Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product
"> Figure 1
<p>The distribution of lakes (>50 km<sup>2</sup>) concerned and the stations for validation dataset collection across the Tibetan Plateau.</p> "> Figure 2
<p>MODIS land surface temperature (LST) product validation with both in situ measured data (<b>a</b>); and meteorological data (<b>b</b>) were collected in five different stations while in situ data were measured in 15 lakes across the Tibetan Plateau in 2014 and 2015.</p> "> Figure 3
<p>Spatial pattern of the monthly averaged water surface temperature after ice break-up month: (<b>a</b>) daytime lake water surface temperature (LWST) variation; (<b>b</b>) nighttime LWST variation; and (<b>c</b>) lake water surface diurnal temperature difference (DTD).</p> "> Figure 4
<p>The warm month spatial pattern of water surface temperature for lakes across the Tibetan Plateau: (<b>a</b>) daytime LWST variation; (<b>b</b>) nighttime LWST variation; and (<b>c</b>) lake water surface diurnal temperature difference (DTD).</p> "> Figure 5
<p>The spatial pattern of the monthly averaged water surface temperature before freeze-up period in Tibetan Plateau: (<b>a</b>) LWST daytime variation; (<b>b</b>) LWST nighttime variation; and (<b>c</b>) lake water surface diurnal temperature difference (DTD).</p> "> Figure 6
<p>The spatial LWST patterns for eight typical lakes during ice-free period, column one to three are averaged daytime, nighttime, and mean of day-nighttime temperature, while column four is the averaged diurnal temperature difference (DTD): (<b>a</b>) Qinghai Lake; (<b>b</b>) Siling Co; (<b>c</b>) Nam Co; (<b>d</b>) Hoh Xil Lake; (<b>e</b>) Mapam Yumco and Langa Co; (<b>f</b>) Ngoring Lake and Gyaring Lake; (<b>g</b>) Yamdrok; (<b>h</b>) Dabsun Lake.</p> "> Figure 7
<p>Fifteen-year averaged water surface temperature for daytime, nighttime and the mean value of day-nighttime temperature, and the diurnal temperature differences (DTD), the first row is derived from 56 lakes across the plateau, and the second to the fourth rows are results from typical lakes. E denotes the average elevation of 56 lakes above sea level in meter (m).</p> "> Figure 8
<p>The timing variations of (<b>a</b>) ice break-up date; (<b>b</b>) freeze-up date and (<b>c</b>) ice-free durations for lakes across the Tibetan Plateau.</p> "> Figure 9
<p>Inter-annual changes of lake-averaged annual daytime and nighttime water surface temperature (WST) of lakes from 2000 to 2015: (<b>a</b>) annual average; (<b>b</b>) break-up month; (<b>c</b>) freeze-up month; and (<b>d</b>) warm month.</p> "> Figure 10
<p>The relationships between monthly air temperature over lakes and averaged monthly lake surface temperature (WST) derived from MODIS images from 2001 to 2015: (<b>a</b>) daytime; (<b>b</b>) nighttime; and (<b>c</b>) mean WST of daytime and nighttime values.</p> "> Figure 11
<p>The variations of monthly air temperature over lakes and averaged monthly lake surface temperature derived from MODIS images during 2000 to 2015: (<b>a</b>) Siling Co; (<b>b</b>) Aykekumu; (<b>c</b>) DangreYumco; (<b>d</b>) Taruo Co; (<b>e</b>) PumuYumco; (<b>f</b>) Yamdrok; (<b>g</b>) Akesaiqin; (<b>h</b>) UlanUla; (<b>i</b>) Hoh Xil; and (<b>j</b>) Dabsun.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS Imagery and Processing
2.3. Methods for Lake Skin Temperature Characterization
2.4. Definition and Calculation of LWST
3. Results
3.1. Validation of LST MODIS Product
3.1.1. Validation by in Situ Measured Data
3.1.2. Validation by Meteorological Data
3.2. Spatial Pattern of Lake Surface Temperature
3.2.1. LWST Pattern of Lakes across the Tibetan Plateau
3.2.2. Water Surface Temperature Variation for Typical Lakes
3.3. Temporal Variation of Lake Surface Temperature
3.3.1. Intra-Annual Variation of LWST
3.3.2. Variations of Ice Break-Up, Freeze-Up and Ice Free Duration
3.3.3. Inter-Annual Variation of WST for Lakes across the Tibetan Plateau
4. Discussion
4.1. Water Volume (Depth and Area)
4.2. Elevation and Air Temperature
4.3. Water Supply Sources and Salinity
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, R.N.; Chen, Q.W.; Zhang, X.Q.; Recknagel, R. Effects of temperature and macronutrients on phytoplankton communities across three largely different lakes identified by a time-space trade-off approach. Ecol. Inform. 2015, 29, 174–181. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Niu, G.Y.; Zhang, Y.S.; Zhang, T.; Wang, B.B.; Wu, Y.H. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. J. Hydrol. 2016, 537, 27–35. [Google Scholar] [CrossRef]
- Verburg, P.; Hecky, R.E.; Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 2003, 301, 505–507. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010. [Google Scholar] [CrossRef]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; David, M.L.; Ruben, S.; Dietmar, S.; Ellen, V.D.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, D.M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Chang. 2003, 57, 205–225. [Google Scholar] [CrossRef]
- Hampton, S.; Izmesteva, L.R.; Moore, M.V.; Katz, S.L.; Dennis, B.; Silow, E.A. Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Glob. Chang. Biol. 2008, 14, 1947–1958. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Elsevier Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Hulley, G.C.; Hook, S.J.; Schneider, P. Optimized split-window coefficients for deriving surface temperatures from inland water bodies. Remote Sens. Environ. 2011, 115, 3758–3769. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Lettenmaier, D.P. Tracking fresh water from space. Science 2003, 301, 1491–1494. [Google Scholar] [CrossRef] [PubMed]
- Hook, S.; Vaughan, R.G.; Tonooka, H.; Schladow, S. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1798–1807. [Google Scholar] [CrossRef]
- Ke, L.H.; Song, C.Q. Remotely sensed surface temperature variation of an inland saline lake over the central Qinghai—Tibet Plateau. ISPRS J. Photogram. Remote Sens. 2014, 98, 157–167. [Google Scholar] [CrossRef]
- Gorham, E. Morphometric control of annual heat budgets in temperate lakes. Limnol. Oceanogr. 1964, 9, 529–533. [Google Scholar] [CrossRef]
- Livingstone, D. Ice break-up on southern Lake Baikal and its relationship to local and regional air temperatures in Siberia and the North Atlantic Oscillation. Limnol. Oceanogr. 1999, 44, 1486–1497. [Google Scholar] [CrossRef]
- Reinart, A.; Reinhold, M. Mapping surface temperature in large lakes with MODIS data. Remote Sens. Environ. 2008, 112, 603–611. [Google Scholar] [CrossRef]
- Bussières, N.; Verseghy, D.; MacPherson, J.I. The evolution of AVHRR-derived water temperatures over boreal lakes. Remote Sens. Environ. 2002, 80, 373–384. [Google Scholar] [CrossRef]
- Trumpickas, J.; Shuter, B.J.; Minns, C.K. Forecasting impacts of climate change on Great Lakes surface water temperatures. J. Gt. Lakes Res. 2009, 35, 454–463. [Google Scholar] [CrossRef]
- Trumpickas, J.; Shuter, B.J.; Minns, C.K.; Cyr, H. Characterizing patterns of nearshore water temperature variation in the North American Great Lakes and assessing sensitivities to climate change. J. Gt. Lakes Res. 2015, 41, 53–64. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. MODIS-derived surface temperature of the Great Salt Lake. Remote Sens. Environ. 2009, 113, 73–81. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Qin, J.; Ye, Q.; Dai, Y.; Guo, R. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos. 2014, 119, 8552–8567. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol. 2015. [Google Scholar] [CrossRef]
- Song, C.Q.; Huang, B.; Ke, L.H.; Richards, K.S. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J. Hydrol. 2014, 514, 131–144. [Google Scholar] [CrossRef]
- Rangwala, I.; Miller, J.R.; Xu, M. Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Xiao, F.; Ling, F.; Du, Y.; Feng, Q.; Yan, Y.; Chen, H. Evaluation of spatial temporal dynamics in surface water temperature of Qinghai Lake. J. Arid Land 2013, 5, 452–464. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Validation of the land surface temperature products retrieved from terra moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J.; Radocinski, R.G.; Corlett, G.K.; Hulley, G.C.; Schladow, S.G.; Steissberg, T.E. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys. Res. Lett. 2009. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Galve, J.M.; Valor, E.; Niclos, R.; Sanchez, J.M.; Rivas, R. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ. 2005, 97, 288–300. [Google Scholar] [CrossRef]
- Leblanc, M.; Lemoalle, J.; Bader, J.C.; Tweed, S.; Mofor, L. Thermal remote sensing of water under flooded vegetation: New observations of inundation patterns for the ‘Small’ Lake Chad. J. Hydrol. 2011, 404, 87–98. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling, 2nd ed.; Cambridge University Press: London, UK, 2005. [Google Scholar]
- Lei, Y.B.; Yao, T.D.; Bird, B.W.; Yang, K.; Zhai, J.Q.; Sheng, Y.W. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Webster, K.E.; Assel, R.A.; Bowser, C.J.; Dillon, P.J.; Eaton, J.G.; Evans, H.E.; Fee, E.J.; Hall, R.I.; Mortsch, L.R.; et al. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield region. Hydrol. Process. 1997, 11, 825–871. [Google Scholar] [CrossRef]
- Wang, S.M.; Dou, H.S. Chinese Lakes Inventory; Science Press: Beijing, China, 1998. [Google Scholar]
Name | WL (m) | A (km2) | AD (m) | Supply | V (108 m3) | Salinity (PSU) |
---|---|---|---|---|---|---|
LakeQinghai | 3194 | 4340 | 21.3 | R + P | 738.6 | 14.7 |
Nam Co | 4718 | 1961 | 57.6 | G + R + P | 863.7 | 0.9 |
Siling Co | 4530 | 2175 | 33.5 | G + R + P | - | 18.3 |
CuoE | 4561 | 269 | 7.8 | R + P | - | 261 |
Ayakekumu | 3876 | 927 | 12.3 | G + R | - | 145.9 |
Yamdrok | 4441 | 638 | 43.5 | R + P | 151.0 | 1.7 |
Pumu Yumco | 5010 | 290 | 47 | G + R + P | 133.5 | 0.37 |
Dangre Yumco | 4528 | 835.3 | 93 | G + R + P | 576.5 | 9.7 |
Taruo Co | 4566 | 515.6 | - | G + P | - | 110.7 |
Langa Co | 4572 | 268 | 31.4 | G + R + P | 57.1 | 0.7 |
MapamYumco | 4586 | 412 | 47.3 | G + R + P | 146.2 | 0.2 |
Gyaring Hu | 4292 | 526 | 8.9 | R + P | 46.7 | 0.5 |
Ngoring Hu | 4269 | 610 | 17.6 | R + P | 107.6 | 0.3 |
Hoh Xil | 4878 | 300 | 30.7 | G + R | 58.6 | 13.4 |
UlanUla | 4854 | 544 | 6.9 | G + P | - | 10.9 |
Akesaiqin | 4848 | 185 | 16 | R + P | - | 54.8 |
Dabsun | 2675 | 257 | 1.02 | R + P | 2.6 | 320.2 |
Lake Name | Rate of Daytime WST (°C/year) | R2 | Rate of Nighttime WST (°C/year) | R2 |
---|---|---|---|---|
Tsonag Lake | 0.043 | 0.12 | 0.044 | 0.07 |
Hara Lake | 0.021 | 0.04 | 0.081 | 0.13 |
Qinghai Lake | 0.024 | 0.04 | 0.044 | 0.10 |
Lumaqangdon Co | 0.033 | 0.04 | 0.048 | 0.08 |
ZigeTangco | 0.013 | 0.02 | 0.074 * | 0.29 |
Gyaring Lake | 0.004 | 0.00 | 0.072 | 0.10 |
Hoh Xil Lake | −0.143 ** | 0.37 | −0.091 ** | 0.37 |
LexieWudan | −0.073 * | 0.27 | −0.088 * | 0.28 |
ZhariNam Co | −0.041 * | 0.23 | −0.084 * | 0.23 |
Ngangzi Co | −0.04 4* | 0.20 | −0.012 | 0.00 |
Dore Sowdong Co | −0.062 * | 0.19 | −0.044 | 0.05 |
Ringinyubu Co | −0.040 * | 0.18 | −0.051 | 0.14 |
DogaicoringQangco | −0.042 | 0.15 | −0.013 | 0.01 |
Langa Co | −0.093 | 0.13 | −0.143 ** | 0.30 |
Senli Co | −0.122 | 0.11 | −0.073 | 0.14 |
Palung Co | −0.052 | 0.11 | −0.087 * | 0.20 |
PangongTso | −0.032 | 0.08 | −0.033 | 0.08 |
MapamYumco | −0.061 | 0.07 | −0.138 * | 0.19 |
AngLaren Lake | −0.014 | 0.02 | −0.024 | 0.07 |
GyesarTso | −0.013 | 0.01 | −0.072 * | 0.26 |
Gozha Co | −0.013 | 0.01 | −0.022 | 0.01 |
Nam Co | −0.002 | 0.00 | −0.054 | 0.08 |
Taro Co | −0.0003 | 0.00 | −0.053 * | 0.19 |
Yamdrok | 0.143 ** | 0.55 | −0.053 * | 0.21 |
HuitenNur | 0.171 ** | 0.45 | −0.173 ** | 0.44 |
Xuru Co | 0.054 * | 0.28 | −0.053 * | 0.24 |
CuoE | 0.041 | 0.10 | −0.025 | 0.06 |
Mucuobingni | 0.034 | 0.07 | −0.083 * | 0.22 |
Jargo Lake | 0.034 | 0.06 | −0.018 | 0.02 |
Urru Co | 0.027 | 0.05 | −0.044 | 0.13 |
Geren Co | 0.011 | 0.02 | −0.048 | 0.14 |
PumuYumco | 0.013 | 0.02 | −0.053 | 0.05 |
Zabuye Lake | 0.023 | 0.02 | −0.001 | 0.00 |
Dajia Lake | 0.002 | 0.00 | −0.124 * | 0.24 |
DangreYumco | 0.0023 | 0.00 | −0.034 | 0.13 |
Akesaiqin | −0.142 ** | 0.63 | 0.032 | 0.12 |
Jingyu Lake | −0.132 ** | 0.46 | 0.024 | 0.02 |
Dogze Co | −0.071 ** | 0.42 | 0.044 | 0.20 |
Dabsun | −0.251 ** | 0.37 | 0.173 ** | 0.45 |
UlanUla | −0.088 ** | 0.36 | 0.064 * | 0.18 |
Gas Hure | −0.058 ** | 0.34 | 0.003 | 0.00 |
CoNyi | −0.134 * | 0.29 | 0.138 ** | 0.46 |
MemarTso | −0.081 * | 0.29 | 0.132 ** | 0.44 |
Hoh Sai Lake | −0.074 * | 0.28 | 0.062 * | 0.29 |
XijinUlan | −0.081 * | 0.25 | 0.013 | 0.01 |
Quemo Co | −0.082 * | 0.21 | 0.044 | 0.14 |
MirikGyangdramTso | −0.044 | 0.09 | 0.024 | 0.03 |
AqqikKol | −0.035 | 0.07 | 0.053 | 0.16 |
DonggiConag | −0.044 | 0.06 | 0.014 | 0.09 |
Siling Co | −0.013 | 0.04 | 0.034 | 0.09 |
Dogai Coring | −0.024 | 0.03 | 0.023 | 0.02 |
Ngoring Lake | −0.024 | 0.02 | 0.083 | 0.15 |
Dorge Co | −0.023 | 0.02 | 0.004 | 0.00 |
Ayakekumu | −0.009 | 0.01 | 0.011 | 0.01 |
Serlung | −0.004 | 0.00 | 0.054 | 0.16 |
Kyebxang Co | −0.0002 | 0.00 | 0.082 * | 0.28 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Wang, M.; Du, J.; Yuan, Y.; Ma, J.; Wang, M.; Mu, G. Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sens. 2016, 8, 854. https://doi.org/10.3390/rs8100854
Song K, Wang M, Du J, Yuan Y, Ma J, Wang M, Mu G. Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sensing. 2016; 8(10):854. https://doi.org/10.3390/rs8100854
Chicago/Turabian StyleSong, Kaishan, Min Wang, Jia Du, Yue Yuan, Jianhang Ma, Ming Wang, and Guangyi Mu. 2016. "Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product" Remote Sensing 8, no. 10: 854. https://doi.org/10.3390/rs8100854
APA StyleSong, K., Wang, M., Du, J., Yuan, Y., Ma, J., Wang, M., & Mu, G. (2016). Spatiotemporal Variations of Lake Surface Temperature across the Tibetan Plateau Using MODIS LST Product. Remote Sensing, 8(10), 854. https://doi.org/10.3390/rs8100854