The Detection of Green Tide Biomass by Remote Sensing Images and In Situ Measurement in the Yellow Sea of China
<p>Map of the study area: southern Yellow Sea of China (33°N~37°N, 119°E~123.5°E). Four remote sensing images were collected in this investigation to trace the macroalgae on the sea surface and to retrieve their features, which were acquired from July 4th to July 6th of 2016, off the east coast of Qingdao, Shandong province of China, where macroalgae has bloomed frequently in summer in the past decade. Two of them are SAR images of C, X band onboard the Radarsat-2 and CosmoSkymed-1 satellite, respectively. Two of them are CCD images onboard the HJ-1A and HJ-1B satellites, respectively.</p> "> Figure 2
<p>The zoom-in graph of the study area. Eight sampling stations across the coverage of Radarsat-2 image (#1) are depicted, which are located near the east coast of Qingdao, China, and coded with the sampling sequence of the in situ experiment. Details about all the sampling spots can be referred to in <a href="#remotesensing-15-03625-t002" class="html-table">Table 2</a>.</p> "> Figure 3
<p>The on-site investigation of green tide on the Yellow Sea of China. (<b>a</b>) A 30 m-width green algae patch zigzagged for thousands of meters floating on the sea surface was observed aboard the cruise. (<b>b</b>) The sampling of green algae was implemented in the on-site cruise experiment with a square container for accurate abstraction of green algae in 1 m<sup>2</sup>.</p> "> Figure 4
<p>The time series remote sensing images of the Yellow Sea of China, east of the Qingdao Bay. (<b>a</b>) Cosmo-SkyMed-1 dual-pol SAR image (in VV pol, absolute calibrated before geo-referenced to the map projection, Enhanced Lee filtered, at 40° incidence angle) taken at 21:46:04 UTC 4 July 2016. The bright stripes indicate macroalgae while the dark region shows sea surface backscattered by the EM of the radar with a high incidence angle. The scale bar shows the value of NRCS in decibels. (<b>b</b>) Radarsat-2 quad-pol SAR image (in VV pol, absolute calibrated before geo-referenced to the map projection, Lee Sigma filtered, at 26° incidence angle) taken at 22:07:08 UTC 4 July 2016. The white patches refer to the green algae on the sea surface due to its high level of radar backscattering. The dark stripe in the middle of the image is interpreted as an oil spill because this kind of pollutant will dampen the ripples on the sea surface, which are responsible for the resonance with the incidence EM of radar. The marine surface accounts for a middle-level of NRCS value, as shown in the rest of the image. The scale bar shows the value of NRCS in decibels. (<b>c</b>) The NDVI index image of HJ-1A CCD data by atmospheric correction processing, taken at 02:20:54 UTC 5 July 2016. The macroalgae turn out to be bright patches of its high reflectance difference between the near-infrared and red channel. Over half of the image area is displayed as gray-dark pixels as most of the sea is covered by clouds, resulting in almost equal high reflectance of either near-infrared or red channel. The scale bar shows the value of NDVI. (<b>d</b>) The pseudo-color composite image (RGB: 432) of HJ-1B CCD data by atmospheric correction processing, taken at 02:12:15 UTC 6 July 2016. The macroalgae are depicted as magenta patches because of the relatively high level of reflectance in the near-infrared (R channel) and green (B channel).</p> "> Figure 4 Cont.
<p>The time series remote sensing images of the Yellow Sea of China, east of the Qingdao Bay. (<b>a</b>) Cosmo-SkyMed-1 dual-pol SAR image (in VV pol, absolute calibrated before geo-referenced to the map projection, Enhanced Lee filtered, at 40° incidence angle) taken at 21:46:04 UTC 4 July 2016. The bright stripes indicate macroalgae while the dark region shows sea surface backscattered by the EM of the radar with a high incidence angle. The scale bar shows the value of NRCS in decibels. (<b>b</b>) Radarsat-2 quad-pol SAR image (in VV pol, absolute calibrated before geo-referenced to the map projection, Lee Sigma filtered, at 26° incidence angle) taken at 22:07:08 UTC 4 July 2016. The white patches refer to the green algae on the sea surface due to its high level of radar backscattering. The dark stripe in the middle of the image is interpreted as an oil spill because this kind of pollutant will dampen the ripples on the sea surface, which are responsible for the resonance with the incidence EM of radar. The marine surface accounts for a middle-level of NRCS value, as shown in the rest of the image. The scale bar shows the value of NRCS in decibels. (<b>c</b>) The NDVI index image of HJ-1A CCD data by atmospheric correction processing, taken at 02:20:54 UTC 5 July 2016. The macroalgae turn out to be bright patches of its high reflectance difference between the near-infrared and red channel. Over half of the image area is displayed as gray-dark pixels as most of the sea is covered by clouds, resulting in almost equal high reflectance of either near-infrared or red channel. The scale bar shows the value of NDVI. (<b>d</b>) The pseudo-color composite image (RGB: 432) of HJ-1B CCD data by atmospheric correction processing, taken at 02:12:15 UTC 6 July 2016. The macroalgae are depicted as magenta patches because of the relatively high level of reflectance in the near-infrared (R channel) and green (B channel).</p> "> Figure 5
<p>The positions of macroalgae patches on the sea surface, which were recorded by various type of satellites (Green, red, and blue patches correspond to macroalgae detected by Cosmo-SkyMed, Radarsat-2, and HJ-1A satellites, respectively).</p> "> Figure 6
<p>The scatterplot of floating distance versus floating time of green algae on the sea surface. The gray diamond spots denote the sampled patches of green algae, 65 in total. The solid black line refers to the linear regression, and R<sup>2</sup> represents the coefficient of determination. There are two referenced times, 0.34 h and 4.2 h, in this investigation, which are determined by the difference of imaging time between the Cosmo-SkyMed/Radarsat-2 and Cosmo-SkyMed/HJ-1A satellites, respectively.</p> "> Figure 7
<p>The fully polarized SAR image, which was captured by Radarsat-2 at 22:07 UTC 4 July 2016, shows the mix-polluted marine surface of the Yellow Sea of China. The images (<b>a</b>–<b>d</b>) correspond to the four components of scattering matrix S, i.e.,<math display="inline"><semantics><mrow><mo> </mo><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>HH</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, <math display="inline"><semantics><mrow><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>HV</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, <math display="inline"><semantics><mrow><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>VH</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, and <math display="inline"><semantics><mrow><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>VV</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, respectively. The color-coded image (<b>e</b>) is composed of the three real diagonal elements of the coherency matrix <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mn>3</mn></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>: R@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>22</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, G@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>33</mn></mrow></msub></mrow></mfenced><mo>〉</mo><mo>,</mo></mrow></semantics></math> and B@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>11</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, respectively. The composite color image (<b>f</b>), on the other hand, is composed of the covariance matrix <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>: R@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>11</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, G@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>22</mn></mrow></msub></mrow></mfenced><mo>〉</mo><mo>,</mo></mrow></semantics></math> and B@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>33</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, respectively. It can be seen from <a href="#remotesensing-15-03625-f007" class="html-fig">Figure 7</a> that the sea surface, which accounts for most area of the scene, is dominated by the single bounce scattering, while co-pol is greater than cross-pol and VV is greater than HH polarization, according to (<b>e</b>). The green algae, which are interpreted as the white patches on the sea surface, correspond to a hybrid scattering mechanism. Both the surface scattering and the depolarized scattering (also known as volume scattering) were observed because a much stronger response in the green channel (corresponds to <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>33</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math> for (<b>e</b>) or corresponds to <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>22</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math> for (<b>f</b>)) was observed, compared to the open water surface. In addition, two co-pol responses are strong enough, whereas no significant difference is found between VV and HH channels for the floating biomass, according to (<b>f</b>). On the contrary, the oil spill, which is located in the upper center of the images, shows no dominant scattering mechanisms according to (<b>e</b>), and backscatters very low in all of the polarization channels according to (<b>f</b>).</p> "> Figure 7 Cont.
<p>The fully polarized SAR image, which was captured by Radarsat-2 at 22:07 UTC 4 July 2016, shows the mix-polluted marine surface of the Yellow Sea of China. The images (<b>a</b>–<b>d</b>) correspond to the four components of scattering matrix S, i.e.,<math display="inline"><semantics><mrow><mo> </mo><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>HH</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, <math display="inline"><semantics><mrow><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>HV</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, <math display="inline"><semantics><mrow><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>VH</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, and <math display="inline"><semantics><mrow><mfenced close="|" open="|"><mrow><msub><mi mathvariant="normal">S</mi><mrow><mi>VV</mi></mrow></msub></mrow></mfenced></mrow></semantics></math>, respectively. The color-coded image (<b>e</b>) is composed of the three real diagonal elements of the coherency matrix <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mn>3</mn></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>: R@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>22</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, G@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>33</mn></mrow></msub></mrow></mfenced><mo>〉</mo><mo>,</mo></mrow></semantics></math> and B@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>11</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, respectively. The composite color image (<b>f</b>), on the other hand, is composed of the covariance matrix <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>: R@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>11</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, G@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>22</mn></mrow></msub></mrow></mfenced><mo>〉</mo><mo>,</mo></mrow></semantics></math> and B@<math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>33</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math>, respectively. It can be seen from <a href="#remotesensing-15-03625-f007" class="html-fig">Figure 7</a> that the sea surface, which accounts for most area of the scene, is dominated by the single bounce scattering, while co-pol is greater than cross-pol and VV is greater than HH polarization, according to (<b>e</b>). The green algae, which are interpreted as the white patches on the sea surface, correspond to a hybrid scattering mechanism. Both the surface scattering and the depolarized scattering (also known as volume scattering) were observed because a much stronger response in the green channel (corresponds to <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">T</mi><mrow><mn>33</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math> for (<b>e</b>) or corresponds to <math display="inline"><semantics><mrow><mo>〈</mo><mfenced close="]" open="["><mrow><msub><mi mathvariant="normal">C</mi><mrow><mn>22</mn></mrow></msub></mrow></mfenced><mo>〉</mo></mrow></semantics></math> for (<b>f</b>)) was observed, compared to the open water surface. In addition, two co-pol responses are strong enough, whereas no significant difference is found between VV and HH channels for the floating biomass, according to (<b>f</b>). On the contrary, the oil spill, which is located in the upper center of the images, shows no dominant scattering mechanisms according to (<b>e</b>), and backscatters very low in all of the polarization channels according to (<b>f</b>).</p> "> Figure 8
<p>Co-pol and cross-pol polarimetric response plots for macroalgae (<b>a</b>), oil spill (<b>b</b>), and open water (<b>c</b>), respectively, that were processed by Polarimetric Workstation Software Version 5.4 (PWS V5.4, ©CCRS).</p> "> Figure 8 Cont.
<p>Co-pol and cross-pol polarimetric response plots for macroalgae (<b>a</b>), oil spill (<b>b</b>), and open water (<b>c</b>), respectively, that were processed by Polarimetric Workstation Software Version 5.4 (PWS V5.4, ©CCRS).</p> "> Figure 9
<p>The map of NRCS (in dB) in six polarimetric channel for Macroalgae (blue diamond line), open water (green square line), and oil spill (red circle line), respectively.</p> "> Figure 10
<p>The scatterplot of wet biomass per area (kg/m<sup>2</sup>) versus FAIPS. The gray diamond spots denote the macroalgae samples served as evaluation in this experiment, with eight in total. The solid black line refers to the exponential regression, and R<sup>2</sup> represents the coefficient of determination.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. SAR Images
2.3. Optical Images
2.4. Synchronization Campaign Experiment
3. Experiment and Results
3.1. Tracing MABs by Diversified Time Series Images
3.2. Features of Macroalgae versus Oil Spills in SAR Image
3.3. Floating Algae Index of Polarimetric SAR
3.4. Floating Algae Biomass Evaluation Model
4. Discussions
4.1. Challenge of the Synchronization Experiment
4.2. Macroalgae Biomass Assessment by Means of Remote Sensing Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gade, M.; Rud, O.; Barale, V.; Snaith, H.M.; Jolly, G.W. Multisensor Studies of Oceanic Phaenomena in European Marginal Waters: Algae Blooms in the Baltic Sea and a River Plume in the Mediterranean. Eur. Space Agency 2000, 114, 1844–1855. [Google Scholar]
- Garcia, R.A.; Fearns, P.; Keesing, J.K.; Liu, D. Quantification of Floating Macroalgae Blooms Using the Scaled Algae Index. J. Geophys. Res. Ocean. 2013, 118, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Keesing, J.K.; Liu, D.; Fearns, P.; Garcia, R. Inter- and Intra-Annual Patterns of Ulva Prolifera Green Tides in the Yellow Sea during 2007–2009, Their Origin and Relationship to the Expansion of Coastal Seaweed Aquaculture in China. Mar. Pollut. Bull. 2011, 62, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shao, Y.; Qi, X.; Tian, W.; Wen, B. Natural Marine Oil Seepage Detection and Evaluation with SAR. In Proceedings of the Sixth International Symposium on Digital Earth: Data Processing and Applications, Beijing, China, 9–12 September 2009; Volume 7841, p. 78411L. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; Dong, Z.; Zhen, Y.; Di, B.; Shi, Y.; Fearns, P.; Shi, P. Recurrence of the World’s Largest Green-Tide in 2009 in Yellow Sea, China: Porphyra Yezoensis Aquaculture Rafts Confirmed as Nursery for Macroalgal Blooms. Mar. Pollut. Bull. 2010, 60, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M. Green Macroalgae Blooms in the Yellow Sea during the Spring and Summer of 2008. J. Geophys. Res. Ocean. 2009, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Son, S.H.; Wang, M.; Shon, J.K. Satellite Observations of Optical and Biological Properties in the Korean Dump Site of the Yellow Sea. Remote Sens. Environ. 2011, 115, 562–572. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C. Mapping Macroalgal Blooms in the Yellow Sea and East China Sea Using HJ-1 and Landsat Data: Application of a Virtual Baseline Reflectance Height Technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, H.; Ju, L.; Chen, M. Interannual Variability of Ulva Prolifera Blooms in the Yellow Sea. Int. J. Remote Sens. 2014, 35, 4099–4113. [Google Scholar] [CrossRef]
- Smetacek, V.; Zingone, A. Green and Golden Seaweed Tides on the Rise. Nature 2013, 504, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xiao, J.; Fan, S.; Li, Y.; Liu, X.; Liu, D. Who Made the World’s Largest Green Tide in China?—An Integrated Study on the Initiation and Early Development of the Green Tide in Yellow Sea. Limnol. Oceanogr. 2015, 60, 1105–1117. [Google Scholar] [CrossRef]
- Fan, S.; Fu, M.; Wang, Z.; Zhang, X.; Song, W.; Li, Y.; Liu, G.; Shi, X.; Wang, X.; Zhu, M. Temporal Variation of Green Macroalgal Assemblage on Porphyra Aquaculture Rafts in the Subei Shoal, China. Estuar. Coast. Shelf Sci. 2015, 163, 23–28. [Google Scholar] [CrossRef]
- Cui, T.W.; Zhang, J.; Sun, L.E.; Jia, Y.J.; Zhao, W.; Wang, Z.L.; Meng, J.M. Satellite Monitoring of Massive Green Macroalgae Bloom (GMB): Imaging Ability Comparison of Multi-Source Data and Drifting Velocity Estimation. Int. J. Remote Sens. 2012, 33, 5513–5527. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; He, P.; Wang, Z.; Shi, Y.; Wang, Y. The World’s Largest Macroalgal Bloom in the Yellow Sea, China: Formation and Implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Lyons, D.A.; Arvanitidis, C.; Blight, A.J.; Chatzinikolaou, E.; Guy-Haim, T.; Kotta, J.; Orav-Kotta, H.; Queirós, A.M.; Rilov, G.; Somerfield, P.J.; et al. Macroalgal Blooms Alter Community Structure and Primary Productivity in Marine Ecosystems. Glob. Chang. Biol. 2014, 20, 2712–2724. [Google Scholar] [CrossRef]
- Xing, Q.; Tosi, L.; Braga, F.; Gao, X.; Gao, M. Interpreting the Progressive Eutrophication behind the World’s Largest Macroalgal Blooms with Water Quality and Ocean Color Data. Nat. Hazards 2015, 78, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Xing, Q.; Hu, C.; Tang, D.; Tian, L.; Tang, S.; Wang, X.H.; Lou, M.; Gao, X. World’s Largest Macroalgal Blooms Altered Phytoplankton Biomass in Summer in the Yellow Sea: Satellite Observations. Remote Sens. 2015, 7, 12297–12313. [Google Scholar] [CrossRef] [Green Version]
- Xing, Q.; Wu, L.; Tian, L.; Cui, T.; Li, L.; Kong, F.; Gao, X.; Wu, M. Remote Sensing of Early-Stage Green Tide in the Yellow Sea for Floating-Macroalgae Collecting Campaign. Mar. Pollut. Bull. 2018, 133, 150–156. [Google Scholar] [CrossRef]
- Zhang, J.; Huo, Y.; Wu, H.; Yu, K.; Kim, J.K.; Yarish, C.; Qin, Y.; Liu, C.; Xu, R.; He, P. The Origin of the Ulva Macroalgal Blooms in the Yellow Sea in 2013. Mar. Pollut. Bull. 2014, 89, 276–283. [Google Scholar] [CrossRef]
- Jin, S.; Liu, Y.; Sun, C.; Wei, X.; Li, H.; Han, Z. A Study of the Environmental Factors Influencing the Growth Phases of Ulva Prolifera in the Southern Yellow Sea, China. Mar. Pollut. Bull. 2018, 135, 1016–1025. [Google Scholar] [CrossRef]
- Ye, N.h.; Zhang, X.w.; Mao, Y.z.; Liang, C.w.; Xu, D.; Zou, J.; Zhuang, Z.m.; Wang, Q.y. “Green Tides” Are Overwhelming the Coastline of Our Blue Planet: Taking the World’s Largest Example. Ecol. Res. 2011, 26, 477–485. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; Xing, Q.; Shi, P. World’s Largest Macroalgal Bloom Caused by Expansion of Seaweed Aquaculture in China. Mar. Pollut. Bull. 2009, 58, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Y.; Wang, Z.; Zhang, Q.; Cai, X. Cruise Observation of Ulva Prolifera Bloom in the Southern Yellow Sea, China. Estuar. Coast. Shelf Sci. 2015, 163, 17–22. [Google Scholar] [CrossRef]
- Liu, F.; Pang, S.; Chopin, T.; Gao, S.; Shan, T.; Zhao, X.; Li, J. Understanding the Recurrent Large-Scale Green Tide in the Yellow Sea: Temporal and Spatial Correlations between Multiple Geographical, Aquacultural and Biological Factors. Mar. Environ. Res. 2013, 83, 38–47. [Google Scholar] [CrossRef]
- Son, Y.B.; Choi, B.J.; Kim, Y.H.; Park, Y.G. Tracing Floating Green Algae Blooms in the Yellow Sea and the East China Sea Using GOCI Satellite Data and Lagrangian Transport Simulations. Remote Sens. Environ. 2015, 156, 21–33. [Google Scholar] [CrossRef]
- Shi, X.; Qi, M.; Tang, H.; Han, X. Spatial and Temporal Nutrient Variations in the Yellow Sea and Their Effects on Ulva Prolifera Blooms. Estuar. Coast. Shelf Sci. 2015, 163, 36–43. [Google Scholar] [CrossRef]
- Song, W.; Peng, K.; Xiao, J.; Li, Y.; Wang, Z.; Liu, X.; Fu, M.; Fan, S.; Zhu, M.; Li, R. Effects of Temperature on the Germination of Green Algae Micro-Propagules in Coastal Waters of the Subei Shoal, China. Estuar. Coast. Shelf Sci. 2015, 163, 63–68. [Google Scholar] [CrossRef]
- Xu, X. New Techniques for Radar Target Scattering Signature Measurement and Processing, 1st ed.; National Defense Industry Press of China: Beijing, China, 2017; ISBN 987-7-118-11418-8. [Google Scholar]
- Hedley, J.; Russell, B.; Randolph, K.; Dierssen, H. A Physics-Based Method for the Remote Sensing of Seagrasses. Remote Sens. Environ. 2016, 174, 134–147. [Google Scholar] [CrossRef]
- Lee, J.H.; Pang, I.C.; Moon, I.J.; Ryu, J.H. On Physical Factors That Controlled the Massive Green Tide Occurrence along the Southern Coast of the Shandong Peninsula in 2008: A Numerical Study Using a Particle-Tracking Experiment. J. Geophys. Res. Ocean. 2011, 116, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.J.; Liu, F.; Shan, T.F.; Xu, N.; Zhang, Z.H.; Gao, S.Q.; Chopin, T.; Sun, S. Tracking the Algal Origin of the Ulva Bloom in the Yellow Sea by a Combination of Molecular, Morphological and Physiological Analyses. Mar. Environ. Res. 2010, 69, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Roelfsema, C.M.; Lyons, M.; Kovacs, E.M.; Maxwell, P.; Saunders, M.I.; Samper-Villarreal, J.; Phinn, S.R. Multi-Temporal Mapping of Seagrass Cover, Species and Biomass: A Semi-Automated Object Based Image Analysis Approach. Remote Sens. Environ. 2014, 150, 172–187. [Google Scholar] [CrossRef]
- Bao, M.; Guan, W.; Yang, Y.; Cao, Z.; Chen, Q. Drifting Trajectories of Green Algae in the Western Yellow Sea during the Spring and Summer of 2012. Estuar. Coast. Shelf Sci. 2015, 163, 9–16. [Google Scholar] [CrossRef]
- Xu, F.; Gao, Z.; Jiang, X.; Shang, W.; Ning, J.; Song, D.; Ai, J. A UAV and S2A Data-Based Estimation of the Initial Biomass of Green Algae in the South Yellow Sea. Mar. Pollut. Bull. 2018, 128, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Xiao, J.; Zhang, X.; Zhou, J.; Wang, Z. A New Assessment of the Algal Biomass of Green Tide in the Yellow Sea. Mar. Pollut. Bull. 2022, 174, 113253. [Google Scholar] [CrossRef]
- Brisco, B.; Li, K.; Tedford, B.; Charbonneau, F.; Yun, S.; Murnaghan, K. Compact Polarimetry Assessment for Rice and Wetland Mapping. Int. J. Remote Sens. 2013, 34, 1949–1964. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Li, X.; Pichel, W.G.; Muller-Karger, F.E. Detection of Natural Oil Slicks in the NW Gulf of Mexico Using MODIS Imagery. Geophys. Res. Lett. 2009, 36, L01604. [Google Scholar] [CrossRef]
- Li, X. The First Sentinel-1 SAR Image of a Typhoon. Acta Oceanol. Sin. 2015, 34, 1–2. [Google Scholar] [CrossRef]
- Li, X.; Guo, H. Remote Sensing of the China Seas. Int. J. Remote Sens. 2014, 35, 3919–3925. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice Monitoring and Production Estimation Using Multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Nunziata, F.; Migliaccio, M.; Li, X. Sea Oil Slick Observation Using Hybrid-Polarity SAR Architecture. IEEE J. Ocean. Eng. 2015, 40, 426–440. [Google Scholar] [CrossRef]
- Tian, W.; Bian, X.; Shao, Y.; Zhang, Z. On the Detection of Oil Spill with China’s HJ-1C SAR Image. Aquat. Procedia 2015, 3, 144–150. [Google Scholar] [CrossRef]
- Tian, W.; Shao, Y.; Yuan, J.; Wang, S.; Liu, Y. An Experiment for Oil Spill Recognition Using RADARSAT-2 Image. Int. Geosci. Remote Sens. Symp. 2010, 2761–2764. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, W.G. Mapping Sea Surface Oil Slicks Using RADARSAT-2 Quad-Polarization SAR Image. Geophys. Res. Lett. 2011, 38, L10602. [Google Scholar] [CrossRef] [Green Version]
- Aslan, A.; Rahman, A.F.; Warren, M.W.; Robeson, S.M. Mapping Spatial Distribution and Biomass of Coastal Wetland Vegetation in Indonesian Papua by Combining Active and Passive Remotely Sensed Data. Remote Sens. Environ. 2016, 183, 65–81. [Google Scholar] [CrossRef]
- Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M.X. On the Recurrent Ulva Prolifera Blooms in the Yellow Sea and East China Sea. J. Geophys. Res. Ocean. 2010, 115, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Li, X.; Kong, F.; Yu, R.; Guo, Y.; Ren, Y. AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2782–2796. [Google Scholar] [CrossRef]
- Shen, H.; Perrie, W.; Liu, Q.; He, Y. Detection of Macroalgae Blooms by Complex SAR Imagery. Mar. Pollut. Bull. 2014, 78, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.S.; Alonso, L.; Moreno, J.F.; Cendrero Mateo, M.P.; de la Cruz, D.F.; Montoro, A. A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1057–1070. [Google Scholar] [CrossRef]
- Li, K.; Brisco, B.; Yun, S.; Touzi, R. Polarimetric Decomposition with RADARSAT-2 for Rice Mapping and Monitoring. Can. J. Remote Sens. 2012, 38, 169–179. [Google Scholar] [CrossRef]
- Song, D.; Ding, Y.; Li, X.; Zhang, B.; Xu, M. Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network. Remote Sens. 2017, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shao, Y.; Tian, W.; Bian, X. An Investigation into the Capability of Compact Polarized SAR to Classify Multi-Sea-Surface Characteristics. Can. J. Remote Sens. 2018, 44, 91–103. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Huang, P.; Liu, X.; Tan, W.; Fu, W.; Li, C. A Hybrid Polarimetric Target Decomposition Algorithm with Adaptive Volume Scattering Model. Remote Sens. 2022, 14, 2441. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, X.S.; Sato, M. Uniform Polarimetric Matrix Rotation Theory and Its Applications. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4756–4770. [Google Scholar] [CrossRef]
- Chen, S.W. Polarimetric Coherence Pattern: A Visualization and Characterization Tool for Pol SAR Data Investigation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 286–297. [Google Scholar] [CrossRef]
- Li, M.D.; Xiao, S.P.; Chen, S.W. Three-Dimension Polarimetric Correlation Pattern Interpretation Tool and Its Application. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Buono, A.; Nunziata, F.; Migliaccio, M. Analysis of Full and Compact Polarimetric SAR Features over the Sea Surface. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1527–1531. [Google Scholar] [CrossRef]
- Li, X.; Zheng, W.; Yang, X.; Li, Z.; Pichel, W.G. Sea Surface Imprints of Coastal Mountain Lee Waves Imaged by Synthetic Aperture Radar. J. Geophys. Res. Ocean. 2011, 116, C02014. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.M.; Li, X.M.; Velotto, D.; Chen, K.S. Study of the Polarimetric Characteristics of Mud Flats in an Intertidal Zone Using C- and X-Band Spaceborne SAR Data. Remote Sens. Environ. 2016, 176, 56–68. [Google Scholar] [CrossRef]
- Gade, M.; Alpers, W.; Melsheimer, C.; Tanck, G. Classification of Sediments on Exposed Tidal Flats in the German Bight Using Multi-Frequency Radar Data. Remote Sens. Environ. 2008, 112, 1603–1613. [Google Scholar] [CrossRef]
- van der Wal, D.; Herman, P.M.J. Regression-Based Synergy of Optical, Shortwave Infrared and Microwave Remote Sensing for Monitoring the Grain-Size of Intertidal Sediments. Remote Sens. Environ. 2007, 111, 89–106. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Li, J.; Sui, Y. Automatic Extraction of Green Tide From GF-3 SAR Images Based on Feature Selection And. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10598–10613. [Google Scholar] [CrossRef]
- Qi, L.; Wang, M.; Hu, C.; Holt, B. Remote Sensing of Environment on the Capacity of Sentinel-1 Synthetic Aperture Radar in Detecting Floating Macroalgae and Other Floating Matters. Remote Sens. Environ. 2022, 280, 113188. [Google Scholar] [CrossRef]
- Hu, C. A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Yang, L.; Yun, S.; Wuyi, Y.; Xiaoping, Q.; Wei, T.; Shi’ang, W.; Junna, Y. Expression of Hydrocarbon on Sea Surface and Its Remote Sensing Detection: Taking the South China Sea Area as an Example. Pet. Explor. Dev. 2011, 38, 116–121. [Google Scholar] [CrossRef]
- Sun, K.; Sun, J.; Liu, Q.; Lian, Z.; Ren, J.S.; Bai, T.; Wang, Y.; Wei, Z. A Numerical Study of the Ulva Prolifera Biomass during the Green Tides in China—Toward a Cleaner Porphyra Mariculture. Mar. Pollut. Bull. 2020, 161, 111805. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, F.; Shao, Y.; Tian, W.; Gong, H. Microwave Remote Sensing for Marine Monitoring: An Example of Enteromorpha Prolifera Bloom Monitoring. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 4530–4533. [Google Scholar]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Cloude, S.R.; Pottier, E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- van Zyl, J.J.; Zebker, H.A.; Elachi, C. Imaging Radar Polarization Signatures: Theory and Observation. Radio Sci. 1987, 22, 529–543. [Google Scholar] [CrossRef]
- McNairn, H.; Duguay, C.; Brisco, B.; Pultz, T. The Effect of Soil and Crop Residue Characteristics on Polarimetric Radar Response. Remote Sens. Environ. 2002, 80, 308–320. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Sensing; The University of Michigan Press: Ann Arbor, MI, USA, 2014; ISBN 978-0-472-11935-6. [Google Scholar]
- Raney, R.K. Hybrid Dual-Polarization Synthetic Aperture Radar. Remote Sens. 2019, 11, 1521. [Google Scholar] [CrossRef] [Green Version]
- Santi, E.; Dabboor, M.; Pettinato, S.; Paloscia, S. Combining Machine Learning and Compact Polarimetry for Estimating Soil Moisture from C-Band SAR Data. Remote Sens. 2019, 11, 2451. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shao, Y.; Tian, W.; Li, K. On the Classification of Mixed Floating Pollutants on the Yellow Sea of China by Using a Quad-Polarized SAR Image. Front. Earth Sci. 2018, 12, 373–380. [Google Scholar] [CrossRef]
- Hu, L.; Hu, C.; Ming-Xia, H.E. Remote Estimation of Biomass of Ulva Prolifera Macroalgae in the Yellow Sea. Remote Sens. Environ. 2017, 192, 217–227. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Cui, T.; Gong, J.; Liu, R.; Chen, X.; Liang, X. Remote Sensing Estimation of the Biomass of Floating Ulva Prolifera and Analysis of the Main Factors Driving the Interannual Variability of the Biomass in the Yellow Sea. Mar. Pollut. Bull. 2019, 140, 330–340. [Google Scholar] [CrossRef]
- Gong, J. Romote Sensing Estimation of the Green Tide Biomass in the Yellow Sea; Ocean University of China: Qingdao, China, 2017. [Google Scholar]
Image Acquiring Time | Satellite Platform (Sensor) | Wave Band | Polarization (for SAR Image Only) | Spatial Resolution (m) | Swath (km) |
---|---|---|---|---|---|
4 July 2016 21:46:04 UTC | Cosmo-SkyMed-1 (SAR) | X | HH/VV | 15 | 45 |
4 July 2016 22:07:08 UTC | Radarsat-2 (SAR) | C | HH/HV/VV/VH | 8 | 25 |
5 July 2016 02:20:54 UTC | HJ-1A (CCD) | Visible/Infrared | - | 30 | 400 |
6 July 2016 02:12:15 UTC | HJ-1B (CCD) | Visible/Infrared | - | 30 | 400 |
Number of Sampling Station | Time of Sampling | Latitude (N) | Longitude (E) | Color of Sample | Genus Identified | Wet Biomass (kg/m2) |
---|---|---|---|---|---|---|
QD01 | 4 July 2016 22:56:48UTC | 36°05′01.7″ | 120°41′32.2″ | Green-Yellow | Ulva prolifera | 2.2 |
QD02 | 4 July 2016 23:12:27UTC | 36°04′22.0″ | 120°45′03.2″ | Green-Yellow | Ulva prolifera | 4.3 |
QD03 | 4 July 2016 23:33:45UTC | 36°03′24.8″ | 120°51′40.1″ | Green-Yellow | Ulva prolifera | 1.9 |
QD04 | 4 July 2016 23:49:55UTC | 36°00′50.4″ | 120°49′23.2″ | Green-Yellow | Ulva prolifera | 1.65 |
QD05 | 5 July 2016 00:07:42UTC | 36°01′56.6″ | 120°42′57.1″ | Green-Yellow | Ulva prolifera | 0.95 |
QD06 | 5 July 2016 00:19:04UTC | 36°02′19.5″ | 120°41′05.3″ | Green-Yellow | Ulva prolifera | 1.05 |
QD07 | 5 July 2016 00:40:23UTC | 35°57′57.3″ | 120°41′31.2″ | Green-Yellow | Ulva prolifera | 1.15 |
QD08 | 5 July 2016 00:53:45UTC | 35°55′46.0″ | 120°39′25.3″ | Green-Yellow | Ulva prolifera | 1.5 |
Sample Station | Wet Biomass per Area (kg/m2) | Time Delay from Radarsat-2 Polarimetric SAR Image Acquisition Time to the Sample Time of the Station (min) | ||||
---|---|---|---|---|---|---|
QD01 | 2.2 | 50 | 0.1960 | 0.0343 | 0.2789 | 0.1186 |
QD02 | 4.3 | 65 | 0.2612 | 0.0435 | 0.3848 | 0.2201 |
QD03 | 1.9 | 87 | 0.1714 | 0.0271 | 0.2484 | 0.0924 |
QD04 | 1.65 | 103 | 0.1849 | 0.0310 | 0.2642 | 0.1060 |
QD05 | 0.95 | 121 | 0.1861 | 0.0319 | 0.2656 | 0.1072 |
QD06 | 1.05 | 132 | 0.1867 | 0.0301 | 0.2735 | 0.1115 |
QD07 | 1.15 | 153 | 0.1574 | 0.0265 | 0.2240 | 0.0763 |
QD08 | 1.5 | 167 | 0.2018 | 0.0344 | 0.2912 | 0.1279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Wang, J.; Zhang, F.; Liu, X.; Yang, J.; Yuan, J.; Mi, X.; Shao, Y. The Detection of Green Tide Biomass by Remote Sensing Images and In Situ Measurement in the Yellow Sea of China. Remote Sens. 2023, 15, 3625. https://doi.org/10.3390/rs15143625
Tian W, Wang J, Zhang F, Liu X, Yang J, Yuan J, Mi X, Shao Y. The Detection of Green Tide Biomass by Remote Sensing Images and In Situ Measurement in the Yellow Sea of China. Remote Sensing. 2023; 15(14):3625. https://doi.org/10.3390/rs15143625
Chicago/Turabian StyleTian, Wei, Juan Wang, Fengli Zhang, Xudong Liu, Jian Yang, Junna Yuan, Xiaofei Mi, and Yun Shao. 2023. "The Detection of Green Tide Biomass by Remote Sensing Images and In Situ Measurement in the Yellow Sea of China" Remote Sensing 15, no. 14: 3625. https://doi.org/10.3390/rs15143625
APA StyleTian, W., Wang, J., Zhang, F., Liu, X., Yang, J., Yuan, J., Mi, X., & Shao, Y. (2023). The Detection of Green Tide Biomass by Remote Sensing Images and In Situ Measurement in the Yellow Sea of China. Remote Sensing, 15(14), 3625. https://doi.org/10.3390/rs15143625