapoor, A.; Handa, J.; Hager, G.; Taylor, R. Development and application of a new steady-hand manipulator for retinal surgery. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 623–629. [Google Scholar]
- Najafinejad, A.; Korayem, M.H. Detection and minimizing the error caused by hand tremors using a leap motion sensor in operating a surgeon robot. Measurement 2023, 221, 10. [Google Scholar] [CrossRef]
- Iordachita, I.I.; De Smet, M.D.; Naus, G.; Mitsuishi, M.; Riviere, C.N. Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives. Proc. IEEE 2022, 110, 893–908. [Google Scholar] [CrossRef]
- Lu, J.Y.; Li, X.J. Robot indoor location modeling and simulation based on Kalman filtering. EURASIP J. Wirel. Commun. Netw. 2019, 10, 140. [Google Scholar] [CrossRef]
- Veluvolu, K.C.; Ang, W.T. Estimation and filtering of physiological tremor for real-time compensation in surgical robotics applications. Int. J. Med. Robot. Comput. Assist. Surg. 2010, 6, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.G.; Heredia, E.A.; Rahman, T.; Barner, K.E.; Arce, G.R. Optimal digital filtering for tremor suppression. IEEE Trans. Biomed. Eng. 2000, 47, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Tatinati, S.; Veluvolu, K.C.; Hong, S.M.; Latt, W.T.; Ang, W.T. Physiological Tremor Estimation with Autoregressive (AR) Model and Kalman Filter for Robotics Applications. IEEE Sens. J. 2013, 13, 4977–4985. [Google Scholar] [CrossRef]
- Sang, H.Q.; Yang, C.H.; Liu, F.; Yun, J.T.; Jin, G.G.; Chen, F. A zero phase adaptive fuzzy Kalman filter for physiological tremor suppression in robotically assisted minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 658–669. [Google Scholar] [CrossRef]
- Becker, B.C.; Tummala, H.; Riviere, C.N. Autoregressive modeling of physiological tremor under microsurgical conditions. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1948–1951. [Google Scholar]
- Wang, Y.B.; Tatinati, S.; Adhikari, K.; Huang, L.Y.; Nazarpour, K.; Ang, W.T.; Veluvolu, K.C. Multi-Step Prediction of Physiological Tremor with Random Quaternion Neurons for Surgical Robotics Applications. IEEE Access 2018, 6, 42216–42226. [Google Scholar] [CrossRef]
- Yang, C.G.; Luo, J.; Pan, Y.P.; Liu, Z.; Su, C.Y. Personalized Variable Gain Control with Tremor Attenuation for Robot Teleoperation. IEEE Trans. Syst. Man Cybern.-Syst. 2018, 48, 1759–1770. [Google Scholar] [CrossRef]
- Adhikari, K.; Tatinati, S.; Veluvolu, K.C.; Chambers, J.A. Physiological Tremor Filtering Without Phase Distortion for Robotic Microsurgery. IEEE Trans. Autom. Sci. Eng. 2022, 19, 497–509. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Liang, K.; Su, T.C.; Geng, K.H.; Pan, M.Z. Broad learning extreme learning machine for forecasting and eliminating tremors in teleoperation. Appl. Soft. Comput. 2021, 112, 16. [Google Scholar] [CrossRef]
- Hoffman, K.; Lees, J.; Zhang, K. Local Change Point Detection and Cleaning of EEMD Signals. Circuits Syst. Signal Process. 2023, 42, 4669–4690. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.J.; Jia, X.Y.; Jiao, Q.F.; Zhan, Z.C.; Li, L.X. Walnut crack detection based on EEMD and acoustic feature optimization. Postharvest Biol. Technol. 2024, 212, 12. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Song, T.; Wang, J.R.; Huo, J.D.; Wei, W.; Han, R.S.; Xu, D.Y.; Meng, F. Prediction of significant wave height based on EEMD and deep learning. Front. Mar. Sci. 2023, 10, 17. [Google Scholar] [CrossRef]
- Yang, Y.J.; Yang, Y.M. Hybrid method for short-term time series forecasting based on EEMD. IEEE Access 2020, 8, 61915–61928. [Google Scholar] [CrossRef]
- Dhake, H.; Kashyap, Y.; Kosmopoulos, P. Algorithms for hyperparameter tuning of lstms for time series forecasting. Remote Sens. 2023, 15, 2076. [Google Scholar] [CrossRef]
- Yang, S.; Yuan, A.; Yu, Z. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting. Environ. Sci. Pollut. Res. 2023, 30, 11689–11705. [Google Scholar] [CrossRef]
- Wang, K.; Fan, X.Y.; Yang, X.Y.; Zhou, Z.L. An AQI decomposition ensemble model based on SSA-LSTM using improved AMSSA-VMD decomposition reconstruction technique. Environ. Res. 2023, 232, 14. [Google Scholar] [CrossRef]
- Li, C.; Lu, R. Short-term power forecasting model based on GWO-LSTM network. J. Phys. Conf. Ser. IOP Publ. 2023, 2503, 012039. [Google Scholar] [CrossRef]
- Pretorius, K.; Pillay, N. Neural network crossover in genetic algorithms using genetic programming. Genet. Program. Evolvable Mach. 2024, 25, 7. [Google Scholar] [CrossRef]
- Guedes, J.J.; Goedtel, A.; Castoldi, M.F.; Sanches, D.S.; Serni, P.J.A.; Rezende, A.F.F.; Bazan, G.H.; de Souza, W.A. Three-phase induction motor fault identification using optimization algorithms and intelligent systems. Soft Comput. 2024, 28, 6709–6724. [Google Scholar] [CrossRef]
- Pham, V.H.S.; Nguyen, V.; Dang, N.T.N. Hybrid whale optimization algorithm for enhanced routing of limited capacity vehicles in supply chain management. Sci. Rep. 2024, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Peng, C.; Yue, C. Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data. Chaos Solitons Fractals 2024, 178, 114394. [Google Scholar] [CrossRef]
- Kebria, P.M.; Khosravi, A.; Nahavandi, S.; Wu, D.R.; Bello, F. Adaptive Type-2 Fuzzy Neural-Network Control for Teleoperation Systems with Delay and Uncertainties. IEEE Trans. Fuzzy Syst. 2020, 28, 2543–2554. [Google Scholar] [CrossRef]
- Zhang, D.D.; Si, W.Y.; Fan, W.; Guan, Y.; Yang, C.G. From Teleoperation to Autonomous Robot-assisted Microsurgery: A Survey. Mach. Intell. Res. 2022, 19, 288–306. [Google Scholar] [CrossRef]
- McGurrin, P.; McNames, J.; Wu, T.X.; Hallett, M.; Haubenberger, D. Quantifying Tremor in Essential Tremor Using Inertial Sensors-Validation of an Algorithm. IEEE J. Transl. Eng. Health Med.-JTEHM 2021, 9, 2700110. [Google Scholar]
- Shin, D.; Kim, E.; Woo, G.; Kim, T. Stretchable optical fiber strain sensor comprising zinc oxide and PDMS for human motion monitoring. J. Mech. Sci. Technol. 2023, 37, 3205–3212. [Google Scholar] [CrossRef]
- Milano, F.; Cerro, G.; Santoni, F.; De Angelis, A.; Miele, G.; Rodio, A.; Moschitta, A.; Ferrigno, L.; Carbone, P. Parkinson’s disease patient monitoring: A real-time tracking and tremor detection system based on magnetic measurements. Sensors 2021, 21, 4196. [Google Scholar] [CrossRef]
- Lin, J.T.; Liu, Z.; Chen, C.L.P.; Zhang, Y. Three-domain fuzzy wavelet broad learning system for tremor estimation. Knowl.-Based Syst. 2020, 192, 105295. [Google Scholar] [CrossRef]
- Wen, X.; Li, W. Time series prediction based on LSTM-attention-LSTM model. IEEE Access 2023, 11, 48322–48331. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.H.; Tu, P.J.; Wang, H.J.; Wang, K. Gesture Recognition Based on EEMD and Cosine Laplacian Eigenmap. IEEE Sens. J. 2023, 23, 16332–16342. [Google Scholar] [CrossRef]
- Chen, Y.M.; Sun, B.Z.; Xie, X.W.; Li, X.H.; Li, Y.J.; Zhao, Y.H. Short-term forecasting for ship fuel consumption based on deep learning. Ocean Eng. 2024, 301, 117398. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Quasi-oppositional differential evolution. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 2229–2236. [Google Scholar]
- Liu, R.J.; Wang, T.L.; Zhou, J.; Hao, X.X.; Xu, Y.; Qiu, J.Z. Improved African Vulture Optimization Algorithm Based on Quasi-Oppositional Differential Evolution Operator. IEEE Access 2022, 10, 95197–95218. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Z.Q.; Jiang, F.; Liu, G.W.; Wang, D.; Ni, Z.S. Improved WOA and its application in feature selection. PLoS ONE 2022, 17, e0267041. [Google Scholar] [CrossRef] [PubMed]
- Elmogy, A.; Miqrish, H.; Elawady, W.; El-Ghaish, H. ANWOA: An adaptive nonlinear whale optimization algorithm for high-dimensional optimization problems. Neural Comput. Appl. 2023, 35, 22671–22686. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, A.K.; Chhabra, A. Improving whale optimization algorithm with elite strategy and its application to engineering-design and cloud task scheduling problems. Cogn. Comput. 2023, 15, 1497–1525. [Google Scholar] [CrossRef]
- Shrivastava, Y.; Singh, B. A comparative study of EMD and EEMD approaches for identifying chatter frequency in CNC turning. Eur. J. Mech.-A/Solids 2019, 73, 381–393. [Google Scholar] [CrossRef]
- Lin, J.T.; Liu, Z.; Chen, L.L.P.; Zhang, Y. A wavelet broad learning adaptive filter for forecasting and cancelling the physiological tremor in teleoperation. Neurocomputing 2019, 356, 170–183. [Google Scholar] [CrossRef]
- Farzad, A.; Mashayekhi, H.; Hassanpour, H. A comparative performance analysis of different activation functions in LSTM networks for classification. Neural Comput. Appl. 2019, 31, 2507–2521. [Google Scholar] [CrossRef]
- Ataş, M. Hand tremor based biometric recognition using leap motion device. IEEE Access 2017, 5, 23320–23326. [Google Scholar] [CrossRef]
MAE | MSE | SMAPE | ||
---|---|---|---|---|
LSTM | 0.5483 | 0.5939 | 0.9690 | 0.5638 |
EEMD-LSTM | 0.3963 | 0.2869 | 0.6826 | 0.7813 |
ARMA | 0.3868 | 0.2613 | 0.6553 | 0.8010 |
IEO-BLELM | 0.2719 | 0.1251 | 0.5139 | 0.9106 |
EEMD-IWOA-LSTM | 0.2628 | 0.1148 | 0.4934 | 0.9141 |
MAE | MSE | SMAPE | ||
---|---|---|---|---|
LSTM | 0.1243 | 0.0263 | 1.2626 | 0.2546 |
EEMD-LSTM | 0.0706 | 0.0082 | 0.7486 | 0.7696 |
ARMA | 0.0973 | 0.0167 | 0.9834 | 0.5264 |
IEO-BLELM | 0.0832 | 0.0094 | 0.8223 | 0.7062 |
EEMD-IWOA-LSTM | 0.0596 | 0.0062 | 0.6599 | 0.8238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, Z.; Guan, W.; Cao, X.; Liang, K. Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning. Sensors 2024, 24, 7359. https://doi.org/10.3390/s24227359
Chen J, Zhang Z, Guan W, Cao X, Liang K. Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning. Sensors. 2024; 24(22):7359. https://doi.org/10.3390/s24227359
Chicago/Turabian StyleChen, Juntao, Zhiqing Zhang, Wei Guan, Xinxin Cao, and Ke Liang. 2024. "Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning" Sensors 24, no. 22: 7359. https://doi.org/10.3390/s24227359
APA StyleChen, J., Zhang, Z., Guan, W., Cao, X., & Liang, K. (2024). Prediction and Elimination of Physiological Tremor During Control of Teleoperated Robot Based on Deep Learning. Sensors, 24(22), 7359. https://doi.org/10.3390/s24227359