A Large Detection-Range Plasmonic Sensor Based on An H-Shaped Photonic Crystal Fiber
<p>(<b>a</b>) Schematic diagram of the proposed H-shaped photonic crystal fiber-based surface plasmon resonance (PCF-SPR) sensor; (<b>b</b>) cross-section of the SPR sensor; (<b>c</b>) experimental setup of the SPR sensor for refractive index (RI) detection.</p> "> Figure 2
<p>(<b>a</b>) Re (<span class="html-italic">n</span><sub>eff</sub>) curves of the <span class="html-italic">y</span>-polarized core mode (black solid curve) and <span class="html-italic">y</span>-polarized surface plasmon polariton (SPP) mode at <span class="html-italic">n</span><sub>a</sub> = 1.43, 1.45, and 1.47 (red solid, red dashed and red dotted curves); (<b>b</b>) loss spectra of the <span class="html-italic">y</span>-polarized core mode at <span class="html-italic">n</span><sub>a</sub> = 1.43, 1.45, and 1.47; (<b>c</b>) <span class="html-italic">y</span>-polarized electric field distributions of core mode and SPP mode at specific wavelengths (A for core mode at 800 nm with <span class="html-italic">n</span><sub>a</sub> = 1.43, B for SPP mode at 992 nm with <span class="html-italic">n</span><sub>a</sub> = 1.43, C for core mode at 1006 nm with <span class="html-italic">n</span><sub>a</sub> = 1.43, D for core mode at 1367 nm with <span class="html-italic">n</span><sub>a</sub> = 1.45 and E for core mode at 1791 nm with <span class="html-italic">n</span><sub>a</sub> = 1.47), arrows indicate polarized direction of electric fields.</p> "> Figure 3
<p>(<b>a</b>) Loss spectra of the SPR sensor at <span class="html-italic">n</span><sub>a</sub> = 1.43 when the thickness of gold film (<span class="html-italic">m</span><sub>1</sub> = <span class="html-italic">m</span><sub>2</sub>) is 30 nm,40 nm, and 50 nm; (<b>b</b>) peak wavelengths, (<b>c</b>) peak loss and (<b>d</b>) sensitivities of the SPR sensor at various <span class="html-italic">n</span><sub>a</sub> when the thickness of gold film (<span class="html-italic">m</span><sub>1</sub> = <span class="html-italic">m</span><sub>2</sub>) is 30 nm, 40 nm, and 50 nm.</p> "> Figure 4
<p>Loss spectra of <span class="html-italic">y</span>-polarized core mode at <span class="html-italic">n</span><sub>a</sub> = 1.47 when <span class="html-italic">m</span><sub>1</sub> is fixed at 40 nm and <span class="html-italic">m</span><sub>2</sub> changes in the range of ±10%.</p> ">
Abstract
:1. Introduction
2. Structure Design and Principle
3. Results and Discussion
3.1. Sensing Performance
3.2. Gold-Film Thickness
3.3. Fabrication Tolerance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Singh, P. SPR biosensors: Historical perspectives and current challenges. Sens. Actuators B Chem. 2016, 229, 110–130. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.K.; Kaur, B. A review of advancements (2007–2017) in plasmonics-based optical fiber sensors. Opt. Fiber Technol. 2018, 43, 20–34. [Google Scholar] [CrossRef]
- Klantsataya, E.; Jia, P.; Ebendorff-Heidepriem, H.; Monro, T.M.; Francois, A. Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends. Sensors 2016, 17, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Lei, M.; Liu, S.; Zhao, Q. Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sens. Actuators B Chem. 2018, 261, 226–232. [Google Scholar] [CrossRef]
- Aruna Gandhi, M.S.; Chu, S.; Senthilnathan, K.; Babu, P.R.; Nakkeeran, K.; Li, Q. Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl. Sci. 2019, 9, 949. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wu, Q.; Zhang, Y. Theoretical analysis of high-sensitive seawater temperature and salinity measurement based on C-type micro-structured fiber. Sens. Actuators B Chem. 2018, 258, 822–828. [Google Scholar] [CrossRef]
- Luan, N.; Ding, C.; Yao, J. A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Zhao, L.; Han, H.; Lian, Y.; Luan, N.; Liu, J. Theoretical analysis of all-solid D-type photonic crystal fiber based plasmonic sensor for refractive index and temperature sensing. Opt. Fiber Technol. 2019, 50, 165–171. [Google Scholar] [CrossRef]
- Rifat, A.A.; Ahmed, R.; Yetisen, A.K.; Butt, H.; Sabouri, A.; Mahdiraji, G.A.; Yun, S.H.; Adikan, F.M. Photonic crystal fiber based plasmonic sensors. Sens. Actuators B Chem. 2017, 243, 311–325. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, Z.; Li, J. Photonic crystal fiber based surface plasmon resonance chemical sensors. Sens. Actuators B Chem. 2014, 202, 557–567. [Google Scholar] [CrossRef]
- Chen, X.; Xia, L.; Li, C. Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Fan, Z.; Li, S.; Qiang, L.; An, G.; Chen, H.; Li, J.; Dou, C.; Hui, L.; Zi, J.; Tian, W. High-sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Hassani, A.; Skorobogatiy, M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, L.; Zhou, C.; Yu, X.; Liu, H.; Liu, D.; Zhang, Y. Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range. Opt. Commun. 2011, 284, 4161–4166. [Google Scholar] [CrossRef]
- Hassani, A.; Skorobogatiy, M. Design criteria for microstructured-optical fiber based surface plasmon resonance sensors. J. Opt. Soc. Am. B 2007, 24, 1423–1429. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, Y.; Pan, S.; Shum, P.; Yan, M.; Leviatan, Y.; Li, C. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J. Opt. 2010, 12, 015005. [Google Scholar] [CrossRef] [Green Version]
- Luan, N.; Wang, R.; Lv, W.; Yao, J. Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt. Express 2015, 23, 8576–8582. [Google Scholar] [CrossRef]
- Haque, E.; Hossain, M.A.; Ahmed, F.; Namihira, Y. Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens. J. 2018, 18, 8287–8293. [Google Scholar] [CrossRef]
- Liu, B.H.; Jiang, Y.X.; Zhu, X.S.; Tang, X.L.; Shi, Y.W. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index. Opt. Express 2013, 21, 32349–32357. [Google Scholar] [CrossRef]
- Luan, N.; Yao, J. High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber. IEEE Photonics J. 2016, 8, 1–9. [Google Scholar] [CrossRef]
- Luan, N.; Zhao, L.; Lian, Y.; Lou, S. A high refractive index plasmonic sensor Based on D-shaped photonic crystal fiber with laterally accessible hollow-core. IEEE Photonics J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Zhao, L.; Han, H.; Luan, N.; Liu, J.; Song, L.; Hu, Y. A temperature plasmonic sensor based on a side opening hollow fiber filled with high refractive index sensing medium. Sensors 2019, 19, 3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuai, B.; Xia, L.; Zhang, Y.; Liu, D. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt. Express 2012, 20, 5974–5986. [Google Scholar] [CrossRef] [PubMed]
- Van Brakel, A.; Grivas, C.; Petrovich, M.N.; Richardson, D.J. Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt. Express 2007, 15, 8731–8736. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yuan, W.; Hansen, O.; Bang, O. Selective filling of photonic crystal fibers using focused ion beam milled microchannel. Opt. Express 2011, 19, 17585–17590. [Google Scholar] [CrossRef] [Green Version]
- Martelli, C.; Olivero, P.; Canning, J.; Groothoff, N.; Gibson, B.; Huntington, S. Micromachining structured optical fibers using focused ion beam milling. Opt. Lett. 2007, 32, 1575–1577. [Google Scholar] [CrossRef] [Green Version]
- Frazão, O.; Martynkien, T.; Baptista, J.; Santos, J.; Urbanczyk, W.; Wojcik, J. Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber. Opt. Lett. 2009, 34, 76–78. [Google Scholar] [CrossRef]
- Erdmanis, M.; Viegas, D.; Hautakorpi, M.; Novotny, S.; Santos, J.L.; Ludvigsen, H. Comprehensive numerical analysis of a surface-plasmon-resonance sensor based on an H-shaped optical fiber. Opt. Express 2011, 19, 13980–13988. [Google Scholar] [CrossRef]
- Vial, A.; Grimault, A.S.; Macías, D.; Barchiesi, D.; de la Chapelle, M. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 2005, 71, 085416. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Su, W.; Wang, F.; Sun, T.; Liu, Q.; Mu, H.; Chu, P.K. Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 2017, 382, 162–166. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, R.; Cox, F.; Kuhlmey, B.; Large, M. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers. Opt. Express 2007, 15, 16270–16278. [Google Scholar] [CrossRef] [PubMed]
- Luan, N.; Wang, R.; Lv, W.; Yao, J. Surface plasmon resonance sensor based on exposed-core microstructured optical fibres. Electron. Lett. 2015, 51, 714–715. [Google Scholar] [CrossRef]
- Luan, N.; Han, H.; Zhao, L.; Liu, J.; Yao, J. Opening up dual-core microstructured optical fiber-based plasmonic sensor with large detection range and linear sensitivity. Opt. Mater. Express 2019, 9, 819–825. [Google Scholar] [CrossRef]
- Samoc, A. Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared. J. Appl. Phys. 2003, 94, 6167–6174. [Google Scholar] [CrossRef]
Peak Wavelength(μm) | Peak Loss (dB/cm) | Sensitivities (μm/RIU) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m2 | −10% | −5% | 40nm | 5% | 10% | −10% | −5% | 40nm | 5% | 10% | −10% | −5% | 40nm | 5% | 10% | |
na | ||||||||||||||||
1.33 | 0.578 | 0.581 | 0.583 | 0.585 | 0.586 | 14.851 | 14.819 | 14.337 | 13.565 | 12.675 | 1.4 | 1.2 | 1.2 | 1.2 | 1.2 | |
1.34 | 0.592 | 0.593 | 0.595 | 0.597 | 0.598 | 18.086 | 18.128 | 17.519 | 16.495 | 15.298 | 1.2 | 1.4 | 1.5 | 1.5 | 1.5 | |
1.35 | 0.604 | 0.607 | 0.610 | 0.612 | 0.613 | 22.082 | 22.278 | 21.509 | 20.126 | 18.534 | 1.6 | 1.8 | 1.7 | 1.7 | 1.7 | |
1.36 | 0.62 | 0.625 | 0.627 | 0.629 | 0.630 | 27.026 | 27.416 | 26.461 | 26.298 | 22.492 | 2.1 | 2.1 | 2.2 | 2.1 | 2.2 | |
1.37 | 0.641 | 0.646 | 0.649 | 0.65 | 0.652 | 33.132 | 33.740 | 32.525 | 32.204 | 27.305 | 2.5 | 2.6 | 2.6 | 2.7 | 2.6 | |
1.38 | 0.666 | 0.672 | 0.675 | 0.677 | 0.678 | 40.562 | 41.374 | 39.819 | 36.646 | 33.059 | 3.3 | 3.3 | 3.3 | 3.4 | 3.4 | |
1.39 | 0.699 | 0.705 | 0.708 | 0.711 | 0.712 | 49.647 | 50.440 | 48.404 | 44.363 | 44.066 | 4.1 | 4.2 | 4.3 | 4.2 | 4.2 | |
1.40 | 0.740 | 0.747 | 0.751 | 0.753 | 0.754 | 60.516 | 61.043 | 58.133 | 53.303 | 48.008 | 5.6 | 5.4 | 5.3 | 5.6 | 5.6 | |
1.41 | 0.796 | 0.801 | 0.804 | 0.809 | 0.810 | 72.820 | 72.826 | 68.803 | 63.328 | 57.383 | 7.9 | 7.3 | 7.7 | 7.4 | 7.3 | |
1.42 | 0.875 | 0.874 | 0.881 | 0.883 | 0.883 | 88.037 | 83.011 | 84.088 | 73.576 | 68.881 | 10.4 | 10.6 | 12.5 | 12.3 | 12.4 | |
1.43 | 0.979 | 0.980 | 1.006 | 1.006 | 1.007 | 159.55 | 90.628 | 82.598 | 86.326 | 86.312 | 15.1 | 16.8 | 16.9 | 17.1 | 17.0 | |
1.44 | 1.130 | 1.148 | 1.175 | 1.177 | 1.177 | 133.42 | 152.06 | 89.12 | 141.24 | 110.87 | 20.3 | 20.9 | 19.2 | 19.8 | 19.8 | |
1.45 | 1.333 | 1.357 | 1.367 | 1.375 | 1.375 | 61.504 | 75.280 | 78.673 | 84.268 | 55.715 | 23.8 | 21.4 | 20.3 | 19.4 | 19.4 | |
1.46 | 1.571 | 1.571 | 1.570 | 1.569 | 1.569 | 60.016 | 68.644 | 63.983 | 44.704 | 40.176 | 22.2 | 22.2 | 22.1 | 22.0 | 22.1 | |
1.47 | 1.793 | 1.793 | 1.791 | 1.789 | 1.790 | 171.65 | 167.58 | 170.16 | 173.26 | 179.64 | 26.2 | 26.0 | 25.9 | 25.9 | 25.8 | |
1.48 | 2.055 | 2.053 | 2.050 | 2.048 | 2.048 | 242.29 | 253.29 | 263.00 | 254.08 | 244.21 | 23.8 | 23.8 | 23.9 | 23.8 | 23.7 | |
1.49 | 2.293 | 2.291 | 2.289 | 2.286 | 2.285 | 304.38 | 302.30 | 282.80 | 299.62 | 283.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Hou, D.; Zhao, L.; Luan, N.; Song, L.; Liu, Z.; Lian, Y.; Liu, J.; Hu, Y. A Large Detection-Range Plasmonic Sensor Based on An H-Shaped Photonic Crystal Fiber. Sensors 2020, 20, 1009. https://doi.org/10.3390/s20041009
Han H, Hou D, Zhao L, Luan N, Song L, Liu Z, Lian Y, Liu J, Hu Y. A Large Detection-Range Plasmonic Sensor Based on An H-Shaped Photonic Crystal Fiber. Sensors. 2020; 20(4):1009. https://doi.org/10.3390/s20041009
Chicago/Turabian StyleHan, Haixia, Donglian Hou, Lei Zhao, Nannan Luan, Li Song, Zhaohong Liu, Yudong Lian, Jianfei Liu, and Yongsheng Hu. 2020. "A Large Detection-Range Plasmonic Sensor Based on An H-Shaped Photonic Crystal Fiber" Sensors 20, no. 4: 1009. https://doi.org/10.3390/s20041009