Analysis and Reduction of Solar Stray Light in the Nighttime Imaging Camera of Luojia-1 Satellite
<p>Solar light affection on nighttime image.</p> "> Figure 2
<p>Typical images of stray light influences, using a collimated solar simulator and an imaging system with sensitivity of 10<sup>−7</sup> solar flux.</p> "> Figure 3
<p>Stray light path.</p> "> Figure 4
<p>Layout of solar vector.</p> "> Figure 5
<p>Angular change between solar vector and the orbit plane within a year.</p> "> Figure 6
<p>Angular change between solar vector and camera axis in one orbit cycle.</p> "> Figure 7
<p>Principle of special-shaped baffle.</p> "> Figure 8
<p>3D model of special-shaped baffle.</p> "> Figure 9
<p>Key surfaces in optical system for stray light removing.</p> "> Figure 10
<p>Optimization of lens internal structure.</p> "> Figure 11
<p>Evaluation of lens stray light after optimization.</p> "> Figure 12
<p>Camera environment affects stray light.</p> "> Figure 13
<p>PST curve considering whole-satellite model.</p> "> Figure 14
<p>Nighttime image of Los Angeles (34<math display="inline"><semantics> <mo>°</mo> </semantics></math> N), acquired with satellite in earth shadow area.</p> "> Figure 15
<p>Different frames of nighttime image of the Moscow area (55<math display="inline"><semantics> <mo>°</mo> </semantics></math> N), acquired when satellite was illuminated by sun on 21 June 2018. (<b>a</b>) Solar incident angel is 57°; (<b>b</b>) solar incident angel is 52°; (<b>c</b>) solar incident angel to optical is 47°.</p> "> Figure 16
<p>Images of Amsterdam (52<math display="inline"><semantics> <mo>°</mo> </semantics></math> N), in different seasons. (<b>a</b>) Acquired on 29 June 2018; (<b>b</b>) acquired on 7 September 2018.</p> ">
Abstract
:1. Introduction
2. Requirements on Nighttime Camera Stray Light
3. Design of Special-Shaped Baffle
3.1. Analysis of Real Solar Incidence Angle
3.2. Special-Shaped Baffle Design
4. Optimization of Lens Stray Light
- (1)
- Lower the input power by reducing the primary scattering surface area;
- (2)
- Decrease the scattering by means of anodizing or painting extinction coating on mechanical structure;
- (3)
- Set up vanes to reduce the GCF.
- (1)
- Optical components: surfaces of the transmissive parts were set as 3-layer anti-reflective coating while the non-transmissive parts as black paint;
- (2)
- Lens mount and clamping rings: Black paint.
5. PST Analysis Based on Whole-Satellite Environment
- (1)
- Baffle: Black paint;
- (2)
- Mounting plate, GPS and TT&C antennas, and data transmission antenna: Mirror reflectivity was 0.2, diffuse reflectivity was 0.4 and absorptivity was 0.4.
6. In-Orbit Imaging Test Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deren, L.; Xi, L. An overview on data mining of nighttime light remote sensing. Acta Geod. Cartogr. Sin. 2015, 44, 591–601. [Google Scholar]
- Hu, K.; Qi, K.; Guan, Q.; Wu, C.; Yu, J.; Qing, Y.; Zheng, J.; Wu, H.; Li, X. A scientometric visualization analysis for night-time light remote sensing research from 1991 to 2016. Remote Sens. 2017, 9, 802. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Elvidge, C.D.; Paul, T.; Levine, E.; Privalsky, M.V.; Brown, V. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sens. Environ. 1997, 59, 105–117. [Google Scholar] [CrossRef]
- Cho, K.; Ito, R.; Shimoda, H.; Sakata, T. Technical note and cover fishing fleet lights and sea surface temperature distribution observed by DMSP/OLS sensor. Int. J. Remote Sens. 1999, 20, 3–9. [Google Scholar] [CrossRef]
- Lo, C. Urban indicators of china from radiance-calibrated digital dmsp-ols nighttime images. Ann. Assoc. Am. Geogr. 2002, 92, 225–240. [Google Scholar] [CrossRef]
- Hsu, F.-C.; Baugh, K.E.; Ghosh, T.; Zhizhin, M.; Elvidge, C.D. DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sens. 2015, 7, 1855–1876. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 2067–2088. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, P.; Chen, H.; Huang, Q.; Jiang, H.; Zhang, Z.; Zhang, Y.; Luo, X.; Sun, S. A novel method for urban area extraction from VIIRS DNB and MODIS NDVI data: A case study of Chinese cities. Int. J. Remote Sens. 2017, 38, 6094–6109. [Google Scholar] [CrossRef]
- Li, X.; Zhan, C.; Tao, J.; Li, L.J.R.S. Long-Term Monitoring of the Impacts of Disaster on Human Activity Using DMSP/OLS Nighttime Light Data: A Case Study of the 2008 Wenchuan, China Earthquake. Remote Sens. 2018, 10, 588. [Google Scholar] [CrossRef]
- Nicolau, R.; David, J.; Caetano, M.; Pereira, J. Ratio of Land Consumption Rate to Population Growth Rate—Analysis of Different Formulations Applied to Mainland Portugal. ISPRS Int. J. Geo Inf. 2019, 8, 10. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M.; Yu, C.; Meng, L. The City Gravity Migration of the Urban Agglomeration in the Middle Reach of Yangtze River Based on DMSP Nighttime Light. In Proceedings of the 2018 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–7. [Google Scholar]
- Wang, J.; Zhang, J.; Gong, L.; Li, Q.; Zhou, D. Indirect seismic economic loss assessment and recovery evaluation using nighttime light images—Application for Wenchuan earthquake. Nat. Hazards Earth Syst. Sci. 2018, 18, 3253–3266. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Jiang, N.; Shi, G.; Cheng, X. The Evolution of the Urban Spatial Pattern in the Yangtze River Economic Belt: Based on Multi-Source Remote Sensing Data. Sustainability 2018, 10, 2733. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D. On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite. Sensors 2018, 18, 4225. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M. A preliminary investigation of Luojia-1 night-time light imagery. Remote Sens. Lett. 2019, 10, 526–535. [Google Scholar] [CrossRef]
- Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S. A new source for high spatial resolution night time images—The EROS-B commercial satellite. Remote Sens. Environ. 2014, 149, 1–12. [Google Scholar] [CrossRef]
- Coleman, H.S. Stray light in optical systems. J. Opt. Soc. Am. 1947, 37, 434–451. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wang, S.; Deng, C.; Chen, Z.-Y. Stray light control lens for Xing Long 1-meter optical telescope. Opt. Precis. Eng. 2010, 18, 513–520. [Google Scholar]
- Wang, Y.; Ientilucci, E. A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements. Remote Sens. 2018, 10, 589. [Google Scholar] [CrossRef]
- Asadnezhad, M.; Eslamimajd, A.; Hajghassem, H. Stray light analysis, baffle, and optical design of a high-resolution satellite camera. J. Appl. Remote Sens. 2018, 12, 026009. [Google Scholar] [CrossRef]
- Hammar, A.; Christensen, O.M.; Park, W.; Pak, S.; Emrich, A.; Stake, J. Stray light suppression of a compact off-axis telescope for a satellite-borne instrument for atmospheric research. In Proceedings of the Optical Design and Testing VIII, Beijing, China, 11–13 October 2018; p. 108150F. [Google Scholar]
- Huang, X.; Schneider, A.; Friedl, M.A. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sens. Environ. 2016, 175, 92–108. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Mills, S.; Weiss, S.; Liang, C. VIIRS day/night band (DNB) stray light characterization and correction. In Proceedings of the Earth Observing Systems XVIII, San Diego, CA, USA, 23 September 2013; p. 88661P. [Google Scholar]
- Asadnezhad, M.; Eslamimajd, A.; Hajghassem, H. Optical system design of star sensor and stray light analysis. J. Eur. Opt. Soc. Rapid Publ. 2018, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Leinert, C.; Kluppelberg, D. Stray light suppression in optical space experiments. Appl. Opt. 1974, 13, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Breault, R.P. Stray light technology overview of the 1980 decade (and a peek into the future). In Proceedings of the Stray Radiation in Optical Systems, San Diego, CA, USA, 10–13 July 1990; pp. 2–12. [Google Scholar]
- Slater, P.N. Remote Sensing: Optics and Optical Systems; Addison-Wesley Publishing Co.: Boston, MA, USA, 1980; Volume 1, p. 593. [Google Scholar]
- Meyer-Arendt, J.R. Radiometry and photometry: Units and conversion factors. Appl. Opt. 1968, 7, 2081–2084. [Google Scholar] [CrossRef] [PubMed]
- Breault, R.P. Control of stray light. Handb. Opt. 1995, 1, 38.31–38.35. [Google Scholar]
- Fest, E.C.; Society of Photo-optical Instrumentation Engineers. Stray Light Analysis and Control; SPIE Press: Bellingham, WA, USA, 2013. [Google Scholar]
- Liao, Y.; Liu, G.; Wen, Y. Research on modeling and simulation for view field of star sensor. J. Syst. Simul. 2006, 18, 38–44. [Google Scholar]
- Xing, Z.; Lei, Z.; Guang, J. Stray light removing of reflective optical system. Infrared Laser Eng. 2008, 37, 316–318. [Google Scholar]
- Zhong, X.; Jia, J. Stray light removing design and simulation of spaceborne camera. Opt. Precis. Eng. 2009, 17, 621–625. [Google Scholar]
- Sun, C.-M.; Zhao, F.; Zhang, Z. Stray light analysis of large aperture optical telescope using TracePro. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Imaging Spectroscopy and Telescopes and Large Optics, Beijing, China, 13–15 May 2014; p. 92981F. [Google Scholar]
- Liao, L.; Weiss, S.; Mills, S.; Hauss, B. Suomi NPP VIIRS day-night band on-orbit performance. J. Geophys. Res. Atmos. 2013, 118, 12705–12718. [Google Scholar] [CrossRef]
- Lee, S.; Chiang, K.; Xiong, X.; Sun, C.; Anderson, S. The S-NPP VIIRS day-night band on-orbit calibration/characterization and current state of SDR products. Remote Sens. 2014, 6, 12427–12446. [Google Scholar] [CrossRef]
- Mills, S.; Miller, S.D. VIIRS Day-Night Band (DNB) calibration methods for improved uniformity. In Proceedings of the Earth Observing Systems XIX, San Diego, CA, USA, 18–20 August 2014; p. 921809. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, X.; Su, Z.; Zhang, G.; Chen, Z.; Meng, Y.; Li, D.; Liu, Y. Analysis and Reduction of Solar Stray Light in the Nighttime Imaging Camera of Luojia-1 Satellite. Sensors 2019, 19, 1130. https://doi.org/10.3390/s19051130
Zhong X, Su Z, Zhang G, Chen Z, Meng Y, Li D, Liu Y. Analysis and Reduction of Solar Stray Light in the Nighttime Imaging Camera of Luojia-1 Satellite. Sensors. 2019; 19(5):1130. https://doi.org/10.3390/s19051130
Chicago/Turabian StyleZhong, Xing, Zhiqiang Su, Guo Zhang, Zhigang Chen, Yao Meng, Deren Li, and Yong Liu. 2019. "Analysis and Reduction of Solar Stray Light in the Nighttime Imaging Camera of Luojia-1 Satellite" Sensors 19, no. 5: 1130. https://doi.org/10.3390/s19051130
APA StyleZhong, X., Su, Z., Zhang, G., Chen, Z., Meng, Y., Li, D., & Liu, Y. (2019). Analysis and Reduction of Solar Stray Light in the Nighttime Imaging Camera of Luojia-1 Satellite. Sensors, 19(5), 1130. https://doi.org/10.3390/s19051130