Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection
<p>Schematics of the side-opened HF-based SPR sensor. (<b>a</b>) 3D-view and the experimental setup of the sensor for high RI detection. (<b>b</b>) Cross-section view of Scheme A which is to only fill the hollow core with analyte. (<b>c</b>) Cross-section view of Scheme B which is to immerse the sensor in analyte.</p> "> Figure 2
<p>Dispersion relations of the core-guided mode and the plasmonic mode of the proposed sensor at (<b>a</b>) Scheme A and (<b>b</b>) Scheme B when the <span class="html-italic">n</span><sub>a</sub> changes from 1.49 to 1.50. Insets show the evolution of electric field distributions of the corresponding modes. Loss spectra of the core-guided mode of the sensor at (<b>c</b>) Scheme A and (<b>d</b>) Scheme B when the <span class="html-italic">n</span><sub>a</sub> changes from 1.49 to 1.50. For comparison, the blue dash-dotted lines show the losses of the core-guided mode without gold coating at <span class="html-italic">n</span><sub>a</sub> = 1.49.</p> "> Figure 3
<p>Resonance wavelengths and peak losses of the sensor with different <span class="html-italic">n</span><sub>a</sub> at (<b>a</b>) Scheme A and (<b>b</b>) Scheme B. (<b>c</b>) Wavelength sensitivities of the sensor with different <span class="html-italic">n</span><sub>a</sub> at the two schemes.</p> "> Figure 4
<p>Amplitude sensitivities of the sensor under different <span class="html-italic">n</span><sub>a</sub> at (<b>a</b>) Scheme A and (<b>b</b>) Scheme B. (<b>c</b>) Comparison of the maximum amplitude sensitivity under different <span class="html-italic">n</span><sub>a</sub> at the two schemes.</p> "> Figure 5
<p>Loss spectra of the core-guided mode of the sensor with <span class="html-italic">n</span><sub>a</sub> = 1.48 under different <span class="html-italic">w</span> at (<b>a</b>) Scheme A and (<b>b</b>) Scheme B. (<b>c</b>) The electric field distribution of the core-guided mode of the sensor with <span class="html-italic">n</span><sub>a</sub> = 1.48 under different <span class="html-italic">w</span> at their respective resonance wavelengths.</p> "> Figure 6
<p>Variations of wavelength sensitivities of the sensor with <span class="html-italic">n</span><sub>a</sub> changing under different <span class="html-italic">w</span> at (<b>a</b>) Scheme A and (<b>b</b>) Scheme B.</p> "> Figure 7
<p>Variations of the maximum amplitude sensitivities of the sensor with <span class="html-italic">n</span><sub>a</sub> changing under different <span class="html-italic">w</span> at (<b>a</b>) Scheme A and (<b>b</b>) Scheme B.</p> ">
Abstract
:1. Introduction
2. Sensor Configuration and Theoretical Model
3. Results
3.1. Dispersion Relation
3.2. Wavelength Sensitivity
3.3. Amplitude Sensitivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Deng, Z.; Li, J. Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 2014, 202, 557–567. [Google Scholar] [CrossRef]
- Singh, S.; Chaudhary, B.; Upadhyay, A.; Sharma, D.; Ayyanar, N.; Taya, S.A. A review on various sensing prospects of SPR based photonic crystal fibers. Photonics Nanostruct. Fundam. Appl. 2023, 54, 101119. [Google Scholar] [CrossRef]
- Yesudasu, V.; Pradhan, H.S.; Pandya, R.J. Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon 2021, 7, e06321. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef] [PubMed]
- Fan, X. Sensitive surface plasmon resonance label-free biosensor on a fiber end-facet. Light Sci. Appl. 2022, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, C.; Wang, J.; Lv, J.; Lv, Y.; Yang, L.; An, N.; Yi, Z.; Liu, Q.; Hu, C.; et al. Surface plasmon resonance sensor composed of microstructured optical fibers for monitoring of external and internal environments in biological and environmental sensing. Results Phys. 2023, 47, 106365. [Google Scholar] [CrossRef]
- Ansari, M.T.I.; Raghuwanshi, S.K.; Kumar, S. Recent Advancement in Fiber-Optic-Based SPR Biosensor for Food Adulteration Detection—A Review. IEEE Trans. Nanobiosci. 2023, 22, 978–988. [Google Scholar] [CrossRef]
- Rachana, M.; Charles, I.; Swarnakar, S.; Krishna, S.V.; Kumar, S. Recent Advances in Photonic Crystal Fiber-Based Sensors for Biomedical Applications. Opt. Fiber Technol. 2022, 74, 103085. [Google Scholar] [CrossRef]
- Gauvreau, B.; Hassani, A.; Fehri, M.F.; Kabashin, A.; Skorobogatiy, M. Photonic bandgap fiber-based Surface Plasmon Resonance sensors. Opt. Express 2007, 15, 11413–11426. [Google Scholar] [CrossRef]
- Hassani, A.; Skorobogatiy, M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef]
- Hassani, A.; Skorobogatiy, M. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J. Opt. Soc. Am. B. 2007, 24, 1423–1429. [Google Scholar] [CrossRef]
- Slavík, R.; Homola, J.; Čtyroký, J. Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuators B Chem. 1999, 54, 74–79. [Google Scholar] [CrossRef]
- Baiad, M.D.; Kashyap, R. Concatenation of surface plasmon resonance sensors in a single optical fiber using tilted fiber Bragg gratings. Opt. Lett. 2015, 40, 115–118. [Google Scholar] [CrossRef]
- Kedenburg, S.; Vieweg, M.; Gissibl, T.; Giessen, H. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express 2012, 2, 1588–1611. [Google Scholar] [CrossRef]
- Samoc, A. Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared. J. Appl. Phys. 2003, 94, 6167–6174. [Google Scholar] [CrossRef]
- Shuai, B.; Xia, L.; Zhang, Y.; Liu, D. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express 2012, 20, 5974–5986. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Ding, Z.; Xie, Y.; Wang, X.; Zeng, Z.; Huang, T. Ultra-broadband and highly sensitive surface plasmon resonance sensor based on four-core photonic crystal fibers. Opt. Fiber Technol. 2020, 60, 102316. [Google Scholar] [CrossRef]
- Chu, S.; Nakkeeran, K.; Abobaker, A.M.; Aphale, S.S.; Sivabalan, S.; Babu, P.R.; Senthilnathan, K. A surface plasmon resonance bio-sensor based on dual core D-shaped photonic crystal fibre embedded with silver nanowires for multisensing. IEEE Sens. J. 2021, 21, 76–84. [Google Scholar] [CrossRef]
- Han, H.; Hou, D.; Zhao, L.; Luan, N.; Song, L.; Liu, Z.; Lian, Y.; Liu, J.; Hu, Y. A large detection-range plasmonic sensor based on an h-shaped photonic crystal fiber. Sensors 2020, 20, 1009. [Google Scholar] [CrossRef]
- Sakib, M.N.; Hossain, M.B.; Al-tabatabaie, K.F.; Mehedi, I.M.; Hasan, M.T.; Hossain, M.A.; Amiri, I.S. High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Results Phys. 2019, 15, 102788. [Google Scholar] [CrossRef]
- Liu, B.H.; Jiang, Y.X.; Zhu, X.S.; Tang, X.L.; Shi, Y.W. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt. Express 2013, 21, 32349–32357. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, X.; Zhu, X.S.; Shi, Y.W. Optical fiber surface plasmon resonance sensor based on the gold-coated hollow fiber structure for the detection of liquid with high refractive index. IEEE Sens. J. 2022, 22, 9447–9453. [Google Scholar] [CrossRef]
- Luan, N.; Yao, J. High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber. IEEE Photonics J. 2016, 8, 4800709. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, X.; Zhu, X.S.; Shi, Y.W. Experimental study of the copper-coated hollow fiber surface plasmon resonance sensor. Opt. Commun. 2022, 520, 128481. [Google Scholar] [CrossRef]
- Meng, G.; Luan, N. No-Core Hollow Fiber-Based SPR Sensor for Ultra-Wide Range of Refractive Index Detection. IEEE Photonics Technol. Lett. 2024, 36, 861–864. [Google Scholar] [CrossRef]
- Martelli, C.; Olivero, P.; Canning, J.; Groothoff, N.; Gibson, B.; Huntington, S. Micromachining structured optical fibers using focused ion beam milling. Opt. Lett. 2007, 32, 1575–1577. [Google Scholar] [CrossRef]
- Brakel, A.V.; Grivas, C.; Petrovich, M.N.; Richardson, D.J. Microchannels machined in microstructured optical fibers by femtosecond laser. Opt. Express 2007, 15, 8731–8736. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Liu, S.; Zhao, J.; Liao, C.; Xu, X.; Liang, H.; Yin, G.; Wang, Y. Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor. IEEE Sens. J. 2015, 15, 4086–4092. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Zheng, Z.; Yang, Y.; Xiao, J.; Li, S.; Bian, Y. Fluidic sensor based on the side-opened and suspended dual-core fiber. Appl. Opt. 2012, 51, 3096–3103. [Google Scholar] [CrossRef]
- Takeyasu, N.; Tanaka, T.; Kawata, S. Metal deposition deep into microstructure by electroless plating. Jpn. J. Appl. Phys. 2005, 44, L1134–L1137. [Google Scholar] [CrossRef]
- Sazio, P.J.; Amezcua-Correa, A.; Finlayson, C.E.; Hayes, J.R.; Scheidemantel, T.J.; Baril, N.F.; Jackson, B.R.; Won, D.J.; Zhang, F.; Margine, E.R. Microstructured optical fibers as high-pressure microfluidic reactors. Science 2006, 311, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Mishra, S.K.; Gupta, B.D. SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun. 2015, 344, 86–91. [Google Scholar] [CrossRef]
- Hasan, M.R.; Akter, S.; Rifat, A.A.; Rana, S.; Ahmed, K.; Ahmed, R.; Subbaraman, H.; Abbott, D. Spiral photonic crystal fiber based dual-polarized surface plasmon resonance biosensor. IEEE Sens. J. 2018, 18, 133–140. [Google Scholar] [CrossRef]
- Nagasaki, A.; Saitoh, K.; Koshiba, M. Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt. Express 2011, 19, 3799–3808. [Google Scholar] [CrossRef]
Fiber Structure | Coating | RI Range | Interrogation Method | Sensitivity | Ref. |
---|---|---|---|---|---|
Multi-core MOF | Inside closed hole | 1.43–1.53 | Wavelength | 9231 nm/RIU | [17] |
Amplitude | N/A | ||||
Four-core MOF | Inside closed hole | 1.42–1.52 | Wavelength | 12500 nm/RIU | [18] |
Amplitude | 549.6 RIU−1 | ||||
Dual-core D-shaped MOF | Silver nanowire | 1.35–1.5 | Wavelength | 3400 nm/RIU | [19] |
Amplitude | N/A | ||||
H-shaped MOF | Inside narrow grooves | 1.33–1.49 | Wavelength | 25900 nm/RIU | [20] |
Amplitude | N/A | ||||
Dual-core D-shape MOF | External | 1.45–1.48 | Wavelength | 8000 nm/RIU | [21] |
Amplitude | 700 RIU−1 | ||||
Closed HF | Silver nanowire | 1.47–1.51 | Wavelength | 16200 nm/RIU | [24] |
Amplitude | N/A | ||||
Closed HF | Inside closed hole | 1.51–1.58 | Wavelength | 7111 nm/RIU | [25] |
Amplitude | N/A | ||||
Side-opened HF | External | 1.48–1.54 | Wavelength | 12320 nm/RIU | This work |
Amplitude | 1146 RIU−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, G.; Luan, N.; He, H.; Lei, F.; Liu, J. Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection. Sensors 2024, 24, 4335. https://doi.org/10.3390/s24134335
Meng G, Luan N, He H, Lei F, Liu J. Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection. Sensors. 2024; 24(13):4335. https://doi.org/10.3390/s24134335
Chicago/Turabian StyleMeng, Ge, Nannan Luan, Hao He, Fan Lei, and Jianfei Liu. 2024. "Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection" Sensors 24, no. 13: 4335. https://doi.org/10.3390/s24134335