Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance
"> Figure 1
<p>Dehazing results on remote sensing hazy images. The hazy images are on the left and the dehazed images are on the right of the figure.</p> "> Figure 2
<p>Framework of our innovation. (<b>A</b>) Perlin Noise Mask pre-training; (<b>B</b>) SSA-SKIPAT generator; (<b>C</b>) Rotation Loss.</p> "> Figure 3
<p>Framework of the proposed SPRGAN. (<b>A</b>) SSA-SKIPAT generator; (<b>B</b>) Spatial-Spectrum Attention SKIPAT block; (<b>C</b>) Spectrum encoder block; (<b>D</b>) Spatial SKIPAT block; (<b>E</b>) SKIPAT block.</p> "> Figure 4
<p>The Impact of Perlin Noise Masks on images. We generate Perlin Noise Masks with varying <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>e</mi> </mrow> </semantics></math> values (150, 300, 500, 700).</p> "> Figure 5
<p>Average PSNR (<b>a</b>) and SSIM (<b>b</b>) results of dehazed images which are generated by models with different <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> <mi>e</mi> </mrow> </semantics></math>, which denote the scale of cloud generated by Perlin Noise Masks.</p> "> Figure 6
<p>Average PSNR (<b>a</b>) and SSIM (<b>b</b>) results of dehazed images which are generated by models with different <math display="inline"><semantics> <msub> <mi>λ</mi> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </msub> </semantics></math>.</p> "> Figure 7
<p>Qualitative results on RSD datasets. We test our dataset on three baseline models including ours. The resulting order in each row is hazy image, CycleGAN [<a href="#B7-remotesensing-16-02707" class="html-bibr">7</a>] result, UVCGAN [<a href="#B9-remotesensing-16-02707" class="html-bibr">9</a>] result, our result and the Ground Truth.</p> "> Figure 8
<p>Qualitative results on RICE datasets. We selected 6 images of different scenes (mountains, forests, urban areas, deserts, coasts, deep sea (from top to bottom)) from the RICE dataset to show the performance of the three models. The result order in each row is hazy image, DCP [<a href="#B4-remotesensing-16-02707" class="html-bibr">4</a>] result, DehazeNet [<a href="#B19-remotesensing-16-02707" class="html-bibr">19</a>] result, our result and Ground Truth.</p> "> Figure 9
<p>Qualitative results on RSD datasets. We test real hazy images on three baseline models, including ours. The resulting order in each row is hazy image, CycleGAN [<a href="#B7-remotesensing-16-02707" class="html-bibr">7</a>] result, UVCGAN [<a href="#B9-remotesensing-16-02707" class="html-bibr">9</a>] result and our result.</p> "> Figure 10
<p>Object detection results on dehazing results. We tested the dehazing results with the baseline detector YOLOv8l [<a href="#B43-remotesensing-16-02707" class="html-bibr">43</a>]. The result order in each row is hazy image, CycleGAN [<a href="#B7-remotesensing-16-02707" class="html-bibr">7</a>] result, UVCGAN [<a href="#B9-remotesensing-16-02707" class="html-bibr">9</a>] result, our result and the Ground Truth.</p> "> Figure 11
<p>Comparative qualitative results between single and cross dataset experiments via SPAGAN.</p> "> Figure 12
<p>Qualitative results of the ablation study.</p> "> Figure 13
<p>Evolution of average PSNR and SSIM with epochs.</p> "> Figure 14
<p><b>Visual comparison of dehazing results.</b> (<b>a</b>) Original hazy images. (<b>b</b>) Dehazed images by our method.</p> ">
Abstract
:1. Introduction
- Proposing SPRGAN with Skip-Attention: The research introduces an advanced model, SPRGAN, which incorporates a Spatial-Spectrum Attention (SSA) mechanism with Skip-Attention (SKIPAT). The skip-attention mechanism reduces the calculation complexity of the model, while the SSA mechanism enhances the model’s ability to interpret and process spectral information in hazy images.
- Proposing of PNM for model pre-training: this research introduces a novel approach by incorporating the Perlin Noise Mask (PNM) pre-training method during model pre-training, which effectively simulates hazy conditions, empowering the model to concurrently strengthen its super-resolution and dehazing capabilities.
- Integration of RT Loss within the Transformer Architecture: the incorporation of RT Loss into the Transformer architecture, which enhances the core objectives of the SPRGAN model, is a pioneering aspect of this research, further justifying the selection of this enhanced framework for remote sensing image dehazing.
- Extensive experimental validation: In order to validate the effectiveness of the proposed methods, extensive experiments were conducted. These experiments provide critical insights into the performance and robustness of the SPRGAN, PNM pre-training, and RT Loss integration. We also test the processing efficiency of our model on a widely used edge computing platform.
2. Related Works
2.1. Prior Information-Based Methods
2.2. Learning-Based Methods
2.2.1. Supervised Learning Methods
2.2.2. Semi-Supervised Learning Methods
3. Proposed Method
3.1. SSA-Enhanced Generator with Skip-Attention
3.2. Self-Supervised Pre-Training with Perlin Noise-Based Masks (PNM)
3.3. Enhanced Objective with Rotation Loss
4. Experiments and Results
4.1. Datasets
4.2. Experiment Details
4.2.1. Training Strategy
4.2.2. Parameter Setting
4.2.3. Competing Models
4.2.4. Evaluation Metrics
4.3. Comparison with State-of-the-Art Approach
4.3.1. Qualitative Results
4.3.2. Quantitative Results
4.4. Object Detection Results
4.4.1. Qualitative Results
4.4.2. Quantitative Results
4.5. Cross-Dataset Experiments
4.5.1. Qualitative Results
4.5.2. Quantitative Results
4.6. Results on Ablation Study
4.6.1. Qualitative Results
4.6.2. Quantitative Results
4.7. Convergence and Efficiency of Proposed Algorithm
4.8. Testing the Dehazing Effect at Different Angles
4.9. Visual Comparison of Dehazing Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, T.; Wang, Y.; Li, Z.; Gao, Y.; Chen, C.; Feng, H.; Zhao, Z. Ship Detection with Deep Learning in Optical Remote-Sensing Images: A Survey of Challenges and Advances. Remote Sens. 2024, 16, 1145. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vision Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Arici, T.; Dikbas, S.; Altunbasak, Y. A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 2009, 18, 1921–1935. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Mai, J.; Shao, L. A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar] [PubMed]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single image dehazing via multi-scale convolutional neural networks. In Proceedings of the Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part II 14. Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 154–169. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Zheng, Y.; Su, J.; Zhang, S.; Tao, M.; Wang, L. Dehaze-AGGAN: Unpaired remote sensing image dehazing using enhanced attention-guide generative adversarial networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Torbunov, D.; Huang, Y.; Yu, H.; Huang, J.; Yoo, S.; Lin, M.; Viren, B.; Ren, Y. Uvcgan: Unet vision transformer cycle-consistent gan for unpaired image-to-image translation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 702–712. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Non-local image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1674–1682. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Air-light estimation using haze-lines. In Proceedings of the 2017 IEEE International Conference on Computational Photography (ICCP), Stanford, CA, USA, 12–14 May 2017; pp. 1–9. [Google Scholar]
- Makarau, A.; Richter, R.; Müller, R.; Reinartz, P. Haze detection and removal in remotely sensed multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5895–5905. [Google Scholar] [CrossRef]
- Wei, J.; Wu, Y.; Chen, L.; Yang, K.; Lian, R. Zero-shot remote sensing image dehazing based on a re-degradation haze imaging model. Remote Sens. 2022, 14, 5737. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Chen, J.; Wu, F.; Sheng, J.; Hong, W. Sparse Inverse Synthetic Aperture Radar Imaging Using Structured Low-Rank Method. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Guo, J.; Yang, J.; Yue, H.; Tan, H.; Hou, C.; Li, K. RSDehazeNet: Dehazing network with channel refinement for multispectral remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2535–2549. [Google Scholar] [CrossRef]
- Guo, J.; Yang, J.; Yue, H.; Hou, C.; Li, K. Landsat-8 OLI Multispectral Image Dehazing Based on Optimized Atmospheric Scattering Model. IEEE Trans. Geosci. Remote Sens. 2020, 59, 10255–10265. [Google Scholar] [CrossRef]
- Shen, D.; Liu, J.; Wu, Z.; Yang, J.; Xiao, L. ADMM-HFNet: A Matrix Decomposition-Based Deep Approach for Hyperspectral Image Fusion. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Yuan, J.; Cai, Z.; Cao, W. TEBCF: Real-World Underwater Image Texture Enhancement Model Based on Blurriness and Color Fusion. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef]
- Zhang, H.; Patel, V.M. Densely connected pyramid dehazing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3194–3203. [Google Scholar]
- Zheng, J.; Liu, X.Y.; Wang, X. Single image cloud removal using U-Net and generative adversarial networks. IEEE Trans. Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar]
- Li, R.; Pan, J.; Li, Z.; Tang, J. Single image dehazing via conditional generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8202–8211. [Google Scholar]
- Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced pix2pix dehazing network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8160–8168. [Google Scholar]
- Ren, W.; Ma, L.; Zhang, J.; Pan, J.; Cao, X.; Liu, W.; Yang, M.H. Gated fusion network for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3253–3261. [Google Scholar]
- Zhang, X. Research on Remote Sensing Image De-haze Based on GAN. J. Signal Process. Syst. 2021, 94, 305–313. [Google Scholar] [CrossRef]
- Tian, X.; Li, K.; Wang, Z.; Ma, J. VP-Net: An Interpretable Deep Network for Variational Pansharpening. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, Y.; Wei, H.; Li, Y.; Qi, G.; Mazur, N.; Li, Y.; Li, P. Atmospheric light estimation based remote sensing image dehazing. Remote Sens. 2021, 13, 2432. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Dualgan: Unsupervised dual learning for image-to-image translation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2849–2857. [Google Scholar]
- Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1857–1865. [Google Scholar]
- Chen, X.; Chen, S.; Xu, T.; Yin, B.; Peng, J.; Mei, X.; Li, H. SMAPGAN: Generative Adversarial Network-Based Semisupervised Styled Map Tile Generation Method. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4388–4406. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Xing, E.P. Generative semantic manipulation with contrasting gan. arXiv 2017, arXiv:1708.00315. [Google Scholar]
- Chen, X.; Xu, C.; Yang, X.; Tao, D. Attention-gan for object transfiguration in wild images. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 164–180. [Google Scholar]
- Tang, H.; Liu, H.; Xu, D.; Torr, P.H.; Sebe, N. Attentiongan: Unpaired image-to-image translation using attention-guided generative adversarial networks. arXiv 2019, arXiv:1911.11897. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Venkataramanan, S.; Ghodrati, A.; Asano, Y.M.; Porikli, F.; Habibian, A. Skip-attention: Improving vision transformers by paying less attention. arXiv 2023, arXiv:2301.02240. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 2018, 28, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xu, G.; Wang, X.; Wang, Y.; Sun, X.; Fu, K. A remote sensing image dataset for cloud removal. arXiv 2019, arXiv:1901.00600. [Google Scholar]
- Engin, D.; Genç, A.; Kemal Ekenel, H. Cycle-dehaze: Enhanced cyclegan for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 825–833. [Google Scholar]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Ultralytics. Ultralytics YOLOv8. Available online: https://docs.ultralytics.com/ (accessed on 21 September 2023).
- Yang, Y.; Wang, X.; Song, M.; Yuan, J.; Tao, D. Spagan: Shortest path graph attention network. arXiv 2021, arXiv:2101.03464. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
Methods | Metrics | Test |
---|---|---|
None | PSNR | SSIM | 13.22 | 0.6523 |
CycleGAN [7] | PSNR | SSIM | 23.67 | 0.8211 |
Dehaze-AGGAN [8] | PSNR | SSIM | 24.11 | 0.8356 |
UVCGAN [9] | PSNR | SSIM | 26.31 | 0.8641 |
Proposed | PSNR | SSIM | 28.31 | 0.8806 |
Methods | mAP (%) | Gain | mAP 50–95 (%) | Gain |
---|---|---|---|---|
None | 98.49 | - | 93.41 | - |
CycleGAN [7] | 98.60 | 0.11 | 94.36 | 0.95 |
Dehaze-AGGAN [8] | 98.72 | 0.23 | 94.71 | 1.30 |
UVCGAN [9] | 99.28 | 0.79 | 95.81 | 2.40 |
Proposed | 99.43 | 0.94 | 96.12 | 2.71 |
Ground Truth | 99.89 | 1.40 | 97.01 | 3.60 |
Methods | Metrics | Test |
---|---|---|
None | PSNR | SSIM | 16.63 | 0.7391 |
DCP [4] | PSNR | SSIM | 17.96 | 0.8427 |
CycleGAN [7] | PSNR | SSIM | 28.12 | 0.9189 |
DehazeNet [19] | PSNR | SSIM | 29.48 | 0.9210 |
Dehaze-AGGAN [8] | PSNR | SSIM | 30.19 | 0.9356 |
SPAGAN [44] | PSNR | SSIM | 30.23 | 0.9572 |
pix2pix [45] | PSNR | SSIM | 31.03 | 0.9124 |
UVCGAN [9] | PSNR | SSIM | 32.09 | 0.9491 |
Proposed | PSNR | SSIM | 33.42 | 0.9629 |
Methods | Metrics | Test |
---|---|---|
RSD-RSD | PSNR | SSIM | 28.31 | 0.8806 |
RESIDE-RSD | PSNR | SSIM | 27.48 | 0.8654 |
RESIDE-RESIDE | PSNR | SSIM | 27.19 | 0.8776 |
RSD-RESIDE | PSNR | SSIM | 26.90 | 0.8612 |
Methods | SKIPAT | PNM | RT Loss | Metrics | Test |
---|---|---|---|---|---|
Model A | PSNR | SSIM | 26.41 | 0.8641 | |||
Model B | ✔ | PSNR | SSIM | 27.43 | 0.8658 | ||
Model C | ✔ | ✔ | PSNR | SSIM | 28.10 | 0.8674 | |
Model D | ✔ | ✔ | PSNR | SSIM | 28.14 | 0.8768 | |
Proposed | ✔ | ✔ | ✔ | PSNR | SSIM | 28.31 | 0.8806 |
Model Name | Training Time (h) | Para. | PSNR | SSIM |
---|---|---|---|
CycleGAN [7] | 40 | 55M | 23.67 | 0.8211 |
Dehaze-AGGAN [8] | 45 | 60M | 24.11 | 0.8356 |
UVCGAN [9] | 60 | 68M | 26.31 | 0.8641 |
Proposed | 48 | 56M | 28.31 | 0.8806 |
Model Name | FPS |
---|---|
Proposed (without SKIPAT) | 3.43 |
Proposed (with SKIPAT) | 14.35 |
Proposed (with SKIPAT and TensorRT) | 18.18 |
Methods | Metrics | PSNR | SSIM |
---|---|---|---|
Without RT Loss | 0 degree | 28.10 | 0.8674 |
90 degree | 27.48 | 0.8654 | |
180 degree | 27.19 | 0.8676 | |
270 degree | 26.90 | 0.8612 | |
With RT Loss | 0 degree | 28.31 | 0.8806 |
90 degree | 27.99 | 0.8768 | |
180 degree | 28.21 | 0.8801 | |
270 degree | 27.83 | 0.8765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Su, J.; Zhang, S.; Tao, M.; Wang, L. Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance. Remote Sens. 2024, 16, 2707. https://doi.org/10.3390/rs16152707
Zheng Y, Su J, Zhang S, Tao M, Wang L. Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance. Remote Sensing. 2024; 16(15):2707. https://doi.org/10.3390/rs16152707
Chicago/Turabian StyleZheng, Yitong, Jia Su, Shun Zhang, Mingliang Tao, and Ling Wang. 2024. "Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance" Remote Sensing 16, no. 15: 2707. https://doi.org/10.3390/rs16152707
APA StyleZheng, Y., Su, J., Zhang, S., Tao, M., & Wang, L. (2024). Unpaired Remote Sensing Image Dehazing Using Enhanced Skip Attention-Based Generative Adversarial Networks with Rotation Invariance. Remote Sensing, 16(15), 2707. https://doi.org/10.3390/rs16152707