Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece
<p>Map of Greece with the location of the 18 lakes. (1) Kerkini, (2) Lysimachia, (3) Ozeros, (4) Trichonida, (5) Amvrakia, (6) Stymfalia, (7) Doirani, (8) Vegoritida, (9) Petron, (10) Koronia, (11) Volvi, (12) Zazari, (13) Chimaditida, (14) Kastoria, (15) Pamvotida, (16) Iliki, (17) Mikri Prespa, (18) Megali Prespa.</p> "> Figure 2
<p>Monthly average surface temperature trends from 1981 to 2020 over 18 lakes of Greece. The shaded area represents the 95% confidence intervals.</p> "> Figure 3
<p>Monthly precipitation trends from 1981 to 2020 over 18 lakes of Greece. The shaded area represents the 95% confidence intervals.</p> "> Figure 4
<p>Modelled monthly variation of precipitation among the 18 lakes. The shaded area represents 95% confidence intervals.</p> "> Figure 5
<p>Monthly average wind speed trends from 1981 to 2020 over 18 lakes of Greece. The shaded area represents the 95% confidence intervals.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greek Lakes
2.2. Climate Data
2.3. Generalized Additive Models
3. Results
3.1. Surface Temperature Time Series Analysis
3.2. Precipitation and Wind Speed Modelling
4. Discussion
4.1. Significant Changes of Climatic Variables
4.2. Implications for Limnological Processes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; Van Der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2001. [Google Scholar]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- O’ Reilly, C.M.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; Mcintyre, P.B.; Kraemer, B.M.; Weyhenmeyer, G.A.; Straile, D.; Dong, B.; Adrian, R.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 1–9. [Google Scholar] [CrossRef]
- Benson, B.J.; Magnuson, J.J.; Jensen, O.P.; Card, V.M.; Hodgkins, G.; Korhonen, J.; Livingstone, D.M.; Stewart, K.M.; Weyhenmeyer, G.A.; Granin, N.G. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855-2005). Clim. Chang. 2012, 112, 299–323. [Google Scholar] [CrossRef]
- Woolway, R.I.; Sharma, S.; Weyhenmeyer, G.A.; Debolskiy, A.; Golub, M.; Mercado-Bettín, D.; Perroud, M.; Stepanenko, V.; Tan, Z.; Grant, L.; et al. Phenological shifts in lake stratification under climate change. Nat. Commun. 2021, 12, 2318. [Google Scholar] [CrossRef]
- Mooij, W.M.; Hülsmann, S.; De Senerpont Domis, L.N.; Nolet, B.A.; Bodelier, P.L.E.; Boers, P.C.M.; Pires, L.M.D.; Gons, H.J.; Ibelings, B.W.; Noordhuis, R.; et al. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 2005, 39, 381–400. [Google Scholar] [CrossRef]
- Deng, J.; Paerl, H.W.; Qin, B.; Zhang, Y.; Zhu, G.; Jeppesen, E.; Cai, Y.; Xu, H. Climatically-modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Sci. Total Environ. 2018, 645, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, E.; Brucet, S.; Naselli-Flores, L.; Papastergiadou, E.; Stefanidis, K.; Nõges, T.; Nõges, P.; Attayde, J.L.; Zohary, T.; Coppens, J.; et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 2015, 750, 201–227. [Google Scholar] [CrossRef]
- Stockwell, J.D.; Doubek, J.P.; Adrian, R.; Anneville, O.; Carey, C.C.; Carvalho, L.; De Senerpont Domis, L.N.; Dur, G.; Frassl, M.A.; Grossart, H.P.; et al. Storm impacts on phytoplankton community dynamics in lakes. Glob. Chang. Biol. 2020, 26, 2756–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janatian, N.; Olli, K.; Cremona, F.; Laas, A.; Nõges, P. Atmospheric stilling offsets the benefits from reduced nutrient loading in a large shallow lake. Limnol. Oceanogr. 2020, 65, 717–731. [Google Scholar] [CrossRef]
- Sellami, H.; Benabdallah, S.; La Jeunesse, I.; Vanclooster, M. Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Sci. Total Environ. 2016, 543, 924–936. [Google Scholar] [CrossRef]
- Stefanidis, K.; Panagopoulos, Y.; Mimikou, M. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios. Sci. Total Environ. 2018, 627, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, C.; Soulis, K.; Munoz-Mas, R.; Martinez-Capel, F.; Zogaris, S.; Ntoanidis, L.; Dimitriou, E. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Sci. Total Environ. 2016, 540, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaldo, N.; Oren, R. Changing Seasonal Rainfall Distribution With Climate Directs Contrasting Impacts at Evapotranspiration and Water Yield in the Western Mediterranean Region. Earth’s Futur. 2018, 6, 841–856. [Google Scholar] [CrossRef]
- Brogli, R.; Sørland, S.L.; Kröner, N.; Schär, C. Causes of future Mediterranean precipitation decline depend on the season. Environ. Res. Lett. 2019, 14, 114017. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An integrated assessment of climate change impacts for Greece in the near future. Reg. Environ. Chang. 2011, 11, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Coppens, J.; Trolle, D.; Jeppesen, E.; Beklioğlu, M. The impact of climate change on a Mediterranean shallow lake: Insights based on catchment and lake modelling. Reg. Environ. Chang. 2020, 20, 62. [Google Scholar] [CrossRef]
- Bucak, T.; Trolle, D.; Andersen, H.E.; Thodsen, H.; Erdoğan, Ş.; Levi, E.E.; Filiz, N.; Jeppesen, E.; Beklioğlu, M.; Bucak, T. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Sci. Total Environ. 2017, 581–582, 413–425. [Google Scholar] [CrossRef]
- Bucak, T.; Trolle, D.; Tavşanoğlu, N.; Çakıroğlu, A.İ.; Özen, A.; Jeppesen, E.; Beklioğlu, M. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Sci. Total Environ. 2018, 621, 802–816. [Google Scholar] [CrossRef]
- Markonis, Y.; Batelis, S.C.; Dimakos, Y.; Moschou, E.; Koutsoyiannis, D. Temporal and spatial variability of rainfall over Greece. Theor. Appl. Climatol. 2017, 130, 217–232. [Google Scholar] [CrossRef]
- Stefanidis, K.; Varlas, G.; Vourka, A.; Papadopoulos, A.; Dimitriou, E. Delineating the relative contribution of climate related variables to chlorophyll-a and phytoplankton biomass in lakes using the ERA5-Land climate reanalysis data Water Research Delineating the relative contribution of climate related variables to chlorop. Water Res. 2021, 196, 117053. [Google Scholar] [CrossRef]
- Stefanidis, K.; Sarika, M.; Papastegiadou, E. Exploring environmental predictors of aquatic macrophytes in water-dependent Natura 2000 sites of high conservation value: Results from a long-term study of macrophytes in Greek lakes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2019, 1–16. [Google Scholar] [CrossRef]
- Oikonomou, A.; Leprieur, F.; Leonardos, I.D. Biogeography of freshwater fishes of the Balkan Peninsula. Hydrobiologia 2014, 738, 205–220. [Google Scholar] [CrossRef]
- Stefanidis, K.; Papastergiadou, E. Linkages between Macrophyte Functional Traits and Water Quality: Insights from a Study in Freshwater Lakes of Greece. Water 2019, 11, 1047. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, A.; Stefanidis, K. α- and β-Diversity Patterns of Macrophytes and Freshwater Fishes are Driven by Different Factors and Processes in Lakes of the Unexplored Southern Balkan Biodiversity Hotspot. Water 2020, 12, 1984. [Google Scholar] [CrossRef]
- Stefanidis, K.; Kostara, A.; Papastergiadou, E. Implications of human activities, land use changes and climate variability in mediterranean lakes of greece. Water (Switzerland) 2016, 8, 483. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications Earth System Science Data Discussions. Earth Syst. Sci. Data Discuss. 2021, 1–50. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 1–51. [Google Scholar] [CrossRef]
- Pelosi, A.; Terribile, F.; D’Urso, G.; Chirico, G.B. Comparison of ERA5-Land and UERRA MESCAN-SURFEX Reanalysis Data with Spatially Interpolated Weather Observations for the Regional Assessment of Reference Evapotranspiration. Water 2020, 12, 1669. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Liu, J.; Hagan, D.F.T.; Liu, Y. Global land surface temperature change (2003–2017) and its relationship with climate drivers: Airs, modis, and era5-land based analysis. Remote Sens. 2021, 13, 44. [Google Scholar] [CrossRef]
- Woolway, R.I.; Jennings, E.; Shatwell, T.; Golub, M.; Pierson, D.C.; Maberly, S.C. Lake heatwaves under climate change. Nature 2021, 589, 402–407. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized additive models. Stat. Sci. 1986, 1, 297–310. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Statistics for Biology and Health; Gail, M., Samet, J.M., Eds.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-87457-9. [Google Scholar]
- Pedersen, E.J.; Miller, D.L.; Simpson, G.L.; Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ 2019. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Edwards, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Modell. 2002, 157, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; Chapman and Hall: London, UK, 1990; ISBN 9780203753781. [Google Scholar]
- Yang, G.; Moyer, D.L. Estimation of nonlinear water-quality trends in high-frequency monitoring data. Sci. Total Environ. 2020, 715, 136686. [Google Scholar] [CrossRef] [PubMed]
- Wood, S. Package “mgcv”: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. 2020. Available online: https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (accessed on 29 August 2021).
- Tanentzap, A.J.; Morabito, G.; Volta, P.; Rogora, M.; Yan, N.D.; Manca, M. Climate warming restructures an aquatic food web over 28 years. Glob. Chang. Biol. 2020, 26, 6852–6866. [Google Scholar] [CrossRef] [PubMed]
- Oleksy, I.A.; Richardson, D.C. Climate Change and Teleconnections Amplify Lake Stratification With Differential Local Controls of Surface Water Warming and Deep Water Cooling. Geophys. Res. Lett. 2021, 48, 1–11. [Google Scholar] [CrossRef]
- Shatwell, T.; Thiery, W.; Kirillin, G. Future projections of temperature and mixing regime of European temperate lakes. Hydrol. Earth Syst. Sci. 2019, 23, 1533–1551. [Google Scholar] [CrossRef] [Green Version]
- Dokulil, M.T.; de Eyto, E.; Maberly, S.C.; May, L.; Weyhenmeyer, G.A.; Woolway, R.I. Increasing maximum lake surface temperature under climate change. Clim. Chang. 2021, 165, 56. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, K.; Luo, Y.; Shang, C.; Zhu, Y. Lake surface water temperature prediction and changing characteristics analysis—A case study of 11 natural lakes in Yunnan-Guizhou Plateau. J. Clean. Prod. 2020, 276. [Google Scholar] [CrossRef]
- Zhou, D.K.; Larar, A.M.; Liu, X. Surface Skin Temperature and Its Trend Observations from IASI on Board MetOp Satellites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1665–1675. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; García-Monteiro, S. Surface temperature of the planet earth from satellite data. Remote Sens. 2020, 12, 218. [Google Scholar] [CrossRef] [Green Version]
- Lieberherr, G.; Wunderle, S. Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sens. 2018, 10, 990. [Google Scholar] [CrossRef] [Green Version]
- Woolway, R.I.; Dokulil, M.T.; Marszelewski, W.; Schmid, M.; Bouffard, D.; Merchant, C.J. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim. Chang. 2017, 142, 505–520. [Google Scholar] [CrossRef]
- Paparrizos, S.; Maris, F.; Matzarakis, A. Integrated analysis of present and future responses of precipitation over selected Greek areas with different climate conditions. Atmos. Res. 2016, 169, 199–208. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Varlas, G. Weather Systems Affecting the Meteorological Conditions over the Aegean Sea; Springer: Berlin, Heidelberg, 2020; pp. 1–25. [Google Scholar]
- Stefanidis, K.; Papastergiadou, E. Effects of a long term water level reduction on the ecology and water quality in an eastern Mediterranean lake. Knowl. Manag. Aquat. Ecosyst. 2013. [Google Scholar] [CrossRef] [Green Version]
- Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.N.; Ciais, P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 2010, 3, 756–761. [Google Scholar] [CrossRef]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Van Niel, T.G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416–417, 182–205. [Google Scholar] [CrossRef]
- Woolway, R.I.; Meinson, P.; Nõges, P.; Jones, I.D.; Laas, A. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Clim. Chang. 2017, 141, 759–773. [Google Scholar] [CrossRef] [Green Version]
- Vardaka, E.; Moustaka-Gouni, M.; Cook, C.M.; Lanaras, T. Cyanobacterial blooms and water quality in Greek waterbodies. J. Appl. Phycol. 2005, 17, 391–401. [Google Scholar] [CrossRef]
- Zervou, S.-K.; Moschandreou, K.; Paraskevopoulou, A.; Christophoridis, C.; Grigoriadou, E.; Kaloudis, T.; Triantis, T.M.; Tsiaoussi, V.; Hiskia, A. Cyanobacterial Toxins and Peptides in Lake Vegoritis, Greece. Toxins 2021, 13, 394. [Google Scholar] [CrossRef]
- Christophoridis, C.; Zervou, S.K.; Manolidi, K.; Katsiapi, M.; Moustaka-Gouni, M.; Kaloudis, T.; Triantis, T.M.; Hiskia, A. Occurrence and diversity of cyanotoxins in Greek lakes. Sci. Rep. 2018, 8, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maliaka, V.; Lürling, M.; Fritz, C.; Verstijnen, Y.J.M.; Faassen, E.J.; Van Oosterhout, F.; Smolders, A.J.P. Interannual and spatial variability of cyanotoxins in the Prespa lake area, Greece. Water (Switzerland) 2021, 13, 357. [Google Scholar] [CrossRef]
- Gkelis, S.; Lanaras, T.; Sivonen, K.; Taglialatela-Scafati, O. Cyanobacterial toxic and bioactive peptides in freshwater bodies of Greece: Concentrations, occurrence patterns, and implications for human health. Mar. Drugs 2015, 13, 6319–6335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 2012, 46, 1394–1407. [Google Scholar] [CrossRef]
- Hayes, N.M.; Haig, H.A.; Simpson, G.L.; Leavitt, P.R. Effects of lake warming on the seasonal risk of toxic cyanobacteria exposure. Limnol. Oceanogr. Lett. 2020, 5, 393–402. [Google Scholar] [CrossRef]
- Beaulieu, M.; Pick, F.; Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 2013, 58, 1736–1746. [Google Scholar] [CrossRef]
- Gkelis, S.; Papadimitriou, T.; Zaoutsos, N.; Leonardos, I. Anthropogenic and climate-induced change favors toxic cyanobacteria blooms: Evidence from monitoring a highly eutrophic, urban Mediterranean lake. Harmful Algae 2014, 39, 322–333. [Google Scholar] [CrossRef]
- Rigosi, A.; Carey, C.C.; Ibelings, B.W.; Brookes, J.D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Ocean. 2014, 59, 99–144. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, B.M.; Mehner, T.; Adrian, R. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, C.M.; Alin, S.R.; Plisnier, P.-D.; Cohen, A.S.; McKee, B.A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 2003, 424, 766–768. [Google Scholar] [CrossRef] [PubMed]
- Schindler, D.W.; Bayley, S.E.; Parker, B.R.; Beaty, K.G.; Cruikshank, D.R.; Fee, E.J.; Schindler, E.U.; Stainton, M.P. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnol. Oceanogr. 1996, 41, 1004–1017. [Google Scholar] [CrossRef]
- Cremona, F.; Agasild, H.; Haberman, J.; Zingel, P.; Nõges, P.; Nõges, T.; Laas, A. How warming and other stressors affect zooplankton abundance, biomass and community composition in shallow eutrophic lakes. Clim. Chang. 2020, 159, 565–580. [Google Scholar] [CrossRef]
- Laird, K.R.; Cumming, B.F.; Wunsam, S.; Rusak, J.A.; Oglesby, R.J.; Fritz, S.C.; Leavitt, P.R. Lake sediments record large-scale shifts in moisture regimes across the northern prairies of North America during the past two millennia. Proc. Natl. Acad. Sci. USA 2003, 100, 2483–2488. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ming, Q.; Shi, Z.; Chen, G.; Niu, J.; Lei, G.; Chang, F.; Zhang, H. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China. PLoS ONE 2014, 9, e102167. [Google Scholar] [CrossRef] [PubMed]
- Papastergiadou, E.; Kagalou, I.; Stefanidis, K.; Retalis, A.; Leonardos, I. Effects of anthropogenic influences on the trophic state, land uses and aquatic vegetation in a shallow Mediterranean lake: Implications for restoration. Water Resour. Manag. 2010, 24, 415–435. [Google Scholar] [CrossRef]
Lake | Latitude | Longitude | Altitude (m a.s.l) | Surface Area (km2) | Max Depth (m) |
---|---|---|---|---|---|
Amvrakia | 38°45′ | 21°11′ | 28 | 14.5 | 53 |
Chimaditida | 40°36′ | 21°33′ | 593 | 10.1 | 3.5 |
Doirani | 41°12′ | 22°45′ | 148 | 43.1 | 10 |
Iliki | 38°24′ | 23°16′ | 78 | 19.1 | - |
Kastoria | 40°30′ | 21°18′ | 629 | 30.0 | 9.1 |
Kerkini | 41°11′ | 23°09′ | 30 | 70 | 10 |
Koronia | 40°65′ | 23°65′ | 100 | 42.5 | 2 |
Lysimachia | 38°34′ | 21°28′ | 16 | 13.5 | 9 |
Megali Prespa | 40°46′ | 21°01′ | 852 | 266.0 | 55 |
Mikri Prespa | 40°45′ | 21°05′ | 853 | 53.0 | 8.4 |
Ozeros | 38°39′ | 21°13′ | 22 | 9.4 | 6.1 |
Pamvotida | 39°40′ | 20°53′ | 470 | 22.0 | 11 |
Petron | 40°45′ | 21°45′ | 527 | 14.4 | 5 |
Stymfalia | 37°51′ | 22°27′ | 600 | 3.5 | <2.5 |
Trichonida | 38°34′ | 21°28′ | 18 | 96.5 | 58 |
Vegoritida | 40°45′ | 21°45′ | 524 | 53.0 | 70 |
Volvi | 40°41′ | 23°20′ | 37 | 68.6 | 23.5 |
Zazari | 40°37′ | 21°33′ | 602 | 2.0 | 5.5 |
1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
Doirani | 12.42 | 11.39 | 13.48 | 12.74 | 11.82 | 14.15 | 13.13 | 12.51 | 14.14 | 13.92 | 13.25 | 14.64 |
Kerkini | 12.67 | 11.89 | 13.56 | 12.93 | 12.15 | 14.23 | 13.27 | 12.62 | 14.06 | 14.01 | 13.19 | 14.64 |
Volvi | 14.81 | 14.19 | 15.77 | 15.01 | 14.28 | 16.14 | 15.39 | 14.77 | 16.15 | 16.02 | 15.02 | 16.54 |
Koronia | 13.77 | 13.19 | 14.68 | 13.98 | 13.19 | 15.14 | 14.31 | 13.71 | 15.02 | 14.98 | 13.93 | 15.44 |
Megali Prespa | 13.89 | 13.39 | 14.46 | 13.93 | 13.18 | 15.11 | 14.33 | 13.66 | 14.94 | 14.76 | 14.14 | 15.27 |
Mikri Prespa | 8.78 | 8.11 | 9.3 | 8.78 | 7.96 | 10.24 | 9.28 | 8.48 | 10.11 | 9.95 | 9.31 | 10.31 |
Vegoritida | 9.31 | 8.54 | 10.11 | 9.43 | 8.37 | 10.9 | 9.81 | 8.8 | 10.93 | 10.58 | 9.78 | 11.16 |
Petron | 10.43 | 9.37 | 11.39 | 10.62 | 9.48 | 12.22 | 11.01 | 9.96 | 12.31 | 11.72 | 10.95 | 12.33 |
Chimaditida | 10.15 | 9.04 | 11.12 | 10.31 | 9.17 | 11.85 | 10.68 | 9.66 | 11.98 | 11.39 | 10.59 | 12.09 |
Zazari | 9.17 | 8.05 | 10.15 | 9.28 | 8.11 | 10.81 | 9.66 | 8.65 | 10.92 | 10.39 | 9.62 | 11.07 |
Kastoria | 9.68 | 8.65 | 10.49 | 9.64 | 8.48 | 11.12 | 10.22 | 9.3 | 11.31 | 10.96 | 10.12 | 11.51 |
Pamvotida | 11.47 | 10.92 | 12.01 | 11.46 | 10.45 | 12.44 | 11.91 | 11.19 | 12.61 | 12.47 | 11.77 | 12.74 |
Amvrakia | 15.91 | 15.35 | 16.55 | 15.91 | 15.01 | 16.89 | 16.26 | 15.68 | 16.78 | 16.69 | 16.09 | 17.24 |
Ozeros | 15.52 | 15.02 | 16.12 | 15.53 | 14.71 | 16.47 | 15.9 | 15.3 | 16.47 | 16.32 | 15.7 | 16.83 |
Trichonida | 13.85 | 13.34 | 14.39 | 13.85 | 13.05 | 14.83 | 14.22 | 13.53 | 14.76 | 14.64 | 13.99 | 15.03 |
Lysimachia | 15.22 | 14.78 | 15.71 | 15.21 | 14.47 | 16.1 | 15.69 | 15.1 | 16.26 | 16.12 | 15.49 | 16.58 |
Iliki | 15.57 | 14.92 | 16.42 | 15.66 | 14.91 | 16.51 | 16.05 | 15.39 | 16.98 | 16.38 | 15.23 | 16.99 |
Stymfalia | 12.56 | 12.07 | 13.23 | 12.57 | 11.73 | 13.47 | 12.96 | 12.36 | 13.61 | 13.28 | 12.22 | 13.69 |
R-sq. adj | 0.445 | Deviance Explained | 45.8% |
---|---|---|---|
Lake | Approximate Significance of Smooth Terms | ||
s (Time) | s (Season) | ti (Time ∗ Season) | |
Amvrakia | p < 0.001 | p < 0.001 | p = 0.004 |
Chimaditida | p = 0.039 | p < 0.001 | NS |
Doirani | p = 0.054 | p < 0.001 | NS |
Iliki | NS | p < 0.001 | NS |
Kastoria | NS | p < 0.001 | NS |
Kerkini | NS | p < 0.001 | NS |
Koronia | p = 0.076 | p = 0.008 | NS |
Lysimachia | p = 0.001 | p < 0.001 | p < 0.001 |
Megali Prespa | p = 0.065 | p < 0.001 | NS |
Mikri Prespa | p = 0.070 | p < 0.001 | NS |
Ozeros | p = 0.001 | p < 0.001 | p = 0.008 |
Pamvotida | p < 0.001 | p < 0.001 | NS |
Petron | p < 0.001 | p < 0.001 | NS |
Stymfalia | p = 0.044 | p < 0.001 | NS |
Trichonida | p = 0.005 | p < 0.001 | p = 0.001 |
Vegoritida | p = 0.094 | p < 0.001 | NS |
Volvi | NS | p < 0.001 | NS |
Zazari | p = 0.047 | p < 0.001 | NS |
1981–1990 | 1991–2000 | 2001–2010 | 2011–2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |
Doirani | 688 | 515 | 882 | 627 | 431 | 843 | 793 | 558 | 1071 | 774 | 452 | 1128 |
Kerkini | 668 | 518 | 837 | 629 | 387 | 871 | 745 | 506 | 887 | 736 | 425 | 1053 |
Volvi | 631 | 468 | 932 | 622 | 422 | 769 | 722 | 455 | 923 | 703 | 553 | 924 |
Koronia | 647 | 491 | 912 | 628 | 426 | 770 | 747 | 535 | 923 | 743 | 568 | 1014 |
Megali Prespa | 714 | 577 | 893 | 711 | 548 | 903 | 816 | 607 | 1062 | 818 | 638 | 1055 |
Mikri Prespa | 689 | 544 | 858 | 682 | 513 | 864 | 785 | 581 | 1006 | 790 | 619 | 1009 |
Vegoritida | 608 | 477 | 763 | 590 | 429 | 724 | 692 | 500 | 875 | 714 | 605 | 830 |
Petron | 624 | 495 | 751 | 607 | 452 | 738 | 711 | 517 | 927 | 751 | 627 | 865 |
Chimaditida | 624 | 485 | 749 | 610 | 465 | 750 | 716 | 520 | 939 | 765 | 638 | 912 |
Zazari | 604 | 467 | 733 | 593 | 448 | 736 | 691 | 499 | 891 | 729 | 604 | 880 |
Kastoria | 588 | 455 | 722 | 596 | 413 | 761 | 664 | 486 | 845 | 682 | 547 | 792 |
Pamvotida | 1082 | 883 | 1385 | 1102 | 861 | 1461 | 1287 | 965 | 1964 | 1300 | 855 | 1540 |
Amvrakia | 1143 | 971 | 1418 | 1081 | 767 | 1433 | 1269 | 950 | 1714 | 1325 | 823 | 1721 |
Ozeros | 1123 | 905 | 1136 | 1073 | 755 | 1425 | 1256 | 945 | 1610 | 1306 | 867 | 1705 |
Trichonida | 1150 | 931 | 1493 | 1100 | 781 | 1423 | 1283 | 883 | 1665 | 1296 | 899 | 1588 |
Lysimachia | 1182 | 960 | 1497 | 1114 | 793 | 1446 | 1307 | 927 | 1739 | 1336 | 845 | 1694 |
Iliki | 448 | 277 | 571 | 465 | 255 | 599 | 536 | 369 | 676 | 555 | 374 | 740 |
Stymfalia | 703 | 506 | 825 | 699 | 529 | 814 | 753 | 558 | 1012 | 773 | 642 | 1019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanidis, K.; Varlas, G.; Papadopoulos, A.; Dimitriou, E. Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece. Sustainability 2021, 13, 9908. https://doi.org/10.3390/su13179908
Stefanidis K, Varlas G, Papadopoulos A, Dimitriou E. Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece. Sustainability. 2021; 13(17):9908. https://doi.org/10.3390/su13179908
Chicago/Turabian StyleStefanidis, Konstantinos, George Varlas, Anastasios Papadopoulos, and Elias Dimitriou. 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece" Sustainability 13, no. 17: 9908. https://doi.org/10.3390/su13179908
APA StyleStefanidis, K., Varlas, G., Papadopoulos, A., & Dimitriou, E. (2021). Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece. Sustainability, 13(17), 9908. https://doi.org/10.3390/su13179908