Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data
"> Figure 1
<p>The boundary of three metropolises: (<b>a</b>) DMPS/OLS NTL in 2012; (<b>b</b>) GlobCover 2009 land cover map. The legends of the land cover types were merged for the display; (<b>c</b>) Image from Google Earth in 2014.</p> "> Figure 2
<p>The flowchart for this research.</p> "> Figure 3
<p>Examples of DN values in the urbanization area from different satellites before calibration during 1992–2012.</p> "> Figure 4
<p>Examples of DN values of the urbanization area from different satellites after calibration during 1992–2012. F10–F18 express the original DN value, and the “average” line was the final value after calibration.</p> "> Figure 5
<p>Global land vegetation degradation and restoration trends indicated by NDVI variation: for (<b>a</b>) 1981–2010; (<b>b</b>) 1986–2010; (<b>c</b>) 1991–2010; (<b>d</b>) 1996–2010; and (<b>e</b>) 2001–2010.</p> "> Figure 6
<p>Urban expansion in several samples from 1992 to 2012. The definition of urbanization threshold is DN ≥ 50 after calibration, and the extent in the layout is only for the core area of the metropolis or the urban clusters. Guangzhou signifies the Pearl River Delta urban clusters.</p> "> Figure 7
<p>The relation between mean NDVI and mean light in the urbanization areas during 1992–2010 in some Northeast Asia cities. Shanghai signifies the Yangtze River Delta urban clusters.</p> "> Figure 8
<p>The correlation between mean NDVI and mean DN in the urbanization areas during 1992–2010 among all the 50 metropolises.</p> "> Figure 9
<p>The relations among urbanization area, percent of degradation pixel, and slope of light in all 50 metropolises.</p> "> Figure 10
<p>The vegetation change trends in different statistical objects or data sets for a case in Beijing. (<b>a</b>) Difference between the mean NDVI from two data sets of MODIS and VIP and (<b>b</b>) variation of ΔNDVI (mean NDVI in urbanization area minus mean NDVI in outside buffer) and DN in urbanization area.</p> "> Figure 11
<p>Urbanization stage and the effect on night light and vegetation: (<b>a</b>) relation between urbanization stage and light [<a href="#B46-remotesensing-07-02067" class="html-bibr">46</a>], and (<b>b</b>) relation between urbanization stage and vegetation [<a href="#B57-remotesensing-07-02067" class="html-bibr">57</a>].</p> ">
Abstract
:1. Introduction
2. Data
2.1. Data Sources
Products and Sensors | Time Period | Resolution | Data Source | Processing |
---|---|---|---|---|
DMSP/OLS NTL | 1992 to 2012 | Yearly/30-s grids | National Geophysical Data Center at the National Oceanic and Atmospheric Administration | Averaging the pixel values of each city’s urbanization area to derive the annual DN |
VIP NDVI | June 1981 to December 2010 | Monthly/5.6 km | Vegetation Index and Phenology Research Lab at the University of Arizona | MVC method to derive the annual maximum NDVI |
MODIS MODND1M NDVI | February 2000 to December 2010 | Monthly/1 km | Geospatial Data Cloud, Chinese Academy of Sciences | MVC method to derive the annual maximum NDVI |
GlobCover 2009 | 2009 | Single year/300 m | European Space Agency (ESA) | Visually compare with NTL |
2.2. Study Areas
Continent | Metropolis |
---|---|
Asia | Beijing, Shanghai, Guangzhou, Taipei, Singapore, Bangkok, Dubai, New Delhi, Tehran, Tokyo, Kyoto, Seoul |
Europe | London, Liverpool, Berlin, Athens, Lisbon, Madrid, Barcelona, Rome, Milan, Paris, Brussels, Stockholm, Moscow, Saint Petersburg, Istanbul |
North America | Mexico City, New York, Miami, Houston, Dallas, Phoenix, Atlanta, Los Angeles, St. Louis, Washington D.C., Cleveland, Detroit, Boston, Chicago, Minneapolis, Toronto, Montreal |
South America | Buenos Aires, Sao Paulo, Rio de Janeiro |
Africa | Johannesburg, Cairo |
Oceania | Melbourne |
3. Methods
3.1. Calibration and Composition of NTL
Satellite | Year | a | b | R2 | Satellite | Year | a | b | R2 |
---|---|---|---|---|---|---|---|---|---|
F10 | 1992 | 0.50 | 26.61 | 0.74 | F15 | 2000 | 0.57 | 23.28 | 0.83 |
1993 | 0.48 | 28.80 | 0.75 | 2001 | 0.64 | 19.89 | 0.84 | ||
1994 | 0.54 | 23.70 | 0.72 | 2002 | 0.70 | 15.93 | 0.87 | ||
F12 | 1994 | 0.52 | 26.46 | 0.82 | 2003 | 0.52 | 27.78 | 0.88 | |
1995 | 0.60 | 21.64 | 0.79 | 2004 | 0.50 | 29.38 | 0.89 | ||
1996 | 0.63 | 19.66 | 0.81 | 2005 | 0.51 | 29.03 | 0.88 | ||
1997 | 0.52 | 26.30 | 0.77 | 2006 | 0.46 | 32.07 | 0.92 | ||
1998 | 0.53 | 26.38 | 0.79 | 2007 | 0.44 | 33.15 | 0.88 | ||
1999 | 0.73 | 13.71 | 0.82 | F16 | 2004 | 0.51 | 27.41 | 0.82 | |
F14 | 1997 | 0.44 | 32.16 | 0.84 | 2005 | 0.50 | 29.57 | 0.90 | |
1998 | 0.47 | 31.24 | 0.86 | 2006 | 0.53 | 27.54 | 0.89 | ||
1999 | 0.49 | 29.30 | 0.87 | 2007 | 0.71 | 16.16 | 0.89 | ||
2000 | 0.84 | 7.65 | 0.88 | 2008 | 0.55 | 25.79 | 0.89 | ||
2001 | 0.62 | 20.32 | 0.83 | 2009 | 0.65 | 18.75 | 0.84 | ||
2002 | 0.51 | 27.24 | 0.79 | F18 | 2010 | 1.21 | −15.91 | 0.91 | |
2003 | 0.62 | 21.21 | 0.87 | 2011 | 0.56 | 23.71 | 0.76 |
3.2. Variation Trend Judgement
4. Results
4.1. Vegetation Variation Trend
4.2. Light Variation Trend
Classification | Metropolis or the Urban Clusters | Range of Slope |
---|---|---|
Rapid (R) | Shanghai, Dubai, Beijing, Cairo, Guangzhou, New Delhi, Bangkok, Tehran, Phoenix, Istanbul | 0.76–1.58 ** |
Relatively Fast (RF) | Lisbon, Singapore, Seoul, Moscow, Taipei, Saint Petersburg, Madrid, Atlanta, Dallas, Sao Paulo | 0.51–0.74 ** |
Moderate Speed (MS) | Athens, Milan, Johannesburg, Rome, Houston, Melbourne, Mexico City, Buenos Aires, Barcelona, Rio de Janeiro | 0.25–0.51 ** |
Relatively Slow (RS) | Berlin, Los Angeles, Washington D.C., St. Louis, Chicago, Minneapolis, Kyoto, Miami, Tokyo, Paris | 0.13–0.21 ** |
Sluggish (S) | Toronto, Detroit, Cleveland | 0.08–0.13 ** |
Brussels, Liverpool, London, Montreal, Boston, Stockholm | 0–0.08 |
4.3. Correlation between Light and Vegetation
5. Discussion
5.1. Delineating the Correlations by Statistical Methods
Name | Degradation Inside | Degradation Outside | Slope (Class) | Name | Restoration Inside | Restoration Outside | Slope (Class) |
---|---|---|---|---|---|---|---|
Guangzhou | 92.7% | 6.9% | 0.99 (R) | Berlin | 98.0% | 98.8% | 0.21 (RS) |
Istanbul | 90.2% | 16.5% | 0.76 (R) | New York | 89.1% | 98.4% | 0.10 (S) |
Tehran | 89.5% | 69.1% | 0.85 (R) | Moscow | 86.8% | 99.4% | 0.58 (RF) |
Madrid | 88.2% | 55.9% | 0.54 (RF) | Brussels | 86.2% | 95.6% | 0.08 (S) |
Phoenix | 87.2% | 84.2% | 0.77 (R) | Atlanta | 84.9% | 99.8% | 0.53 (RF) |
Singapore | 86.1% | 9.5% | 0.71 (RF) | London | 84.3% | 94.9% | 0.02 (S) |
Melbourne | 82.4% | 4.6% | 0.38 (MS) | Washington D.C. | 82.1% | 98.6% | 0.20 (RS) |
Shanghai | 79.6% | 14.5% | 1.58 (R) | Boston | 81.5% | 97.2% | 0.01 (S) |
Kyoto | 70.5% | 13.8% | 0.15 (RS) | Stockholm | 78.8% | 91.9% | 0.00 (S) |
Bangkok | 70.0% | 10.3% | 0.85 (R) | Minneapolis | 75.8% | 99.5% | 0.17 (RS) |
Name | Degradation Inside | Degradation Outside | Slope (Class) | Name | Restoration Inside | Restoration Outside | Slope (Class) |
---|---|---|---|---|---|---|---|
Shanghai | 78.5% | 38.3% | 1.58 (R) | Berlin | 100.0% | 90.0% | 0.21 (RS) |
Houston | 65.9% | 28.8% | 0.39 (MS) | Moscow | 100.0% | 96.1% | 0.58 (RF) |
Singapore | 59.0% | 51.5% | 0.71 (RF) | Athens | 100.0% | 88.5% | 0.51 (RF) |
Buenos Aires | 57.7% | 53.9% | 0.29 (MS) | Johan-nesburg | 99.4% | 92.8% | 0.44 (MS) |
Mexico City | 52.2% | 31.1% | 0.34 (MS) | Paris | 99.3% | 96.0% | 0.13 (RS) |
Melbourne | 39.5% | 5.5% | 0.38 (MS) | Rio de Janeiro | 98.9% | 98.7% | 0.25 (MS) |
Bangkok | 38.4% | 23.3% | 0.85 (R) | Sao Paulo | 95.9% | 93.7% | 0.51 (RF) |
St. Louis | 36.8% | 10.8% | 0.20 (RS) | New York | 95.3% | 91.1% | 0.10 (S) |
Guangzhou | 36.6% | 44.0% | 0.99 (R) | Detroit | 94.7% | 97.8% | 0.11 (S) |
Beijing | 35.1% | 12.3% | 1.14 (R) | Barcelona | 93.7% | 96.7% | 0.29 (MS) |
5.2. Confirmation of the Relation by Different NDVI Data Sets
5.3. Urbanization Stage and the Effect on Night Light and Vegetation
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Wellbeing, Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Slemp, C.; Davenport, M.A.; Seekamp, E.; Brehm, J.M.; Schoonover, J.E.; Williard, K.W. “Growing too fast,” Local stakeholders speak out about growth and its consequences for community well-being in the urban–rural interface. Landsc. Urban Plan. 2012, 106, 139–148. [Google Scholar]
- McKinney, M.L. Urbanization, biodiversity, and conservation. BioScience 2002, 52, 883–890. [Google Scholar]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar]
- Hahs, A.; McDonnell, M.; McCarthy, M.; Vesk, P.; Corlett, R.; Norton, B.; Clemants, S.E.; Duncan, R.P.; Thompson, K.; Schwartz, M.W.; et al. A global synthesis of plant extinction rates in urban areas. Ecol. Lett. 2009, 12, 1165–1173. [Google Scholar]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar]
- United Nations HABITAT. State of the World’s Cities; United Nations Publication: New York, NY, USA, 2006; p. 204. [Google Scholar]
- United Nations. World Urbanization Prospects; 2009 Revision; United Nations: New York, NY, USA, 2010. [Google Scholar]
- McDonald, R.I.; Kareiva, P.; Forman, R.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar]
- Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Rickettse, T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ. 2004, 89, 434–443. [Google Scholar]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China’s 32 major cities. Sci. Total Environ. 2014, 488, 136–145. [Google Scholar]
- Gregg, J.W.; Jones, C.G.; Dawson, T.E. Urbanization effects on tree growth in the vicinity of New York City. Nature 2003, 424, 183–187. [Google Scholar]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31, L12209. [Google Scholar]
- Hubacek, K.; Kronenberg, J. Synthesizing different perspectives on the value of urban ecosystem services. Landsc. Urban Plan. 2013, 109, 1–6. [Google Scholar]
- Vandermeulen, V.; Verspecht, A.; Vermeire, B.; van Huylenbroeck, G.; Gellynck, X. The use of economic valuation to create public support for green infrastructure investments in urban areas. Landsc. Urban Plan. 2011, 103, 198–206. [Google Scholar]
- Manninen, S.; Forss, S.; Venn, S. Management mitigates the impact of urbanization on meadow vegetation. Urban Ecosyst. 2010, 13, 461–481. [Google Scholar]
- Myeong, S.; Nowak, D.J.; Duggin, M.J. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sens. Environ. 2006, 101, 277–282. [Google Scholar]
- Sun, J.; Wang, X.; Chen, A.; Ma, Y.; Cui, M.; Piao, S. NDVI indicated characteristics of vegetation cover change in China’s metropolises over the last three decades. Environ. Monit. Assess. 2011, 179, 1–14. [Google Scholar]
- Paruelo, J.M.; Epstein, H.E.; Lauenroth, W.K.; Burke, I.C. ANPP estimates from NDVI for the Central Grassland region of the United States. Ecology 1997, 78, 953–958. [Google Scholar]
- Myneni, R.B.; Dong, J.; Tucker, C.J.; Kaufmann, R.K.; Kauppi, P.E.; Liski, J.; Zhou, L.; Alexeyev, V.; Hughes, M.K. A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA 2001, 98, 14784–14789. [Google Scholar]
- Wessels, K.J.; Prince, S.D.; Reshef, I. Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J. Arid Environ. 2008, 72, 1940–1949. [Google Scholar]
- Hartter, J.; Ryan, S.J.; Southworth, J.; Chapman, C.A. Landscapes as continuous entities, forest disturbance and recovery in the Albertine Rift Landscape. Landsc. Ecol. 2011, 26, 877–890. [Google Scholar]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar]
- Gallo, K.P.; Elvidge, C.D.; Yang, L.; Reed, B.C. Trends in night-time city lights and vegetation indices associated with urbanization within the conterminous USA. Int. J. Remote Sens. 2004, 20, 2003–2007. [Google Scholar]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.L.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar]
- Chand, T.K.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar]
- Wu, J.; Wang, Z.; Li, W.; Peng, J. Exploring factors affecting the relationship between light consumption and GDP based on DMSP/OLS nighttime satellite imagery. Remote Sens. Environ. 2013, 134, 111–119. [Google Scholar]
- Fan, J.; Ma, T.; Zhou, C.; Zhou, Y.; Xu, T. Comparative estimation of urban development in China’s cities using socioeconomic and DMSP/OLS night light data. Remote Sens. 2014, 6, 7840–7856. [Google Scholar]
- Roychowdhury, K.; Jones, S.D.; Arrowsmith, C.; Reinke, K. A comparison of high and low gain DMSP/OLS satellite images for the study of socio-economic metrics. IEEE J-STARS 2011, 4, 35–42. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis I, II and III. In Proceedings of the Section Sciences, Koninklijke Academie van Wetenschappen te, Amsterdam, The Netherlands, 25 February 1950; pp. 386–392.
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar]
- Didan, K. Multi-Satellite earth science data record for studying global vegetation trends and changes. In Proceedings of the 2010 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 25–30.
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote. Sens. 1986, 7, 1417–1434. [Google Scholar]
- Maxwell, S.K.; Sylvester, K.M. Identification of “ever-cropped” land (1984–2010) using Landsat annual maximum NDVI image composites, Southwestern Kansas case study. Remote Sens. Environ. 2012, 121, 186–195. [Google Scholar]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar]
- Pandey, B.; Joshi, P.K.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth. Obs. 2013, 23, 49–61. [Google Scholar]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen-year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar]
- Han, P.; Huang, J.; Li, R.; Wang, L.; Hu, Y.; Wang, J.; Huang, W. Monitoring trends in light pollution in China based on nighttime satellite imagery. Remote Sens. 2014, 6, 5541–5558. [Google Scholar]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar]
- Elvidge, C.D.; Hsu, F.C.; Baugh, K.E.; Ghosh, T. National Trends in Satellite-Observed Lighting. In Global Urban Monitoring and Assessment through Earth Observation; CRC Press: Boca Raton, FL, USA, 2014; pp. 97–118. [Google Scholar]
- Neeti, N.; Eastman, J.R. A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Trans. GIS 2011, 15, 599–611. [Google Scholar]
- Fuller, D.O.; Wang, Y. Recent trends in satellite vegetation index observations indicate decreasing vegetation biomass in the Southeastern Saline Everglades Wetlands. Wetlands 2014, 34, 67–77. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Hafner: New York, NY, USA, 1962. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar]
- Tarnavsky, E.; Garrigues, S.; Brown, M.E. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sens. Environ. 2008, 112, 535–549. [Google Scholar]
- Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar]
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar]
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar]
- Standish, R.J.; Hobbs, R.J.; Miller, J.R. Improving city life, options for ecological restoration in urban landscapes and how these might influence interactions between people and nature. Landsc. Ecol. 2013, 28, 1213–1221. [Google Scholar]
- Liu, Q.; Yang, Y.; Tian, H.; Zhang, Bo.; Gu, L. Assessment of human impacts on vegetation in built-up areas in China based on AVHRR, MODIS and DMSP_OLS nighttime light data, 1992–2010. Chin. Geogr. Sci. 2014, 24, 231–244. [Google Scholar]
- Jenerette, G.D.; Potere, D. Global analysis and simulation of land-use change associated with urbanization. Landsc. Ecol. 2010, 25, 657–670. [Google Scholar]
- De Jager, N.R.; Rohweder, J.J. Spatial scaling of core and dominant forest cover in the Upper Mississippi and Illinois River floodplains, USA. Landsc. Ecol. 2011, 26, 697–708. [Google Scholar]
- Ahern, J. Urban landscape sustainability and resilience, the promise and challenges of integrating ecology with urban planning and design. Landsc. Ecol. 2013, 28, 1203–1212. [Google Scholar]
- Zhang, Q.; Seto, K.C. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens. 2013, 5, 3476–3494. [Google Scholar]
- Wu, J.; He, S.; Peng, J.; Li, W.; Zhong, X. Intercalibration of DMSP-OLS night-time light data by the invariant region method. Int. J. Remote Sens. 2013, 34, 7356–7368. [Google Scholar]
- Ma, L.; Wu, J.; Li, W.; Peng, J.; Liu, H. Evaluating saturation correction methods for DMSP/OLS nighttime light data: A case study from China’s cities. Remote Sens. 2014, 6, 9853–9872. [Google Scholar]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wang, Y.; Peng, J.; Du, Y.; Liu, X.; Li, S.; Zhang, D. Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data. Remote Sens. 2015, 7, 2067-2088. https://doi.org/10.3390/rs70202067
Liu Y, Wang Y, Peng J, Du Y, Liu X, Li S, Zhang D. Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data. Remote Sensing. 2015; 7(2):2067-2088. https://doi.org/10.3390/rs70202067
Chicago/Turabian StyleLiu, Yanxu, Yanglin Wang, Jian Peng, Yueyue Du, Xianfeng Liu, Shuangshuang Li, and Donghai Zhang. 2015. "Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data" Remote Sensing 7, no. 2: 2067-2088. https://doi.org/10.3390/rs70202067
APA StyleLiu, Y., Wang, Y., Peng, J., Du, Y., Liu, X., Li, S., & Zhang, D. (2015). Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data. Remote Sensing, 7(2), 2067-2088. https://doi.org/10.3390/rs70202067