Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera’s Principal Distance
<p>Luojia 1-01 satellite.</p> "> Figure 2
<p>The structure of the optical system.</p> "> Figure 3
<p>Nighttime light remote-sensing camera of Luojia 1-01.</p> "> Figure 4
<p>Lateral color of the optical system.</p> "> Figure 5
<p>Field curve and distortion of the optical system.</p> "> Figure 6
<p>Modulation transfer function of the optical system.</p> "> Figure 7
<p>Nighttime light remote-sensing image.</p> "> Figure 8
<p>Variation of principal distance with temperature.</p> "> Figure 9
<p>Variation of back focal length with temperature.</p> "> Figure 10
<p>Graphs of modulation transfer function. (<b>a</b>) −20 °C; (<b>b</b>) 20 °C; (<b>c</b>) 60 °C.</p> "> Figure 11
<p>Variation of principal distance with temperature.</p> "> Figure 12
<p>Curve of absolute distortion variation with temperature.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Relationship Between Principal Distance and Image Point
2.2. Thermal-Stability Research of the Principal Distance
2.2.1. Focal Power and Achromatic Analysis
2.2.2. Temperature-focal-shift Analysis
2.2.3. Defocus Analysis
2.3. Optical System Design of the Luojia 1-01 Satellite
2.3.1. Design Requirements of the Optical System
2.3.2. Optical System Design
3. Results and Discussion
3.1. Performance Evaluation of the Optical System
3.2. Thermal Analysis of the Optical System
3.3. Distortion Analysis
3.4. On-Orbit Geometric Test Result
4. Conclusions
- (1)
- When the temperature is in the range of −20 °C to +60 °C, the influence of the principal distance variation on geometric accuracy is increased from 0.40 pixels to 0.008 pixels.
- (2)
- The change of the back focal length is less than the focal depth. The imaging performance of the system is stable, improving the environmental adaptability of the nighttime light remote-sensing camera.
- (3)
- The effect of the variation of the principal distance of the optical system on the distortion can be neglected. That is because the principal distance change of the optimized system has been well controlled.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Elvidge, C.; Zhou, Y.Y.; Cao, C.Y.; Warner, T. Remote sensing of night-time light. Int. J. Remote Sens. 2017, 38, 5855–5859. [Google Scholar] [CrossRef]
- The Luojia-1A Scientific Experimental Satellite Was Successfully Lunched. Available online: http://www.lmars.whu.edu.cn/index.php/en/researchnews/2169.html (accessed on 2 August 2018).
- Jiang, W.; He, G.J.; Long, T.F.; Guo, H.X.; Yin, R.Y.; Leng, W.C.; Liu, H.C.; Wang, G.Z. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, L.T.; Jiang, Y.H.; Shen, X.; Li, D.R. On-orbit relative radiometric calibration of the night-time sensor of the Luojia1-01 satellite. Sensors 2018, 18, 4225. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.X.; Li, D.R.; Xu, H.M. Mapping urban extent using Luojia 1-01 nighttime light imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, R.Z.; Li, D.R.; Zhang, G.; Shen, X.; Yu, B.G.; Wu, C.L.; Xie, S.; Zhang, P.; Li, M.; et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A satellite. Sensors 2018, 18, 3919. [Google Scholar] [CrossRef] [PubMed]
- Superczynski, S.D.; Christopher, S.A. Exploring land use and land cover effects on air quality in central Alabama using GIS and remote sensing. Remote Sens. 2011, 3, 2552–2567. [Google Scholar] [CrossRef]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sic. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, X.; Zhao, Y.; Xu, J.; Chen, F.; Li, H. Automatic intercalibration of night-time light imagery using robuts regression. Remote Sens. Lett. 2013, 4, 45–54. [Google Scholar] [CrossRef]
- Fan, Q.C.; Liu, H.B.; Su, D.Z.; Tan, J.C. Athermalisation of optical systems and application in star sensor. Infrared Laser Eng. 2009, 38, 226–229. [Google Scholar]
- Liu, H.B.; Tan, J.C.; Hao, Y.C.; Jia, H.; Tan, W.; Yang, J.K. Effect of ambient temperature on star sensor measurement accuracy. Opt. Electron. Eng. 2008, 35, 40–44. [Google Scholar]
- Tan, W.; Luo, J.F.; Hao, Y.C.; Jia, H.; Liu, H.B.; Yang, J.K. Study of effect of temperature change on the image shifting of the optical system in star sensor. Opt. Technol. 2009, 35, 186–189, 193. [Google Scholar]
- Jiang, Y.; Sun, Q.; Liu, Y.; Zhao, L.X. Athermal design for IR optical seeker system with wide FOV. Acta Photonica Sin. 2013, 42, 462–466. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H.G. Optical design of infrared athermalized objective with large relative aperture. Chin. Opt. 2011, 4, 374–379. [Google Scholar]
- An, X.Q.; Wang, Q.; Song, B. Athermal design of compact uncooled optical system with large relative aperture. Laser Infrared 2015, 45, 795–799. [Google Scholar]
- Zhao, Y.; Deng, J.; Yu, D.Z.; Ma, Y. Design of dual field of view optical system in long wave infrared with optical passive athermalization. Infrared Laser Eng. 2014, 43, 1545–1548. [Google Scholar]
- Zhang, X.H.; Liang, Z.Y.; Chang, Q. Design of an athermalized projection optical system for infrared target simulator. Electron. Opt. Control 2015, 22, 87–89. [Google Scholar] [CrossRef]
- Jiang, L.; Hu, Y.; Dong, K.Y.; An, Y.; Wang, C.; Tong, S.F. Passive athermal design of dual-band infrared optical system. Infrared Laser Eng. 2015, 44, 3353–3357. [Google Scholar]
- Zhang, W.Y. Athermalization design of infrared refractive-diffractive telephoto objective. J. Appl. Opt. 2017, 38, 12–18. [Google Scholar]
- Shi, H.D.; Zhang, X.; Qu, H.M.; Zhang, J.Z.; Jiang, H.L. Design of large relative aperture infrared athermalized optical system with chalcogenide glasses. Acta Optica Sin. 2015, 35, 249–255. [Google Scholar]
- Jiang, B.; Wu, Y.H.; Dai, S.X.; Nie, Q.H.; Mu, R.; Zhang, Q.Y. Design of a compact dual-band athermalized infrared system. Infrared Technol. 2015, 37, 999–1004. [Google Scholar]
- Li, R.Y.; Fu, Y.G.; Liu, Z.Y. Athermalization design of compact medium-wave infrared imaging system. Infrared Technol. 2018, 40, 119–124. [Google Scholar]
- Fu, Y.G.; Huang, Y.H.; Liu, Z.Y. Design of multispectral infrared athermal optical system. J. Appl. Opt. 2014, 35, 510–514. [Google Scholar]
- Zhang, X.; Qiao, Y.F.; Zhu, M.C.; He, F.Y.; Jia, H.G. Two-lens athermalized infrared telephoto objective. Acta Optica Sin. 2014, 34, 250–255. [Google Scholar]
- Gao, D.R.; Fu, Q.; Zhao, Z.; Zhong, L.J. Athermalized telephoto objective design for 8–12 μm infrared wavelength. Infrared Laser Eng. 2014, 43, 3837–3842. [Google Scholar]
- Fu, Y.G.; Huang, Y.H.; Liu, Z.Y. Design of dual-band athermal infrared fisheye optical system. Infrared Laser Eng. 2014, 43, 3329–3333. [Google Scholar]
- Zhang, F.Q.; Fan, X.; Kong, H.; Cheng, Z.D.; Zhu, B. Influence of temperature on infrared optical system and athermal design. Laser Infrared 2015, 45, 854–860. [Google Scholar]
- Tang, T.J.; Wang, X.Y.; Li, Y. Design of athermalizing dual-band compound optical system. Opt. Technol. 2016, 42, 215–219. [Google Scholar]
- Liu, H.O.; Gou, B.L. Athermalized optical system design of space high-definition camera. Electro-optic Technol. Appl. 2015, 30, 10–13. [Google Scholar]
- Tao, Z.; Wang, M.; Xiao, W.J.; Guo, W.K. Design for cooled dual-band infrared refractive-diffractive hybrid optical system of athermalization and wide FOV. Acta Photonica Sin. 2017, 46, 195–203. [Google Scholar]
- Zhang, C.Y.; Shen, W.M. Design of an athermalized MWIR and LWIR dual-band optical system. Infrared Laser Eng. 2012, 41, 1323–1328. [Google Scholar]
Focal length/mm | 55 |
F number | 2.8 |
Full field of view | 32.32° |
Spectral range/µm | 0.50–0.80 |
Primary wavelength/µm | 0.65 |
MTF (46 lp/mm) | ≥0.50 |
Temperature range/°C | −20–+60 |
Image point offset (edge field)/pixels | 0.3 |
Material | Aluminum Alloy | Titanium Alloy | Indium Steel |
---|---|---|---|
Density/(g/cm3) | 2.70 | 4.51 | 8.10 |
Thermal expansion coefficient/(10−6/°C) | 23.6 | 9.2 | 1.6 |
Element Spacing Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Material | TA | AA | TA | TA | TA | AA | TA | AA | TA |
Validation Accuracy | Vertical Direction of the Orbit/Pixel | Orbit Direction/Pixel | Plane Accuracy/Pixel | ||||
---|---|---|---|---|---|---|---|
MAX | MIN | RMS | MAX | MIN | RMS | ||
Geometric Accuracy | 0.30 | 0.00 | 0.13 | 0.46 | 0.00 | 0.15 | 0.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhong, X.; Zhang, G.; Li, D.; Su, Z.; Meng, Y.; Jiang, Y. Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera’s Principal Distance. Sensors 2019, 19, 990. https://doi.org/10.3390/s19050990
Zhang K, Zhong X, Zhang G, Li D, Su Z, Meng Y, Jiang Y. Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera’s Principal Distance. Sensors. 2019; 19(5):990. https://doi.org/10.3390/s19050990
Chicago/Turabian StyleZhang, Kun, Xing Zhong, Guo Zhang, Deren Li, Zhiqiang Su, Yao Meng, and Yonghua Jiang. 2019. "Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera’s Principal Distance" Sensors 19, no. 5: 990. https://doi.org/10.3390/s19050990
APA StyleZhang, K., Zhong, X., Zhang, G., Li, D., Su, Z., Meng, Y., & Jiang, Y. (2019). Thermal Stability Optimization of the Luojia 1-01 Nighttime Light Remote-Sensing Camera’s Principal Distance. Sensors, 19(5), 990. https://doi.org/10.3390/s19050990