Lake Surface Temperature Predictions under Different Climate Scenarios with Machine Learning Methods: A Case Study of Qinghai Lake and Hulun Lake, China
<p>Workflow for predicting LSWT based on historical and future hydrometeorological data followed in the present study.</p> "> Figure 2
<p>Geo-location map showing DEM of Qinghai Lake and Hulun Lake surroundings.</p> "> Figure 3
<p>Flowchart illustrating the structure of the MLPNN model for predicting LSWT.</p> "> Figure 4
<p>Training set and validation set for XGBoost, RF, and MLPNN, based on data from Hulun Lake.</p> "> Figure 5
<p>Training set and validation set for XGBoost, RF, and MLPNN, based on data from Qinghai Lake.</p> "> Figure 6
<p>Predicted annual mean LSWT per month for different discharge scenarios in Hulun Lake from 2021 to 2100.</p> "> Figure 7
<p>Predicted annual mean LSWT per month for different discharge scenarios in Qinghai Lake from 2021 to 2100.</p> "> Figure 8
<p>Kendall Tau for each month based on the predicted LSWT of Hulun Lake under different discharge scenarios for the period 2021–2100.</p> "> Figure 9
<p>Kendall Tau for each month based on the predicted LSWT of Qinghai Lake under different discharge scenarios for the period 2021–2100.</p> "> Figure 10
<p>Annual average LSWT of Hulun Lake in the future under different discharge scenarios.</p> "> Figure 11
<p>Annual average LSWT of Qinghai Lake in the future under different discharge scenarios.</p> "> Figure 12
<p>Correlation heatmap of features in the Qinghai Lake and Hulun Lake regions.</p> "> Figure 13
<p>Scatter plots of primary meteorological factors and monthly averages of LSWT in Hulun Lake.</p> "> Figure 14
<p>Scatter plots of primary meteorological factors and monthly averages of LSWT in Qinghai Lake.</p> "> Figure 15
<p>Feature importance based on the RF model in the Qinghai Lake and Hulun Lake regions.</p> "> Figure 16
<p>Annual average LSWT versus air temperature changes in Hulun Lake in the future under different discharge scenarios.</p> "> Figure 17
<p>Annual average LSWT versus air temperature changes in Qinghai Lake in the future under different discharge scenarios.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data and Pre-Processing
2.3. Machine Learning Methods
2.3.1. Multilayer Perceptron Neural Network (MLPNN) Model
2.3.2. XGBoost Model
2.3.3. Random Forest (RF) Model
2.3.4. Selection of Hydrometeorological Factors and Temporal/Spatial Predictors
2.4. Model Performance Evaluation
3. Results
3.1. Model Training and Validation
3.2. Prediction Results for Future LSWT Based on the Optimal Model
3.3. Trends of LSWT under Different Emission Scenarios Based on Prediction Results
4. Discussion
4.1. Impact Analysis of Predictive Factors on LSWT Prediction
4.2. Impacts of Spatiotemporal Variations in LSWT under Different Discharge Scenarios
4.3. Advancements and Limitations in LSWT Prediction Using Remote Sensing and Machine Learning
5. Conclusions
- (1)
- The RF model achieved exceptional accuracy with an average MAE of 0.348 °C, RMSE of 0.611 °C, and R2 of 0.9984, outperforming both XGBoost and MLPNN models. This high level of accuracy was consistent throughout both the training and validation phases.
- (2)
- Projections under the ssp585 climate scenario indicate a significant warming trend in LSWT for both lakes. The monthly mean LSWT from 2021 to 2100 shows pronounced warming during the summer months, as confirmed by the Kendall Tau correlation coefficient.
- (3)
- Emission scenarios significantly affect LSWT trends. Under the ssp585 scenario, annual LSWT increases were 0.55 °C per decade (R2 = 0.72) for Hulun Lake and 0.32 °C per decade (R2 = 0.85) for Qinghai Lake, surpassing the rates observed under ssp119 and ssp245 scenarios.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, K.; Yu, Z.; Luo, Y.; Zhou, X.; Shang, C. Spatial-Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan-Guizhou Plateau. Water Resour. Res. 2019, 55, 4688–4703. [Google Scholar] [CrossRef]
- Song, K.; Wang, M.; Du, J.; Yuan, Y.; Ma, J.; Wang, M.; Mu, G. Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sens. 2016, 8, 854. [Google Scholar] [CrossRef]
- Wan, W.; Li, H.; Xie, H.; Hong, Y.; Long, D.; Zhao, L.; Han, Z.; Cui, Y.; Liu, B.; Wang, C.; et al. A Comprehensive Data Set of Lake Surface Water Temperature over the Tibetan Plateau Derived from MODIS LST Products 2001–2015. Sci. Data 2017, 4, 170095. [Google Scholar] [CrossRef]
- Woolway, R.; Kraemer, B.; Lenters, J.; Merchant, C.; O’Reilly, C.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Yang, J.; Yang, K.; Zhang, Y.; Luo, Y.; Shang, C. Maximum Lake Surface Water Temperatures Changing Characteristics under Climate Change. Environ. Sci. Pollut. Res. 2022, 29, 2547–2554. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and Highly Variable Warming of Lake Surface Waters around the Globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef]
- Woolway, R.; Jennings, E.; Shatwell, T.; Golub, M.; Pierson, D.; Maberly, S. Lake Heatwaves under Climate Change. Nature 2021, 589, 402–407. [Google Scholar] [CrossRef]
- Gronewold, A.D.; Stow, C.A. Water Loss from the Great Lakes. Science 2014, 343, 1084–1085. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Davidson, T.A.; Trolle, D.; Sondergaard, M.; Lauridsen, T.L.; Beklioglu, M.; Brucet, S.; Volta, P.; Gonzalez-Bergonzoni, I.; et al. Climate Change Impacts on Lakes: An Integrated Ecological Perspective Based on a Multi-Faceted Approach, with Special Focus on Shallow Lakes. J. Limnol. 2014, 73, 88–111. [Google Scholar] [CrossRef]
- Li, X.; Peng, S.; Deng, X.; Su, M.; Zeng, H. Attribution of Lake Warming in Four Shallow Lakes in the Middle and Lower Yangtze River Basin. Environ. Sci. Technol. 2019, 53, 12548–12555. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Calamita, E.; Majone, B.; Gallice, A.; Siviglia, A.; Toffolon, M. Prediction of River Water Temperature: A Comparison between a New Family of Hybrid Models and Statistical Approaches. Hydrol. Process. 2016, 30, 3901–3917. [Google Scholar] [CrossRef]
- Gray, E.; Elliott, J.; Mackay, E.; Folkard, A.; Keenan, P.; Jones, I. Modelling Lake Cyanobacterial Blooms: Disentangling the Climate-Driven Impacts of Changing Mixed Depth and Water Temperature. Freshw. Biol. 2019, 64, 2141–2155. [Google Scholar] [CrossRef]
- Mei, X.; Gao, S.; Liu, Y.; Hu, J.; Razlustkij, V.; Rudstam, L.; Jeppesen, E.; Liu, Z.; Zhang, X. Effects of Elevated Temperature on Resources Competition of Nutrient and Light Between Benthic and Planktonic Algae. Front. Environ. Sci. 2022, 10, 908088. [Google Scholar] [CrossRef]
- Shuvo, A.; O’Reilly, C.; Blagrave, K.; Ewins, C.; Filazzola, A.; Gray, D.; Mahdiyan, O.; Moslenko, L.; Quinlan, R.; Sharma, S. Total Phosphorus and Climate Are Equally Important Predictors of Water Quality in Lakes. Aquat. Sci. 2021, 83, 16. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Choinski, A.; Nowak, B. Effect of Environmental Conditions and Morphometric Parameters on Surface Water Temperature in Polish Lakes. Water 2018, 10, 580. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C.; Zhu, Y. Lake Surface Water Temperature Prediction and Changing Characteristics Analysis—A Case Study of 11 Natural Lakes in Yunnan-Guizhou Plateau. J. Clean. Prod. 2020, 276. [Google Scholar] [CrossRef]
- Shinohara, R.; Tanaka, Y.; Kanno, A.; Matsushige, K. Relative Impacts of Increases of Solar Radiation and Air Temperature on the Temperature of Surface Water in a Shallow, Eutrophic Lake. Hydrol. Res. 2021, 52, 916–926. [Google Scholar] [CrossRef]
- Hao, Z.; Li, W.; Wu, J.; Zhang, S.; Hu, S. A Novel Deep Learning Model for Mining Nonlinear Dynamics in Lake Surface Water Temperature Prediction. Remote Sens. 2023, 15, 900. [Google Scholar] [CrossRef]
- Zhu, S.; Ptak, M.; Yaseen, Z.M.; Dai, J.; Sivakumar, B. Forecasting Surface Water Temperature in Lakes: A Comparison of Approaches. J. Hydrol. 2020, 585, 124809. [Google Scholar] [CrossRef]
- Piotrowski, A.; Zhu, S.; Napiorkowski, J. Air2water Model with Nine Parameters for Lake Surface Temperature Assessment. Limnologica 2022, 94, 125967. [Google Scholar] [CrossRef]
- Bachmann, R.; Sharma, S.; Canfield, D.; Lecours, V. The Distribution and Prediction of Summer Near-Surface Water Temperatures in Lakes of the Coterminous United States and Southern Canada. Geosciences 2019, 9, 296. [Google Scholar] [CrossRef]
- Heddam, S.; Ptak, M.; Zhu, S. Modelling of Daily Lake Surface Water Temperature from Air Temperature: Extremely Randomized Trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. J. Hydrol. 2020, 588, 125130. [Google Scholar] [CrossRef]
- Lazhu; Yang, K.; Qin, J.; Hou, J.; Lei, Y.; Wang, J.; Huang, A.; Chen, Y.; Ding, B.; Li, X. A Strict Validation of MODIS Lake Surface Water Temperature on the Tibetan Plateau. Remote Sens. 2022, 14, 5454. [Google Scholar] [CrossRef]
- Liu, G.; Ou, W.; Zhang, Y.; Wu, T.; Zhu, G.; Shi, K.; Qin, B. Validating and Mapping Surface Water Temperatures in Lake Taihu: Results From MODIS Land Surface Temperature Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1230–1244. [Google Scholar] [CrossRef]
- Batina, A.; Krtalic, A. Integrating Remote Sensing Methods for Monitoring Lake Water Quality: A Comprehensive Review. Hydrology 2024, 11, 92. [Google Scholar] [CrossRef]
- Lieberherr, G.; Wunderle, S. Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sens. 2018, 10, 990. [Google Scholar] [CrossRef]
- Politi, E.; Cutler, M.; Rowan, J. Using the NOAA Advanced Very High Resolution Radiometer to Characterise Temporal and Spatial Trends in Water Temperature of Large European Lakes. Remote Sens. Environ. 2012, 126, 1–11. [Google Scholar] [CrossRef]
- Malakar, N.; Hulley, G.; Hook, S.; Laraby, K.; Cook, M.; Schott, J. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Schaeffer, B.; Iiames, J.; Dwyer, J.; Urquhart, E.; Salls, W.; Rover, J.; Seegers, B. An Initial Validation of Landsat 5 and 7 Derived Surface Water Temperature for US Lakes, Reservoirs, and Estuaries. Int. J. Remote Sens. 2018, 39, 7789–7805. [Google Scholar] [CrossRef]
- Reinart, A.; Reinhold, M. Mapping Surface Temperature in Large Lakes with MODIS Data. Remote Sens. Environ. 2008, 112, 603–611. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, X.; Zhuang, L.; Zhu, R.; Guo, J. Analysis of Surface Temperature Variation of Lakes in China Using MODIS Land Surface Temperature Data. Sci. Rep. 2022, 12, 2415. [Google Scholar] [CrossRef]
- Pachauri, R.; Qin, D.; Stocker, T. Climate Change 2013 The Physical Science Basis Working Group. I Contribution to the Fifth Assessment Report. of the Intergovernmental Panel on Climate Change Preface; Climate Change 2013: The Physical Science Basis; Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Cambridge University Press: Cambridge, UK, 2014; p. IX. ISBN 978-1-107-05799-9. [Google Scholar]
- Zhou Tianjun; Zou Liwei; Chen Xiaolong Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Progress. Inquisitiones Mutat. Clim. 2019, 15, 445–456.
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Zhang, B.; Zhang, F.; Shen, Q.; Wu, Y.; Mei, Y.; Qiu, R.; Li, J. Analysis of the Water Color Transitional Change in Qinghai Lake during the Past 35 Years Observed from Landsat and MODIS. J. Hydrol.-Reg. Stud. 2022, 42, 101154. [Google Scholar] [CrossRef]
- Fang, C.; Song, K.; Shang, Y.; Ma, J.; Wen, Z.; Du, J. Remote Sensing of Harmful Algal Blooms Variability for Lake Hulun Using Adjusted FM (AFAI) Algorithm. J. Environ. Inform. 2019, 34, 108–122. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Y.; Guo, W.; Baqa, M. Dynamics and Drivers of Water Clarity Derived from Landsat and In-Situ Measurement Data in Hulun Lake from 2010 to 2020. Water 2022, 14, 1189. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Chen, J.; Wang, X.; Lei, F. Data-Driven Multinomial Random Forest: A New Random Forest Variant with Strong Consistency. J. Big Data 2024, 11, 34. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, J.; Luo, Y.; Yang, K.; Shang, C. Impact of Climate Warming on the Surface Water Temperature of Plateau Lake. Acta Geophys. 2021, 69, 895–907. [Google Scholar] [CrossRef]
- Rooney, G.; van Lipzig, N.; Thiery, W. Estimating the Effect of Rainfall on the Surface Temperature of a Tropical Lake. Hydrol. Earth Syst. Sci. 2018, 22, 6357–6369. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Y.; Luo, Y.; Shang, C. Precipitation Events Impact on Urban Lake Surface Water Temperature under the Perspective of Macroscopic Scale. Environ. Sci. Pollut. Res. 2021, 28, 16767–16780. [Google Scholar] [CrossRef]
- Schmid, M.; Hunziker, S.; Wüest, A. Lake Surface Temperatures in a Changing Climate: A Global Sensitivity Analysis. Clim. Chang. 2014, 124, 301–315. [Google Scholar] [CrossRef]
- Dokulil, M.; de Eyto, E.; Maberly, S.; May, L.; Weyhenmeyer, G.; Woolway, R. Increasing Maximum Lake Surface Temperature under Climate Change. Clim. Chang. 2021, 165, 56. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Wang, R.; Cui, T.; Tong, Y. Warming of Surface Water in the Large and Shallow Lakes across the Yangtze River Basin, China, and Its Driver Analysis. Environ. Sci. Pollut. Res. 2023, 30, 20121–20132. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, K.; Varlas, G.; Papadopoulos, A.; Dimitriou, E. Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece. Sustainability 2021, 13, 9908. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Woolway, R.; Merchant, C. Global Reconstruction of Twentieth Century Lake Surface Water Temperature Reveals Different Warming Trends Depending on the Climatic Zone. Clim. Chang. 2020, 160, 427–442. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Ma, W.; Xu, X.; Wang, H. PID4LaTe: A Physics-Informed Deep Learning Model for Lake Multi-Depth Temperature Prediction. Earth Sci. Inform. 2024. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A Spatial Downscaling Algorithm for Satellite-Based Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Toffolon, M.; Majone, B. A Simple Lumped Model to Convert Air Temperature into Surface Water Temperature in Lakes. Hydrol. Earth Syst. Sci. 2013, 17, 3323–3338. [Google Scholar] [CrossRef]
- Sharma, S.; Gray, D.K.; Read, J.S.; O’Reilly, C.M.; Schneider, P.; Qudrat, A.; Gries, C.; Stefanoff, S.; Hampton, S.E.; Hook, S.; et al. A Global Database of Lake Surface Temperatures Collected by in Situ and Satellite Methods from 1985–2009. Sci. Data 2015, 2, 150008. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.; Merchant, C. Worldwide Alteration of Lake Mixing Regimes in Response to Climate Change. Nat. Geosci. 2019, 12, 271–276. [Google Scholar] [CrossRef]
- Jia, T.; Yang, K.; Peng, Z.; Tang, L.; Duan, H.; Luo, Y. Review on the Change Trend, Attribution Analysis, Retrieval, Simulation, and Prediction of Lake Surface Water Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6324–6355. [Google Scholar] [CrossRef]
- Mason, L.; Riseng, C.; Gronewold, A.; Rutherford, E.; Wang, J.; Clites, A.; Smith, S.; McIntyre, P. Fine-Scale Spatial Variation in Ice Cover and Surface Temperature Trends across the Surface of the Laurentian Great Lakes. Clim. Chang. 2016, 138, 71–83. [Google Scholar] [CrossRef]
- Toffolon, M.; Piccolroaz, S.; Calamita, E. On the Use of Averaged Indicators to Assess Lakes’ Thermal Response to Changes in Climatic Conditions. Environ. Res. Lett. 2020, 15, 034060. [Google Scholar] [CrossRef]
- Zhong, Y.; Notaro, M.; Vavrus, S. Spatially Variable Warming of the Laurentian Great Lakes: An Interaction of Bathymetry and Climate. Clim. Dyn. 2019, 52, 5833–5848. [Google Scholar] [CrossRef]
- Huber, V.; Adrian, R.; Gerten, D. Phytoplankton Response to Climate Warming Modified by Trophic State. Limnol. Oceanogr. 2008, 53, 1–13. [Google Scholar] [CrossRef]
- Livingstone, D. Impact of Secular Climate Change on the Thermal Structure of a Large Temperate Central European Lake. Clim. Chang. 2003, 57, 205–225. [Google Scholar] [CrossRef]
Model Name | Qinghai Lake-Optimal Parameters | Hulun Lake-Optimal Parameters |
---|---|---|
MLPNN | solver = ‘adam’, alpha = 1 × 10−4, | solver = ‘adam’, alpha = 1 × 10−4, |
activation = ‘relu’, | activation = ‘relu’, | |
learning_rate_init = 0.002. | learning_rate_init = 0.003. | |
XGBoost | max_depth = 7, learning_rate = 0.08, seed = 200, num_boost_round = 200 | max_depth = 8, learning_rate = 0.2, seed = 400, num_boost_round = 200. |
RF | min_samples_leaf = 40, | min_samples_leaf = 50, |
min_samples_split = 2, | min_samples_split = 4, | |
n_estimators = 40, | n_estimators = 50, | |
random_state = None, bootstrap = true, oob_score = true | random_state = None, bootstrap = true, oob_score = true |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, Z.; Xiong, S.; Zhang, W.; Li, R. Lake Surface Temperature Predictions under Different Climate Scenarios with Machine Learning Methods: A Case Study of Qinghai Lake and Hulun Lake, China. Remote Sens. 2024, 16, 3220. https://doi.org/10.3390/rs16173220
Li Z, Zhang Z, Xiong S, Zhang W, Li R. Lake Surface Temperature Predictions under Different Climate Scenarios with Machine Learning Methods: A Case Study of Qinghai Lake and Hulun Lake, China. Remote Sensing. 2024; 16(17):3220. https://doi.org/10.3390/rs16173220
Chicago/Turabian StyleLi, Zhenghao, Zhijie Zhang, Shengqing Xiong, Wanchang Zhang, and Rui Li. 2024. "Lake Surface Temperature Predictions under Different Climate Scenarios with Machine Learning Methods: A Case Study of Qinghai Lake and Hulun Lake, China" Remote Sensing 16, no. 17: 3220. https://doi.org/10.3390/rs16173220
APA StyleLi, Z., Zhang, Z., Xiong, S., Zhang, W., & Li, R. (2024). Lake Surface Temperature Predictions under Different Climate Scenarios with Machine Learning Methods: A Case Study of Qinghai Lake and Hulun Lake, China. Remote Sensing, 16(17), 3220. https://doi.org/10.3390/rs16173220