A Green Approach to Natural Dyes in Dye-Sensitized Solar Cells
"> Figure 1
<p>The design structure of the DSSC device is based on a green approach.</p> "> Figure 2
<p>Performances of output power for blueberry and mulberry dyes in (<b>a</b>) outdoor and (<b>b</b>) indoor conditions.</p> "> Figure 3
<p>The general chemical structure of anthocyanin in blueberries and mulberries.</p> "> Figure 4
<p>(<b>a</b>) Output power performance concerning the different soaking times of dye extraction. Photographs of TiO<sub>2</sub> photoanodes immersed in the blueberry dye for (<b>b</b>) 5 min and (<b>c</b>) 12 h.</p> "> Figure 5
<p>Performance of output power with relation to different types of counter-electrode materials.</p> "> Figure 6
<p>Schematic diagram of the natural dye-based DSSCs measured in indoor and outdoor environments as an engineering teaching kit.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Natural Dyes
2.2. Preparation of DSSCs
2.3. Measurement of DSSC Performance
3. Results and Discussion
3.1. Influence of Photosensitizers
3.2. Influence of Immersion Time
3.3. Influence of Counter-Electrodes
3.4. DSSC as an Engineering Teaching Kit
- The basics of solar cells: Understand the basic principles of solar cells, including how they convert light energy into electrical energy; Be able to distinguish between the different types of solar cells, such as silicon solar cells and DSSCs; Understand the factors that affect the efficiency of solar cells.
- The working principle of DSSCs: Understand the working principle of DSSCs, including how the dye molecules absorb sunlight and transfer their energy to electrons in the TiO2 semiconductor; Be able to explain the role of the different components of a DSSC; Understand the factors that affect the efficiency of DSSCs.
- The different components of DSSCs: Identify the various components of a DSSC; Understand the function of each element; Explain how the other parts interact.
- The impact of different parameters on the performance of DSSCs: Understand the impact of the other parameters on the performance of DSSCs, such as the type of dye used, the thickness of the TiO2 layer, and the electrolyte solution; Be able to design and conduct experiments to investigate the impact of different parameters on the performance of DSSCs.
- How to extract natural dyes from food and plant materials: Understand the principles of dye extraction; Be able to select the appropriate solvent for extracting natural dyes from food and plant materials; Be able to carry out the dye extraction process.
- How to prepare DSSCs using natural dyes: Understand the steps involved in preparing DSSCs using natural dyes; Be able to prepare DSSCs using natural dyes; Be able to evaluate the performance of DSSCs designed using natural dyes.
- How to optimize the performance of DSSCs: Understand the factors that affect the performance of DSSCs; Be able to design and conduct experiments to maximize the performance of DSSCs; Be able to identify the limitations of DSSCs and suggest ways to improve their performance.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeoh, M.-E.; Chan, K.-Y. Recent Advances in Photo-Anode for Dye-Sensitized Solar Cells: A Review. Int. J. Energy Res. 2017, 41, 2446–2467. [Google Scholar] [CrossRef]
- Ryan, M. Progress in Ruthenium Complexes for Dye Sensitised Solar Cells. Platin. Met. Rev. 2009, 53, 216–218. [Google Scholar] [CrossRef]
- Karki, I.; Nakarmi, J.; Mandal, P.; Chatterjee, S. Absorption Spectra of Natural Dyes and Their Effect on Efficiency of ZnO Based Dye-Sensitized Solar Cells. Nepal J. Sci. Technol. 2012, 13, 179–185. [Google Scholar] [CrossRef]
- Gong, J.; Liang, J.; Sumathy, K. Review on Dye-Sensitized Solar Cells (DSSCs): Fundamental Concepts and Novel Materials. Renew. Sustain. Energy Rev. 2012, 16, 5848–5860. [Google Scholar] [CrossRef]
- Narayan, M.R. Review: Dye Sensitized Solar Cells Based on Natural Photosensitizers. Renew. Sustain. Energy Rev. 2012, 16, 208–215. [Google Scholar] [CrossRef]
- Hosseinnezhad, M.; Moradian, S.; Gharanjig, K. Fruit Extract Dyes as Photosensitizers in Solar Cells. Curr. Sci. 2015, 109, 953. [Google Scholar] [CrossRef]
- Buraidah, M.H.; Teo, L.P.; Yusuf, S.N.F.; Noor, M.M.; Kufian, M.Z.; Careem, M.A.; Majid, S.R.; Taha, R.M.; Arof, A.K. TiO2/Chitosan-NH4I(+I2)-BMII-Based Dye-Sensitized Solar Cells with Anthocyanin Dyes Extracted from Black Rice and Red Cabbage. Int. J. Photoenergy 2011, 2011, 273683. [Google Scholar] [CrossRef]
- Chien, C.Y.; Hsu, B.D. Optimization of the Dye-Sensitized Solar Cell with Anthocyanin as Photosensitizer. Sol. Energy 2013, 98, 203–211. [Google Scholar] [CrossRef]
- Mizuno, A.; Yamada, G.; Ohtani, N. Natural Dye-Sensitized Solar Cells Containing Anthocyanin Dyes Extracted from Frozen Blueberry Using Column Chromatography Method. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 1129–1131. [Google Scholar] [CrossRef]
- Mekapogu, M.; Vasamsetti, B.M.K.; Kwon, O.-K.; Ahn, M.-S.; Lim, S.-H.; Jung, J.-A. Anthocyanins in Floral Colors: Biosynthesis and Regulation in Chrysanthemum Flowers. Int. J. Mol. Sci. 2020, 21, 6537. [Google Scholar] [CrossRef] [PubMed]
- Service, R. Solar Cells That Work in Low Light Could Charge Devices Indoors. Science, 23 April 2018. [Google Scholar] [CrossRef]
- Yeoh, M.-E.; Chan, K.-Y. Efficiency Enhancement in Dye-Sensitized Solar Cells with ZnO and TiO2 Blocking Layers. J. Electron. Mater. 2019, 48, 4342–4350. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H. Review of CIGS-Based Solar Cells Manufacturing by Structural Engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Ramanujam, J.; Bishop, D.M.; Todorov, T.K.; Gunawan, O.; Rath, J.; Nekovei, R.; Artegiani, E.; Romeo, A. Flexible CIGS, CdTe and a-Si:H Based Thin Film Solar Cells: A Review. Prog. Mater. Sci. 2020, 110, 100619. [Google Scholar] [CrossRef]
- Li, D.-B.; Bista, S.S.; Song, Z.; Awni, R.A.; Subedi, K.K.; Shrestha, N.; Pradhan, P.; Chen, L.; Bastola, E.; Grice, C.R.; et al. Maximize CdTe Solar Cell Performance through Copper Activation Engineering. Nano Energy 2020, 73, 104835. [Google Scholar] [CrossRef]
- Park, S.; Simon, J.; Schulte, K.L.; Ptak, A.J.; Wi, J.-S.; Young, D.L.; Oh, J. Germanium-on-Nothing for Epitaxial Liftoff of GaAs Solar Cells. Joule 2019, 3, 1782–1793. [Google Scholar] [CrossRef]
- Zhang, W.-W.; Qi, H.; Ji, Y.-K.; He, M.-J.; Ren, Y.-T.; Li, Y. Boosting Photoelectric Performance of Thin Film GaAs Solar Cell Based on Multi-Objective Optimization for Solar Energy Utilization. Sol. Energy 2021, 230, 1122–1132. [Google Scholar] [CrossRef]
- Wu, Z.; Duan, W.; Lambertz, A.; Qiu, D.; Pomaska, M.; Yao, Z.; Rau, U.; Zhang, L.; Liu, Z.; Ding, K. Low-Resistivity p-Type a-Si:H/AZO Hole Contact in High-Efficiency Silicon Heterojunction Solar Cells. Appl. Surf. Sci. 2021, 542, 148749. [Google Scholar] [CrossRef]
- Schafer, S.; Brendel, R. Accurate Calculation of the Absorptance Enhances Efficiency Limit of Crystalline Silicon Solar Cells with Lambertian Light Trapping. IEEE J. Photovoltaics 2018, 8, 1156–1158. [Google Scholar] [CrossRef]
- Halme, J.; Mäkinen, P. Theoretical Efficiency Limits of Ideal Coloured Opaque Photovoltaics. Energy Environ. Sci. 2019, 12, 1274–1285. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.-W.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.-G.; Yeh, C.-Y.; Zakeeruddin, S.M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Rajaramanan, T.; Heidari Gourji, F.; Elilan, Y.; Yohi, S.; Senthilnanthanan, M.; Ravirajan, P.; Velauthapillai, D. Natural Sensitizer Extracted from Mussaenda Erythrophylla for Dye-Sensitized Solar Cell. Sci. Rep. 2023, 13, 13844. [Google Scholar] [CrossRef]
- Hou, X.; Aitola, K.; Lund, P.D. TiO2 Nanotubes for Dye-sensitized Solar Cells—A Review. Energy Sci. Eng. 2021, 9, 921–937. [Google Scholar] [CrossRef]
- Kim, J.H.; Moon, K.J.; Kim, J.M.; Lee, D.; Kim, S.H. Effects of Various Light-Intensity and Temperature Environments on the Photovoltaic Performance of Dye-Sensitized Solar Cells. Sol. Energy 2015, 113, 251–257. [Google Scholar] [CrossRef]
- Belessiotis, G.V.; Antoniadou, M.; Ibrahim, I.; Karagianni, C.S.; Falaras, P. Universal Electrolyte for DSSC Operation under Both Simulated Solar and Indoor Fluorescent Lighting. Mater. Chem. Phys. 2022, 277, 125543. [Google Scholar] [CrossRef]
- Amogne, N.Y.; Ayele, D.W.; Tsigie, Y.A. Recent Advances in Anthocyanin Dyes Extracted from Plants for Dye Sensitized Solar Cell. Mater. Renew. Sustain. Energy 2020, 9, 23. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Ali, S.R.; Khan, S. Progress in Dye Sensitized Solar Cell by Incorporating Natural Photosensitizers. Sol. Energy 2019, 181, 490–509. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Polyphenol Content and Antioxidant Capacity of Berries: A Review. Int. J. Agric. For. Life Sci. 2019, 3, 350–361. [Google Scholar]
- Kafkas, E.Y. Comparison of Fruit Quality Characteristics of Berries. Agric. Sci. 2021, 12, 907–915. [Google Scholar] [CrossRef]
- Pramananda, V.; Fityay, T.A.H.; Misran, E. Anthocyanin as Natural Dye in DSSC Fabrication: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1122, 12104. [Google Scholar] [CrossRef]
- Landi, M.; Agati, G.; Fini, A.; Guidi, L.; Sebastiani, F.; Tattini, M. Unveiling the Shade Nature of Cyanic Leaves: A View from the “Blue Absorbing Side” of Anthocyanins. Plant. Cell Environ. 2021, 44, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Patni, N.; GPillai, S.; Sharma, P. Effect of Using Betalain, Anthocyanin and Chlorophyll Dyes Together as a Sensitizer on Enhancing the Efficiency of Dye-sensitized Solar Cell. Int. J. Energy Res. 2020, 44, 10846–10859. [Google Scholar] [CrossRef]
- Obi, K.; Frolova, L.; Fuierer, P. Preparation and Performance of Prickly Pear (Opuntia phaeacantha) and Mulberry (Morus rubra) Dye-Sensitized Solar Cells. Sol. Energy 2020, 208, 312–320. [Google Scholar] [CrossRef]
- Al Batty, S.; Al-Jubouri, S.M.; Wali Hakami, M.; Sarief, A.; Haque, S.M. Innovative Economic Anthocyanin Dye Source for Enhancing the Performance of Dye-Sensitized Solar Cell. J. Taibah Univ. Sci. 2022, 16, 415–422. [Google Scholar] [CrossRef]
- Tagliaferro, R.; Colonna, D.; Brown, T.M.; Reale, A.; Di Carlo, A. Interplay between Transparency and Efficiency in Dye Sensitized Solar Cells. Opt. Express 2013, 21, 3235. [Google Scholar] [CrossRef] [PubMed]
- Kabir, F.; Manir, S.; Bhuiyan, M.M.H.; Aftab, S.; Ghanbari, H.; Hasani, A.; Fawzy, M.; De Silva, G.L.T.; Mohammadzadeh, M.R.; Ahmadi, R. Instability of Dye-Sensitized Solar Cells Using Natural Dyes and Approaches to Improving Stability—An Overview. Sustain. Energy Technol. Assess. 2022, 52, 102196. [Google Scholar] [CrossRef]
- Suhaimi, S.; Nasri, N.M.; Wahab, S.; Ismail, N.S.; Shahimin, M.M.; Sauli, Z. Ultraviolet-Visible Absorbance Analysis on Solvent Dependent Effect of Tropical Plant Anthocyanin Extraction for Dye-Sensitized Solar Cells. AIP Conf. Proc. 2020, 2203, 020054. [Google Scholar]
- Hao, Y.; Yang, W.; Zhang, L.; Jiang, R.; Mijangos, E.; Saygili, Y.; Hammarström, L.; Hagfeldt, A.; Boschloo, G. A Small Electron Donor in Cobalt Complex Electrolyte Significantly Improves Efficiency in Dye-Sensitized Solar Cells. Nat. Commun. 2016, 7, 13934. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Pervez, M.F.; Tayyaba, S.; Uddin, M.J.; Mortuza, A.A.; Mia, M.N.H.; Manir, M.S.; Karim, M.R.; Khan, M.A. Efficiency Enhancement of Natural Dye Sensitized Solar Cell by Optimizing Electrode Fabrication Parameters. Mater. Sci. 2017, 35, 816–823. [Google Scholar] [CrossRef]
Layer | Exp I | Exp II | Exp III | Exp IV |
---|---|---|---|---|
Anode | TiO2 | TiO2 | TiO2 | TiO2 |
Dye | Blueberry | Mulberry | Blueberry | Blueberry |
Electrolyte | Lugol’s iodine | Lugol’s iodine | Lugol’s iodine | Lugol’s iodine |
Cathode | Graphite pencil | Graphite pencil | Graphite pencil | Candle soot |
Immersion time (min) | 5 | 5 | 720 | 5 |
Natural Dye | Environment | Voltage, Voc (mV) | Current, Isc (µA) | Power, P (µW) |
---|---|---|---|---|
Blueberry | Outdoor | 105.8 | 70.4 | 7.45 |
Blueberry | Indoor | 23.6 | 3.4 | 0.08024 |
Mulberry | Outdoor | 137.5 | 100.3 | 13.79 |
Mulberry | Indoor | 29.8 | 4.1 | 0.122 |
Exp | Voltage, Voc (mV) | Current, Isc (µA) | Power, P (µW) |
---|---|---|---|
I | 23.6 | 3.4 | 0.08024 |
III | 21.1 | 4.4 | 0.09284 |
Exp | Voltage, Voc (mV) | Current, Isc (µA) | Power, P (µW) |
---|---|---|---|
I | 23.6 | 3.4 | 0.08024 |
IV | 35.1 | 5.4 | 0.18954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukor, N.I.A.; Chan, K.-Y.; Thien, G.S.H.; Yeoh, M.-E.; Low, P.-L.; Devaraj, N.K.; Ng, Z.-N.; Yap, B.K. A Green Approach to Natural Dyes in Dye-Sensitized Solar Cells. Sensors 2023, 23, 8412. https://doi.org/10.3390/s23208412
Shukor NIA, Chan K-Y, Thien GSH, Yeoh M-E, Low P-L, Devaraj NK, Ng Z-N, Yap BK. A Green Approach to Natural Dyes in Dye-Sensitized Solar Cells. Sensors. 2023; 23(20):8412. https://doi.org/10.3390/s23208412
Chicago/Turabian StyleShukor, Nurul Izzati Abdul, Kah-Yoong Chan, Gregory Soon How Thien, Mian-En Yeoh, Pei-Ling Low, Nisha Kumari Devaraj, Zi-Neng Ng, and Boon Kar Yap. 2023. "A Green Approach to Natural Dyes in Dye-Sensitized Solar Cells" Sensors 23, no. 20: 8412. https://doi.org/10.3390/s23208412