Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery
<p>Study area under different data sources: (<b>a</b>) LJ1-01 NTL image in June 2018; (<b>b</b>) VIIRS DNB image in May 2018; (<b>c</b>) Landsat 8 OLI false color composite (R/G/B = 5/4/3) in April 2018; (<b>d</b>) Google Map remote sensing satellite image in 2018.</p> "> Figure 2
<p>Extracted urban areas of Wuhan by HSI method using LJ1-01 NTL data: (<b>a</b>) threshold = 0.4; (<b>b</b>) threshold = 0.8; (<b>c</b>) threshold = 1.2.</p> "> Figure 3
<p>Extracted urban areas of Wuhan by HSI method using VIIRS DNB data: (<b>a</b>) threshold = 0.6; (<b>b</b>) threshold = 0.9; (<b>c</b>) threshold = 1.2.</p> "> Figure 4
<p>Extracted urban areas of Wuhan by STS method using LJ1-01 NTL data: (<b>a</b>) threshold = 2; (<b>b</b>) threshold = 10; (<b>c</b>) threshold = 18.</p> "> Figure 5
<p>Extracted urban areas of Wuhan by STS method using VIIRS DNB data: (<b>a</b>) threshold = 2; (<b>b</b>) threshold = 10; (<b>c</b>) threshold = 18.</p> "> Figure 6
<p>Extracted urban areas of Wuhan by SVM method using: (<b>a</b>) Landsat data only; (<b>b</b>) Landsat and LJ1-01 composite data; (<b>c</b>) Landsat and VIIRS composite data.</p> "> Figure 7
<p>Accuracy assessment of urban extent extraction for: (<b>a</b>) HSI method using LJ1-01 data; (<b>b</b>) HSI method using VIIRS data; (<b>c</b>) STS method using LJ1-01 data; (<b>d</b>) STS method using VIIRS data; (<b>e</b>) SVM method.</p> "> Figure 7 Cont.
<p>Accuracy assessment of urban extent extraction for: (<b>a</b>) HSI method using LJ1-01 data; (<b>b</b>) HSI method using VIIRS data; (<b>c</b>) STS method using LJ1-01 data; (<b>d</b>) STS method using VIIRS data; (<b>e</b>) SVM method.</p> "> Figure 7 Cont.
<p>Accuracy assessment of urban extent extraction for: (<b>a</b>) HSI method using LJ1-01 data; (<b>b</b>) HSI method using VIIRS data; (<b>c</b>) STS method using LJ1-01 data; (<b>d</b>) STS method using VIIRS data; (<b>e</b>) SVM method.</p> "> Figure 8
<p>Urban extent extraction results with the largest Kappa Coefficient for: (<b>a</b>) HSI method (LJ1-01 data used and threshold = 0.65); (<b>b</b>) STS method (LJ1-01 data used and threshold = 5); (<b>c</b>) SVM method using Landsat data only; (<b>d</b>) Google Map satellite image for comparison.</p> "> Figure 9
<p>Urban extent extraction results with the largest Kappa Coefficient for: (<b>a</b>) HSI method using LJ1-01 data (threshold = 0.65); (<b>b</b>) HSI method using VIIRS data (threshold = 0.95); (<b>c</b>) STS method using LJ1-01 data (threshold = 5); (<b>d</b>) STS method using VIIRS data (threshold = 9).</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. LJ1-01
2.2.2. VIIRS DNB
2.2.3. Landsat 8 OLI
2.2.4. Other Auxiliary Data
3. Methods
3.1. Data Preprocessing
3.2. Urban Extent Extraction Based on Different Methods
3.2.1. Human Settlement Index
3.2.2. Simple Thresholding Segmentation
3.2.3. SVM Supervised Classification
3.3. Accuracy Assessment
4. Results
5. Discussion
5.1. The Advantages of NTL Data in Urban Area Extraction
5.2. The Advantages of LJ1-01 Data Compared with VIIRS
5.3. Prospects for the Future
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, J. Urban ecology and sustainability: The state-of-the-science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Seto, K.C.; Michail, F.; Burak, G.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Statistics, C.N.B.O. Statistical Communiqué of the People’s Republic of China on the 2017 National Economic and Social Development. Available online: http://www.stats.gov.cn/tjsj/zxfb/201802/t20180228_1585631.html (accessed on 21 August 2018).
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Superczynski, S.D.; Christopher, S.A. Exploring land use and land cover effects on air quality in central alabama using gis and remote sensing. Remote Sens. 2011, 3, 2552–2567. [Google Scholar] [CrossRef]
- Shahbaz, M.; Lean, H.H. Does financial development increase energy consumption? The role of industrialization and urbanization in tunisia. Energy Policy 2012, 40, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.; Baldi, G.; Hirota, M.; Syktus, J.; Mcalpine, C. Land use and land cover change impacts on the regional climate of non-amazonian south america: A review. Glob. Planet. Chang. 2015, 128, 103–119. [Google Scholar] [CrossRef]
- Lu, Y.; Coops, N.C.; Hermosilla, T. Regional assessment of pan-pacific urban environments over 25 years using annual gap free landsat data. Int. J. App. Earth Obs. Geoinf. 2016, 50, 198–210. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in beijing–tianjin–hebei region, china. Urban Ecosyst. 2017, 20, 1–14. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (flus) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Inkoom, J.N.; Nyarko, B.K.; Antwi, K.B. Explicit modeling of spatial growth patterns in shama, ghana: An agent-based approach. J. Geovis. Spat. Anal. 2017, 1, 7. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B.; Li, S. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landsc. Urban Plan. 2016, 152, 59–71. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Yu, B.L.; Tang, M.; Wu, Q.S.; Yang, C.S.; Deng, S.Q.; Shi, K.F.; Peng, C.; Wu, J.P.; Chen, Z.Q. Urban built-up area extraction from log-transformed npp-viirs nighttime light composite data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Xue, X.Y.; Yu, Z.L.; Zhu, S.C.; Zheng, Q.M.; Weston, M.; Wang, K.; Gan, M.Y.; Xu, H.W. Delineating urban boundaries using landsat 8 multispectral data and viirs nighttime light data. Remote Sens. 2018, 10, 799. [Google Scholar] [CrossRef]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining modis multispectral data with viirs nighttime light data. Int. J. Digit. Earth 2016, 9, 1004–1020. [Google Scholar] [CrossRef]
- Guo, W.; Li, G.Y.; Ni, W.J.; Zhang, Y.H.; Lu, D.S. Exploring improvement of impervious surface estimation at national scale through integration of nighttime light and proba-v data. Gisci. Remote Sens. 2018, 55, 699–717. [Google Scholar] [CrossRef]
- Kotarba, A.Z.; Aleksandrowicz, S. Impervious surface detection with nighttime photography from the international space station. Remote Sens. Environ. 2016, 176, 295–307. [Google Scholar] [CrossRef]
- Li, D.; Li, X. An overview on data mining of nighttime light remote sensing. Acta Geodaetica et Cartographica Sinica 2015, 44, 591–601. [Google Scholar]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, X.; Zhao, Y.; Xu, J.; Chen, F.; Li, H. Automatic intercalibration of night-time light imagery using robust regression. Remote Sens. Lett. 2013, 4, 45–54. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of npp-viirs nighttime light imagery for modeling the regional economy of china. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Xu, H.; Yang, H.; Li, X.; Jin, H.; Li, D. Multi-scale measurement of regional inequality in mainland china during 2005–2010 using dmsp/ols night light imagery and population density grid data. Sustainability 2015, 7, 13469–13499. [Google Scholar] [CrossRef]
- Ma, T. Quantitative responses of satellite-derived nighttime lighting signals to anthropogenic land-use and land-cover changes across china. Remote Sens. 2018, 10, 1447. [Google Scholar] [CrossRef]
- Yu, B.; Shu, S.; Liu, H.; Song, W.; Wu, J.; Wang, L.; Chen, Z. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of china. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K. Mapping urbanization dynamics at regional and global scales using multi-temporal dmsp/ols nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Letu, H.; Hara, M.; Yagi, H.; Naoki, K.; Tana, G.; Nishio, F.; Shuhei, O. Estimating energy consumption from night-time dmps/ols imagery after correcting for saturation effects. Int. J. Remote Sens. 2010, 31, 4443–4458. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Jendryke, M.; Li, D.; Wu, C. Night-time light dynamics during the iraqi civil war. Remote Sens. 2018, 10, 858. [Google Scholar] [CrossRef]
- Li, X.; Li, D. Can night-time light images play a role in evaluating the syrian crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between dmsp/ols and viirs night-time light images to evaluate city light dynamics of syria’s major human settlement during syrian civil war. Int. J. Remote Sens. 2017, 38, 1–18. [Google Scholar] [CrossRef]
- Li, X.C.; Zhou, Y.Y. Urban mapping using dmsp/ols stable night-time light: A review. Int. J. Remote Sens. 2017, 38, 6030–6046. [Google Scholar] [CrossRef]
- Li, X.; Elvidge, C.; Zhou, Y.Y.; Cao, C.Y.; Warner, T. Remote sensing of night-time light. Int. J. Remote Sens. 2017, 38, 5855–5859. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Letu, H.; Hara, M.; Tana, G.; Nishio, F. A saturated light correction method for dmsp/ols nighttime satellite imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 389–396. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. Spectral identification of lighting type and character. Sensors 2010, 10, 3961–3988. [Google Scholar] [CrossRef] [PubMed]
- Small, C.; Elvidge, C.D.; Baugh, K. Mapping urban structure and spatial connectivity with viirs and ols night light imagery. Urban Remote Sens. Event 2013, 230–233. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of npp-viirs nighttime light data to estimate the gross domestic product and the electric power consumption of china at multiple scales: A comparison with dmsp-ols data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why viirs data are superior to dmsp for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Cao, C.; Xiong, X.; Blonski, S.; Liu, Q.; Guenther, B.; Weng, F. Suomi npp viirs on-orbit performance, data quality, and new applications. SPIE Asia-Pac. Remote Sens. 2012, 8528, 85280D. [Google Scholar]
- Dou, Y.Y.; Liu, Z.F.; He, C.Y.; Yue, H.B. Urban land extraction using viirs nighttime light data: An evaluation of three popular methods. Remote Sens. 2017, 9, 175. [Google Scholar] [CrossRef]
- Ma, W.T.; Li, P.J. An object similarity-based thresholding method for urban area mapping from visible infrared imaging radiometer suite day/night band (viirs dnb) data. Remote Sens. 2018, 10, 263. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, P.J. A temperature and vegetation adjusted ntl urban index for urban area mapping and analysis. ISPRS J. Photogramm. Remote Sens. 2018, 135, 93–111. [Google Scholar] [CrossRef]
- Tong, L.; Hu, S.; Frazier, A.E. Mixed accuracy of nighttime lights (ntl)-based urban land identification using thresholds: Evidence from a hierarchical analysis in wuhan metropolis, china. Appl. Geogr. 2018, 98, 201–214. [Google Scholar] [CrossRef]
- Li, K.N.; Chen, Y.H. A genetic algorithm-based urban cluster automatic threshold method by combining viirs dnb, ndvi, and ndbi to monitor urbanization. Remote Sens. 2018, 10, 277. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of npp-viirs night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from dmsp/ols nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. Mapping urban areas with integration of dmsp/ols nighttime light and modis data using machine learning techniques. Remote Sens. 2015, 7, 12419–12439. [Google Scholar] [CrossRef]
- Xu, M.; He, C.; Liu, Z.; Dou, Y. How did urban land expand in china between 1992 and 2015? A multi-scale landscape analysis. PLoS ONE 2016, 11, e0154839. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in china: A multiscale landscape perspective. Glob. Chang. Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, P.; Chen, H.; Huang, Q.L.; Jiang, H.B.; Zhang, Z.J.; Zhang, Y.M.; Luo, X.; Sun, S.J. A novel method for urban area extraction from viirs dnb and modis ndvi data: A case study of chinese cities. Int. J. Remote Sens. 2017, 38, 6094–6109. [Google Scholar] [CrossRef]
- Wang, R.; Wan, B.; Guo, Q.H.; Hu, M.S.; Zhou, S.P. Mapping regional urban extent using npp-viirs dnb and modis ndvi data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern china with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Schaaf, C.; Seto, K.C. The vegetation adjusted ntl urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Ai, B.; Li, X.; Shi, Q. A normalized urban areas composite index (nuaci) based on combination of dmsp-ols and modis for mapping impervious surface area. Remote Sens. 2015, 7, 17168–17189. [Google Scholar] [CrossRef]
- Bureau, W.S. Statistical Communiqué for Wuhan’s National Economic and Social Development in 2017. Available online: http://www.whtj.gov.cn/details.aspx?id=3957 (accessed on 22 August 2018).
- Government, W.M. Wuhan’s Advantages. Available online: http://english.wh.gov.cn/whgk_3581/whys/201204/t20120419_125685.html (accessed on 22 August 2018).
- Survey, U.S.G. Landsat 8 Oli/Tirs Level-2 Data Products–Surface Reflectance. Available online: https://lta.cr.usgs.gov/L8Level2SR (accessed on 8 September 2018).
- Ma, T.; Xu, T.; Huang, L.; Zhou, A. A human settlement composite index (hsci) derived from nighttime luminosity associated with imperviousness and vegetation indexes. Remote Sens. 2018, 10, 455. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the normalized difference water index (ndwi) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 2007, 9, 62–66. [Google Scholar] [CrossRef]
- Cristianini, N.; An, S.T.J. Introduction to Support Vector Machines; China Machine Press: Beijing, China, 2005; pp. 658–664. [Google Scholar]
- Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46, 131–159. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from tm imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Macarof, P.; Statescu, F. Comparasion of ndbi and ndvi as indicators of surface urban heat island effect in landsat 8 imagery: A case study of iasi. Present Environ. Sustain. Dev. 2017, 11, 141–150. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classification of remotely sensed data. Remote Sens. Environ. 1991, 37, 270–279. [Google Scholar] [CrossRef]
- Lewis, H.G.; Brown, M. A generalized confusion matrix for assessing area estimates from remotely sensed data. Int. J. Remote Sens. 2001, 22, 3223–3235. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Kyba, C.; Garz, S.; Kuechly, H.; De Miguel, A.; Zamorano, J.; Fischer, J.; Hölker, F. High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sens. 2014, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Miguel, A.S.D.; Castaño, J.G.; Zamorano, J.; Pascual, S.; Ángeles, M.; Cayuela, L.; Martinez, G.M.; Challupner, P.; Kyba, C.C.M. Atlas of astronaut photos of earth at night. Astron. Geophys. 2014, 55, 4–36. [Google Scholar] [CrossRef]
Parameters | DMSP/OLS | NPP/VIIRS | LJ1-01 |
---|---|---|---|
Available Period | 1992–2013 | November 2011–present | June 2018–present |
Country | The U.S. | The U.S. | China |
Spatial Resolution | 2.7 km | 740 m | 130 m |
Swath | 3000 km | 3000 km | 250 km |
Spectrum Range | 0.5–0.9 μm | 0.5–0.9 μm | 0.46–0.98 μm |
Radiometric Resolution | 6 bits | 14 bits | 14 bits |
Saturation | Saturated | Not saturated | Not saturated |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. https://doi.org/10.3390/s18113665
Li X, Zhao L, Li D, Xu H. Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors. 2018; 18(11):3665. https://doi.org/10.3390/s18113665
Chicago/Turabian StyleLi, Xi, Lixian Zhao, Deren Li, and Huimin Xu. 2018. "Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery" Sensors 18, no. 11: 3665. https://doi.org/10.3390/s18113665
APA StyleLi, X., Zhao, L., Li, D., & Xu, H. (2018). Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery. Sensors, 18(11), 3665. https://doi.org/10.3390/s18113665