Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience

  • Medical Robotics
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

During robotic cochlear implantation a drill trajectory often passes at submillimeter distances from the facial nerve due to close lying critical anatomy of the temporal bone. Additional intraoperative safety mechanisms are thus required to ensure preservation of this vital structure in case of unexpected navigation system error. Electromyography based nerve monitoring is widely used to aid surgeons in localizing vital nerve structures at risk of injury during surgery. However, state of the art neuromonitoring systems, are unable to discriminate facial nerve proximity within submillimeter ranges. Previous work demonstrated the feasibility of utilizing combinations of monopolar and bipolar stimulation threshold measurements to discretize facial nerve proximity with greater sensitivity and specificity, enabling discrimination between safe (> 0.4 mm) and unsafe (< 0.1 mm) trajectories during robotic cochlear implantation (in vivo animal model). Herein, initial clinical validation of the determined stimulation protocol and nerve proximity analysis integrated into an image guided system for safety measurement is presented. Stimulation thresholds and corresponding nerve proximity values previously determined from an animal model have been validated in a first-in-man clinical trial of robotic cochlear implantation. Measurements performed automatically at preoperatively defined distances from the facial nerve were used to determine safety of the drill trajectory intraoperatively. The presented system and automated analysis correctly determined sufficient safety distance margins (> 0.4 mm) to the facial nerve in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Anso, J., K. Gerber, S. Weber, K. Thorwarth, A. Chacko, and J. Patscheider. Intervention Device with Electrodes, P5324EP00, 2018.

  2. Anso, J., et al. Electrical impedance to assess facial nerve proximity during robotic cochlear implantation. IEEE Trans. Biomed. Eng. 1–1, 2018.

  3. Ansó, J., et al. A Neuromonitoring approach to facial nerve preservation during image-guided robotic cochlear implantation. Otol. Neurotol. 37(1):89–98, 2016.

    Article  PubMed  Google Scholar 

  4. Ansó, J., et al. Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access. Otol. Neurotol. 35(3):545–554, 2014.

    Article  PubMed  Google Scholar 

  5. Balmer, T. W., et al. In-vivo electrical impedance measurement in mastoid bone. Ann. Biomed. Eng. 45(4):1122–1132, 2017.

    Article  Google Scholar 

  6. Bell, B., et al. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol. Neurotol. 34:1284–1290, 2013.

    Article  PubMed  Google Scholar 

  7. Bernardeschi, D., et al. Continuous facial nerve stimulating burr for otologic surgeries. Otol. Neurotol. 32(8):1347–1351, 2011.

    Article  PubMed  Google Scholar 

  8. Caversaccio, M., et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol. 137(4):447–454, 2017.

    Article  PubMed  Google Scholar 

  9. Choung, Y. H., K. Park, M. J. Cho, P. H. Choung, Y. R. Shin, and H. Kahng. Systematic facial nerve monitoring in middle ear and mastoid surgeries: ‘surgical dehiscence’ and ‘electrical dehiscence’. Otolaryngoly 135(6):872–876, 2006.

    Article  Google Scholar 

  10. Gerber, N., B. Bell, K. Gavaghan, C. Weisstanner, M. D. Caversaccio, and S. Weber. Surgical planning tool for robotically assisted hearing aid implantation. Int. J. Comput. Assist. Radiol. Surg. 9(1):11–20, 2014.

    Article  PubMed  Google Scholar 

  11. Gerber, N., et al. High accuracy patient-to-image registration for the facilitation of image guided robotic microsurgery on the head. IEEE Trans. Biomed. Eng. 60(4):960–968, 2013.

    Article  PubMed  Google Scholar 

  12. Heman-Ackah, S. E., S. Gupta, and A. K. Lalwani. Is facial nerve integrity monitoring of value in chronic ear surgery? Laryngoscope 123(1):2–3, 2013.

    Article  PubMed  Google Scholar 

  13. Holland, N. R. Intraoperative electromyography. J. Clin. Neurophysiol. 19(5):444–453, 2002.

    Article  PubMed  Google Scholar 

  14. Hormes, J., and J. Chappuis. Monitoring of lumbosacral nerve roots during spinal instrumentation. Spine (Phila. Pa. 1976) 18(14):2059–2062, 1993.

    Article  CAS  Google Scholar 

  15. Kartush, J. M., J. K. Niparko, S. C. Bledsoe, M. D. Graham, and J. L. Kemink. Intraoperative facial nerve monitoring: a comparison of stimulating electrodes. Laryngoscope 95(12):1536–1540, 1985.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, S. M., S. H. Kim, D. W. Seo, and K. W. Lee. Intraoperative neurophysiologic monitoring: basic principles and recent update. J. Korean Med. Sci. 28(9):1261–1269, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Labadie, R. F., J. H. Noble, B. M. Dawant, R. Balachandran, O. Majdani, and J. M. Fitzpatrick. Clinical validation of percutaneous cochlear implant surgery: initial report. Laryngoscope 118(6):1031–1039, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Labadie, R. F., et al. Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. Laryngoscope 124(8):1915–1922, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Owen, J., et al. The use of mechanically elicited electromyograms to protect nerve roots during surgery for spinal degeneration. Spine (Phila. Pa. 1976) 19(15):1704–1710, 1994.

    Article  CAS  Google Scholar 

  20. Rathgeb, C., et al. The accuracy of image based safety analysis for robotic cochlear implantation. Int. J. Comput. Assist. Radiol. Surg.

  21. Roland, A. P. S., C. Editor, and A. D. Meyers. Principles of Electrophysiologic Monitoring, pp. 1–9, 2012.

  22. Ross, B. G., G. Fradet, and J. M. Nedzelski. Development of a sensitive clinical facial grading system. Otolaryngol. Head. Neck Surg. 114(3):380–386, 1996.

    Article  CAS  PubMed  Google Scholar 

  23. Silverstein, H., and S. Rosenberg. Intraoperative facial nerve monitoring. Otolaryngol. Clin. N. Am. 24(3):709–725, 1991.

    CAS  Google Scholar 

  24. Vianna, M., et al. Differences in the diameter of facial nerve and facial canal in bell’s palsy—a 3-dimensional temporal bone study. Otol. Neurotol. 35(3):514–518, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Weber, S., et al. Instrument flight to the inner ear. Sci. Robot. 2(4):eaal4916, 2017.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Williamson, T., et al. Population statistics approach for safety assessment in robotic cochlear implantation. Otol. Neurotol. 38(5):759–764, 2017.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Laetitia Racz-Perroud, Fabian Zobrist and Marco Matulic (CAScination AG) for technical support. The authors thank Dr. Thilo Krüger and Celine Wegner (inomed GmbH) for technical support. Dr. Thomas Wyss-Balmer contributed with electrical modeling of the presented stimulation probe. Surgical photographs are attributed to Gianni Pauciello.

Conflict of interest

This work was supported by the Swiss Commission for technology and innovation (Project MIRACI 17618.1), the Swiss National Science Foundation (Project 205321_176007), by MED-EL GmbH (Innsbruck, Austria) and CAScination AG (Bern, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Wimmer.

Additional information

Associate Editor Cameron N. Riviere oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansó, J., Scheidegger, O., Wimmer, W. et al. Neuromonitoring During Robotic Cochlear Implantation: Initial Clinical Experience. Ann Biomed Eng 46, 1568–1581 (2018). https://doi.org/10.1007/s10439-018-2094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2094-7

Keywords

Navigation