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Abstract: The world’s largest macroalgae bloom (also known as green tide) has been reported
since the 29th Olympic Games in 2008, which is verified as the fast reproduction of floating green
macroalgae (Ulva prolifera). It is helpful to assess the biomass of macroalgae for the government
of marine environment protection. In this study, the synchronization cruise experiment was firstly
introduced, which aimed to investigate the biomass evaluation of Ulva prolifera in the Yellow Sea of
China. The Floating Algae Index by Polarimetric SAR image (FAIPS) was then proposed. Finally,
the floating algae biomass evaluation model was demonstrated and verified, which showed an
exponential relationship between FAIPS and wet biomass per area (kg/m2) of macroalgae. The model
proposed in this paper can be used in the biomass assessment of floating algae in the presence of
polarimetric SAR images, regardless of daylight and cloud coverage over the sea surface.

Keywords: biomass; Ulva prolifera; green algae; polarimetric SAR; in situ; Yellow Sea

1. Introduction

Green tide, resulting from macroalgal blooms (MABs) in the eutrophic coastal zone, has
been continuously investigated around the world, especially since the world’s largest green
algae break out in the Yellow Sea of China in 2008 was reported [1–9]. World’s MABs are
predominantly attributed to two genera of macroalgae—Enteromorpha and Sargassum [10].
In the Yellow Sea of China, however, U. Enteromorpha prolifera accounts for more than 90%
of the floating green macroalgae species [11,12]. Thousands of tons of drifting biomass
have not only smothered the sea surface, which accounts for up to one-tenth of the total
area of the Yellow Sea of China, thus hindering the marine transportation, but have also
deteriorated the ecological environment and harmed the aquaculture off the east coast
of China in every summer over the past decade [13–20]. In addition, massive decayed
macroalgae matting on the sea surface brought about noxious odors and anoxic aquatic
circumstances, resulted in a large amount of oceanic creatures dying, along with up to
15 million US dollars spent on cleaning up or recycling in Sierra Leone’s spectacular golden
tide event of 2011 [10], and 30 million US dollars in China’s large-scale green tide event
of 2008, for example [14,21]. In addition, the loss of aquaculture was expected to be as
dramatically high as 100 million US dollars [21].

The popular porphyra aquaculture in the Subei Shoal, located in the nearshore water
of the southern Yellow Sea of China, was found to be responsible for the MABs in the
past decade, according to the recent surveys [5,14,22–27]. In the progress of harvesting
grown porphyra, an enormous amount of macroalgal waste was disposed onto the muddy
flat of Subei Shoal in the spring of every year [3,11,12,28]. These traditional husbandry
and boorish maintenance activities, engaged in the aquacultures of the east coast of China,
Jiangsu province, eventually resulted in environmental disasters across the Yellow Sea of

Remote Sens. 2023, 15, 3625. https://doi.org/10.3390/rs15143625 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15143625
https://doi.org/10.3390/rs15143625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2024-4200
https://orcid.org/0000-0001-7923-5627
https://doi.org/10.3390/rs15143625
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15143625?type=check_update&version=2


Remote Sens. 2023, 15, 3625 2 of 21

China that travelled northeastwards into the south coast of Shandong peninsula, about
500 km away.

Recently, research on the initiation, formation, and development of MABs in the
Yellow Sea of China has been conducted by cruise surveys, in situ observations, and in vitro
studies, etc. [13,23,25,26,29–32], so as to intensively discover the distinctive reason why
MABs consecutively breakout year after year (which seems incredible, or even infeasible,
in terms of the rationale of marine eutrophication) [12,14,27,33]. On-site experiments
conveyed in the Subei Shoal observed how extremely large amounts of green algae were
disposed of in the harvesting season of porphyra crops. Meanwhile, trawling bioassay trials
along the coast of Jiangsu province were implemented to identify and trace floating green
algae. Moreover, both the growing rate (26.3%± 3.6% d−1) and floating rate (62.3%) were
assessed. Quantitative models were set up to evaluate the total biomass (5.6× 105 t) in the
Yellow Sea of China in mid-May 2012, and these were compared with results when the
green macroalgae were initially released in mid-April 2012 [11]. Considering the variety of
two prerequisite parameters mentioned above within 30 days, however, the total amount
of macroalgae biomass might be under-evaluated compared with 1 million tons, which
has been the typical gross weight of floating macroalgae in the Yellow Sea of China every
summer in the past decade [5,14,21,34,35]. The sophisticated models were constructed
in accordance with accurate enough experimental data which were obtained in realistic
scenarios. Therefore, more objective and effective identification and assessment are needed
in the evaluation of the extent, biomass, etc., of green macroalgae.

Remote sensing images of diverse spaceborne satellites have been serving as efficient and
indispensable tools in the aspects of disaster monitoring, crop yield estimation, etc. [36–47].
Hu preliminarily proposed the FAI (Floating Algae Index) to discriminate green macroalgae
(e.g., U. Enteromorpha prolifera) from open water in MODIS (Moderate Resolution Imaging
Spectroradiometer) imageries, which was verified to calibrate the clouds effect, for example,
when classical vegetation indexes (NDVI, EVI, etc.) were applied [46]. Xing et al. ex-
tended the application of FAI to multi-spectral images with no SWIR (shortwave-infrared)
band, e.g., China’s HJ-1, by introducing VB-FAH (Virtu-al-Baseline Floating macroalgae
Height) [8]. In addition, Shen et al. studied two indexes and referred to the ratio of co-
polarization and cross-polarization, respectively, to discriminate green macroalgae from
open water by using Radarsat-2 quad-polarization SAR (Synthetic Aperture Radar) [48].
All of these indexes of floating green macroalgae are exclusively constructed by the ratio of
the difference of reflectance in different spectral bands or polarimetric channels in terms of
multi-spectral and microwave radar data, respectively. There is no denying that the robust-
ness and effectiveness of the indexes mentioned above, along with traditional vegetation
indexes (NDVI, EVI, etc.), improved the functionality of unsupervised classification for
green macroalgae, and therefore successfully applied both the detection and mapping of
large-scale green tide. However, how to delineate the aggregation degree of macroalgae
and how to evaluate the biomass in the sea where green macroalgae developed are vitally
important for the assessment of green tide disaster and the counter-measurements prepared
by the government.

The polarimetric SAR images have been verified as useful data source for the crop
production assessment, natural disaster evaluation, and marine environment monitoring
around the world [49–51] since Radarsat-2 satellite was launched in 2007. Wang et al.
assessed the capability of Compact Polarized (CP) SAR to classify multi-sea-surface char-
acteristics and discussed ten types of polarization parameters in terms of the accuracy
of the reconstruction for σHH

0 and σVV
0 for open water, oil spills, and algal blooms [52].

Li et al. proposed a hybrid polarimetric target decomposition algorithm (GRH) with a
generalized volume scattering model (GVSM) and a random particle cloud volume scat-
tering model (RPCM) to discriminate between double bounce scattering and the surface
scattering [53]. Chen et al. proposed a set of oscillation parameters, including oscillation
amplitude, oscillation center, angular frequency, and initial angle, to fully characterize
the scattering behavior in the rotation domain [54]. Following that, they developed a
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visualization tool for PolSAR data investigation to exhibit polarimetric correlation value in
terms of polarization ellipticity and orientation angles, which were applied in land cover
classification and ship detection [55,56].

The objective of this research is to investigate macroalgae with different degrees of
aggregation detected by SAR images of multi-band, multi-polarization, and multi-incidence,
etc., to study the biomass evaluation of green macroalgae in the Yellow Sea of China.

The structure of the manuscript is as follows. In Section 2, the study area and diver-
sified data source are described, and the synchronization campaign experiment for the
investigation of MABs is introduced. In Section 3, multi-temporal remote sensing images
are engaged in tracing the movement of the macroalgae on the sea surface. In addition,
the features of macroalgae, which were detected by multi-band, multi-polarization SAR
images, are delineated, in comparison with multi-spectral images. Finally, the FAIPS-based
model for the assessment of macroalgae biomass per area was proposed. Discussions and
conclusions are presented in Sections 4 and 5, respectively.

2. Study Area and Data Sources
2.1. Study Area

The southern Yellow Sea, which is one of the three marginal seas of China and is
dominated by east-Asian Monsoons [8,21], is the study area in this research (the black
square in the overlaid graph of Figure 1). The Subei Shoal, which is located in the nearshore
zone of southern Yellow Sea and is the primary aquaculture region of the Porphyra yezoensis
in China, ranging from the Yangtze River delta north up to the Sheyang River, was verified
to be the origin of MABs in the Yellow Sea of China [11,23]. The floating macroalgae were
discarded into the nearshore area of the southern Yellow Sea every spring, resulting in
the macro green tides blooming in these years. Regularly, the front of MABs eventually
arrived at Shandong Peninsula in summer, driven by the currents and sea winds of the
southern Yellow Sea of China, according to the results of remote sensing monitoring, model
prediction, and macroalgae samples analyses [31,33,46]. Thus, the southern Yellow Sea
of China was decided to be the research area to investigate the characteristics of MABs
in remotely-sensed images. In July of 2016, when the macroalgae broke out in the study
area, SAR images with different wave bands (C and X band) and HJ-1 series satellite CCD
images were selected to synergistically retrieve instinctive parameters of MABs.

2.2. SAR Images

SAR satellites have become enriched and diversified in the last two decades because
active radar sensors could acquire remote sensing images in cloudy or rainy conditions,
despite the absence of daylight [57,58]. The frequency of radar system would preliminarily
determine the visualization and applicability of SAR images [59–61]. In addition, the
polarizations were also critical factors to be considered, because radar polarimetry can be
used for the discrimination between different types of biomasses on the ocean and land
surface of the earth [43,48,62–64].

Two SAR images in C and X band were collected off the south coast of Qingdao,
Shandong province, which were taken by RADARSAT-2 (C band, HH/HV/VH/VV po-
larizations, with spatial resolution of 8 m, outlined by square #1 in Figure 1) and Cosmo-
SkyMed-1 (X band, HH/VV polarizations, with spatial resolution of 15 m, outlined by
square #2 in Figure 1) satellite, respectively.

The SAR images were preprocessed by Sentinel Application Platform (SNAP,
Version 3.0) software provided by the European Space Agency (ESA) (http://step.esa.int/
main/toolboxes/snap/ (accessed on 16 March 2023)). Firstly, SAR images of level 1 product
(in single look complex type) were calibrated, i.e., all pixel values of SAR images engaged
were transformed to the Normalized Radar Cross Section (NRCS) from complex. Next, the
calibrated SAR images were ellipsoid-corrected and resampled to map projection images
by using the ’Average Height Range-Doppler’ method in SNAP. Finally, post-processing

http://step.esa.int/main/toolboxes/snap/
http://step.esa.int/main/toolboxes/snap/
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steps were implemented such as speckle filtering, polarimetric parameters computation,
etc., in the software platform.

Remote Sens. 2023, 14, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Map of the study area: southern Yellow Sea of China (33°N~37°N, 119°E~123.5°E). Four 
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and to retrieve their features, which were acquired from July 4th to July 6th of 2016, off the east coast 
of Qingdao, Shandong province of China, where macroalgae has bloomed frequently in summer in 
the past decade. Two of them are SAR images of C, X band onboard the Radarsat-2 and 
CosmoSkymed-1 satellite, respectively. Two of them are CCD images onboard the HJ-1A and HJ-
1B satellites, respectively. 
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Figure 1. Map of the study area: southern Yellow Sea of China (33◦N~37◦N, 119◦E~123.5◦E). Four
remote sensing images were collected in this investigation to trace the macroalgae on the sea sur-
face and to retrieve their features, which were acquired from July 4th to July 6th of 2016, off the
east coast of Qingdao, Shandong province of China, where macroalgae has bloomed frequently in
summer in the past decade. Two of them are SAR images of C, X band onboard the Radarsat-2 and
CosmoSkymed-1 satellite, respectively. Two of them are CCD images onboard the HJ-1A and HJ-1B
satellites, respectively.

2.3. Optical Images

In this investigation, we acquired HJ-1A (5 July) and HJ-1B (6 July) multi-spectral
images to trace MABs on the Yellow Sea of China, along with SAR images. Firstly, HJ-1
series satellite images were downloaded from the website of China Centre for Resources
Data and Application (https://data.cresda.cn/ (accessed on 16 March 2023)). Next, HJ-
1A/B images were calibrated to radiance images and were atmospherically corrected to
reflectance images by using Radiometric Calibration and FLAASH modules of ENVI5.3
software by Harris Corporation in Melbourne, Florida, USA, respectively. Finally, HJ-
1A/B images were processed to pseudo-colored images and NDVI images, and then were
registered to SAR images engaged in this investigation.

A summary of remotely-sensed images used in this research are listed below. Please
refer to Table 1 for details.

2.4. Synchronization Campaign Experiment

The on-site cruise experiment was conducted beginning at 22:46 (UTC) 4 July 2016,
about 1 h later than the Radarsat-2 C band quad-polarized SAR image was acquired
(22:07 UTC 4 July 2016, #1 in Figure 2), and the Cosmo-SkyMed-1 X band dual-polarized
SAR image (21:46 UTC 4 July 2016, #2 in Figure 2) was taken. This synchronization

https://data.cresda.cn/
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campaign experiment was implemented to verify the informative parameters that were
identified and retrieved from the consecutive captured SAR images and CCD imageries
with as few variations of MABs as possible.

Table 1. Specifications of remote sensing data engaged in the investigation.

Image Acquiring Time Satellite Platform
(Sensor) Wave Band Polarization (for SAR

Image Only)
Spatial
Resolution (m)

Swath
(km)

4 July 2016 21:46:04 UTC Cosmo-SkyMed-1 (SAR) X HH/VV 15 45
4 July 2016 22:07:08 UTC Radarsat-2 (SAR) C HH/HV/VV/VH 8 25
5 July 2016 02:20:54 UTC HJ-1A (CCD) Visible/Infrared - 30 400
6 July 2016 02:12:15 UTC HJ-1B (CCD) Visible/Infrared - 30 400Remote Sens. 2023, 14, x FOR PEER REVIEW 6 of 22 
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coded with the sampling sequence of the in situ experiment. Details about all the sampling spots 
can be referred to in Table 2. 
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Figure 2. The zoom-in graph of the study area. Eight sampling stations across the coverage of
Radarsat-2 image (#1) are depicted, which are located near the east coast of Qingdao, China, and
coded with the sampling sequence of the in situ experiment. Details about all the sampling spots can
be referred to in Table 2.

As the area (about 625 km2) of Radarsat-2 image is covered by all of the other images
engaged in this research, all eight sampling stations in this investigation were set inside
square #1 (see Figure 2). The sampling spots were coded in accordance with the time
sequence at which the cruise arrived, and they were assigned separately from each other
so that more diversified samples of MABs could be acquired. In addition, a square of
1 m × 1 m (see Figure 3) was made as the sampling tool to ensure the green algae sampled
covering unit area of 1 m2 on the sea surface. In the progress of the on-site experiment,
when the cruise was close to a predicted sampling spot, the crew members would choose
uniform and representative green algae patches to take, recording the time of sampling, the
coordinates of the station, etc. For each Enteromorpha prolifera sample gathered, analysts
would first discriminate its genus and then take out the excessive water for 2 min with a
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dryer, finally recording its weight as the wet biomass of this sample. Details about all eight
samples are recorded in Table 2 as references.

Table 2. The ground-measured features of macroalgae on the Yellow Sea of China in the synchro-
nized experiment.

Number of
Sampling Station

Time of
Sampling Latitude (N) Longitude (E) Color of

Sample
Genus

Identified
Wet Biomass

(kg/m2)

QD01 4 July 2016
22:56:48UTC 36◦05′01.7′′ 120◦41′32.2′′ Green-Yellow Ulva prolifera 2.2

QD02 4 July 2016
23:12:27UTC 36◦04′22.0′′ 120◦45′03.2′′ Green-Yellow Ulva prolifera 4.3

QD03 4 July 2016
23:33:45UTC 36◦03′24.8′′ 120◦51′40.1′′ Green-Yellow Ulva prolifera 1.9

QD04 4 July 2016
23:49:55UTC 36◦00′50.4′′ 120◦49′23.2′′ Green-Yellow Ulva prolifera 1.65

QD05 5 July 2016
00:07:42UTC 36◦01′56.6′′ 120◦42′57.1′′ Green-Yellow Ulva prolifera 0.95

QD06 5 July 2016
00:19:04UTC 36◦02′19.5′′ 120◦41′05.3′′ Green-Yellow Ulva prolifera 1.05

QD07 5 July 2016
00:40:23UTC 35◦57′57.3′′ 120◦41′31.2′′ Green-Yellow Ulva prolifera 1.15

QD08 5 July 2016
00:53:45UTC 35◦55′46.0′′ 120◦39′25.3′′ Green-Yellow Ulva prolifera 1.5
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Figure 3. The on-site investigation of green tide on the Yellow Sea of China. (a) A 30 m-width green
algae patch zigzagged for thousands of meters floating on the sea surface was observed aboard the
cruise. (b) The sampling of green algae was implemented in the on-site cruise experiment with a
square container for accurate abstraction of green algae in 1 m2.
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3. Experiment and Results
3.1. Tracing MABs by Diversified Time Series Images

One of the critical issues when it comes to monitoring and countermeasures in terms
of marine hazards is to identify the pollutants on the sea surface and update their trails
timely. According to the recent research, spectrometers with middle-high resolution such
as Landsat-7/ETM+, Landsat-8/OLI, HJ-1/CCD, etc., had been successfully mapping the
blooms of green tide off the east coast of China [8,65]. In addition, SAR has proved to be a
vital complementary tool available, especially when optical instruments fail to serve in the
presence of many heavy clouds upon the marine surface. As most of the wavelengths of
spaceborne SAR are between 3 cm and 30 cm (corresponding to frequency bands of X, C, S,
and L), SAR images are suitable for the detection of macroalgae on the sea surface, whose
roughness is in the order of centimeters, no matter if it is cloudy or dark. These advantages
of SAR remote sensing enrich the data sources that are engaged in the monitoring of marine
pollution accidents.

Figure 4 shows massive green algae imaged by both SAR and multi-spectral images in
the Yellow Sea of China, which were close to Shandong province in early July of 2016. The
paired SAR images (Figure 4a,b) outlined the macroalgae on the sea surface as morpho-
logically alike because the time between these two SAR images acquired was 21 min. The
other image pair of spectral features (Figure 4c,d), processed from HJ-1A and HJ-1B CCD
data, can be used to discriminate green algae from open water according to their essential
discrepancy in reflectance of both near-infrared and green. It is hard to identify every green
algae pair in Figure 4c,d, however, as over half of the area in Figure 4c was covered by
clouds and the time delay between these two images was about 1 day.

The shape-varied characteristic of green macroalgae patches floating on the sea surface
is revealed by the time series remote sensing images in Figure 4, which would significantly
decrease the effectiveness and applicability of synergistic remotely-sensed images in marine
disaster monitoring. Both wind and sea current stress are basically dominant driven forces
in the movement of pollutants on the sea surface [33,66,67]. Owing to the green tide that
initially results from the growth and connection of a large amount of macroalgae patches, it
is essential to investigate the effect of air blow and sea water movement on the trajectory of
macroalgae. We interpreted and outlined the macroalgae stripes by analyzing three remote
sensing images (Figure 4a–c), of which the imaging start time intervals were short enough,
such that the same green algae in different remote sensing images can be labeled and the
effects of driven force on them can be researched in a coordinated system (see Figure 5).
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EM of radar. The marine surface accounts for a middle-level of NRCS value, as shown in the rest of 
the image. The scale bar shows the value of NRCS in decibels. (c) The NDVI index image of HJ-1A 
CCD data by atmospheric correction processing, taken at 02:20:54 UTC 5 July 2016. The macroalgae 
turn out to be bright patches of its high reflectance difference between the near-infrared and red 
channel. Over half of the image area is displayed as gray-dark pixels as most of the sea is covered 
by clouds, resulting in almost equal high reflectance of either near-infrared or red channel. The scale 
bar shows the value of NDVI. (d) The pseudo-color composite image (RGB: 432) of HJ-1B CCD data 
by atmospheric correction processing, taken at 02:12:15 UTC 6 July 2016. The macroalgae are 
depicted as magenta patches because of the relatively high level of reflectance in the near-infrared 
(R channel) and green (B channel). 
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Figure 4. The time series remote sensing images of the Yellow Sea of China, east of the Qingdao Bay.
(a) Cosmo-SkyMed-1 dual-pol SAR image (in VV pol, absolute calibrated before geo-referenced to
the map projection, Enhanced Lee filtered, at 40◦ incidence angle) taken at 21:46:04 UTC 4 July 2016.
The bright stripes indicate macroalgae while the dark region shows sea surface backscattered by the
EM of the radar with a high incidence angle. The scale bar shows the value of NRCS in decibels.
(b) Radarsat-2 quad-pol SAR image (in VV pol, absolute calibrated before geo-referenced to the map
projection, Lee Sigma filtered, at 26◦ incidence angle) taken at 22:07:08 UTC 4 July 2016. The white
patches refer to the green algae on the sea surface due to its high level of radar backscattering. The
dark stripe in the middle of the image is interpreted as an oil spill because this kind of pollutant will
dampen the ripples on the sea surface, which are responsible for the resonance with the incidence
EM of radar. The marine surface accounts for a middle-level of NRCS value, as shown in the rest of
the image. The scale bar shows the value of NRCS in decibels. (c) The NDVI index image of HJ-1A
CCD data by atmospheric correction processing, taken at 02:20:54 UTC 5 July 2016. The macroalgae
turn out to be bright patches of its high reflectance difference between the near-infrared and red
channel. Over half of the image area is displayed as gray-dark pixels as most of the sea is covered by
clouds, resulting in almost equal high reflectance of either near-infrared or red channel. The scale bar
shows the value of NDVI. (d) The pseudo-color composite image (RGB: 432) of HJ-1B CCD data by
atmospheric correction processing, taken at 02:12:15 UTC 6 July 2016. The macroalgae are depicted as
magenta patches because of the relatively high level of reflectance in the near-infrared (R channel)
and green (B channel).

To investigate the movement of floating green algae repelled by the wind force over
the sea surface, the European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis data and ERA-Interim were engaged (http://www.ecmwf.int (accessed on
16 March 2023)), which were assimilated by meteorological observations, high-resolution
satellite data sets, etc. [68]. On the other hand, the real-time numerical forecast data for
sea current (http://marine.copernicus.eu (accessed on 16 March 2023)), provided by the
COPERNICUS Marine Environment Monitoring Service of EU, were used to analyze its
impact on the green algae floating on the sea surface. As the reanalyzed wind stress data
products were sampled every 6 h, the data at 00:00:00 UTC 5 July 2016 were selected, which
were close to the period of imaging time (from 21:46:04 UTC 4 July 2016 to 02:20:54 UTC
5 July 2016 in this study). The wind speed was 19.8 km/h and the wind direction was 235◦

(SW). The current vectors from the Global Ocean Physics Analysis and Forecast products,
however, were sampled every 1 h. Considering the current data ranging from 21:30:00 UTC
4 July 2016 to 02:30:00 UTC 5 July 2016, we found that the current speed of sea water,
within the extent of Figure 5, gently varied between 0.08 m/s and 0.1 m/s, with a stable

http://www.ecmwf.int
http://marine.copernicus.eu
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eastward current direction in this time period of 5 h. It can be seen from Figure 5 that green
algae patches were accordingly moving along the direction of dominant southwestwards
(235◦) wind over the sea surface in that period of time (about 4~5 h). Moreover, the weak
nearshore sea current impacted less on the drift direction of macroalgae than mid-low wind
force, 10 m above the marine surface. Figure 6 delineates the scatterplot of the floating
distance versus observing time of green algae patches on the sea surface. The start time (0 h)
is set at the time when Cosmo-SkyMed satellite image was acquired. Because the time when
Radarsat-2 satellite flew over the research region was 0.34 h later than Cosmo-SkyMed, the
observation time of Radarsat-2 image was plotted at 0.34 h in x-axis, followed by scattered
spots from HJ-1A which were plotted at 4.2 h. The slope coefficient (0.4812 km/h) of the
linear regression formula in Figure 6 was then considered as the speed at which green algae
moved on the sea surface mainly driven by wind stress. In this case, the macroalgae moved
at a speed of as much as 2.4% of the wind speed on the sea surface, which agrees with
previous investigations [33,69], considering the higher moving speed (up to 2.94 km/h)
of macroalgae might be applied. Taking the observation at 0.34 h solely into account, the
proportion (the fraction green algae drifting speed divided by wind speed) would increase
to about 15%.
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Figure 6. The scatterplot of floating distance versus floating time of green algae on the sea surface. The
gray diamond spots denote the sampled patches of green algae, 65 in total. The solid black line refers
to the linear regression, and R2 represents the coefficient of determination. There are two referenced
times, 0.34 h and 4.2 h, in this investigation, which are determined by the difference of imaging time
between the Cosmo-SkyMed/Radarsat-2 and Cosmo-SkyMed/HJ-1A satellites, respectively.

3.2. Features of Macroalgae versus Oil Spills in SAR Image

It is well known that polarimetric SAR records the response of targets on the earth by
a complex scattering matrix:

S =

[
SHH SHV
SVH SVV

]
(1)

where S represents the complex scattering matrix for an individual pixel in a full polarized
SAR image, wherein SHH and SVV correspond to the co-polarization complex returns, and
SHV and SVH correspond to the cross-polarization terms, respectively. Moreover, either
the coherence 〈[T3]〉 or covariance 〈[C3]〉matrix is essential in terms of polarimetric target
decomposition instead of S when natural objects (also known as distributed targets) are
investigated, which can be mathematically written as:

〈[T3]〉 =
1
2

 〈|SHH + SVV|〉2
〈
(SHH + SVV)(SHH − SVV)

∗〉 2〈(SHH + SVV)SHV
∗〉〈

(SHH − SVV)(SHH + SVV)
∗〉 〈|SHH − SVV|〉2 2〈(SHH − SVV)SHV

∗〉
2
〈
SHV(SHH + SVV)

∗〉 2
〈
SHV(SHH − SVV)

∗〉 4〈|SHV| 2
〉

 (2)

and
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〈[C3]〉 =


〈|SHH| 2

〉 √
2〈SHHSHV

∗〉 〈SHHSVV
∗〉

√
2〈SHVSHH

∗〉 2〈|SHV| 2
〉 √

2〈SHVSVV
∗〉

〈SVVSHH
∗〉

√
2〈SVVSHV

∗〉 〈|SVV| 2
〉

 (3)

where 〈·〉 denotes the ensemble average operator, which is necessary for the processing of SAR
image data due to the presence of coherence noise, and ∗ represents the complex conjunction.

Both 〈[T3]〉 and 〈[C3]〉 are positive semidefinite Hermitian matrices, and are connected
by the total power backscattered [70]:

Span = Tr(〈[T3]〉) = Tr(〈[C3]〉) (4)

where Tr(〈M〉) denotes the trace of the Matrix M, and can be represented as follows:

Tr(〈[T3]〉) =
1
2

(
〈|SHH + SVV| 2

〉
+〈|SHH − SVV| 2

〉
+4〈|SHV| 2

〉)
(5)

Tr(〈[C3]〉) = 〈|SHH| 2
〉
+2〈|SHV| 2

〉
+〈|SVV| 2

〉
(6)

According to the theorem of ‘average’ scattering mechanism [71], the real diagonal
elements of the coherence matrix 〈[T3]〉 can be used to evaluate the contribution of three
fundamental scattering schemes, i.e., surface scattering, dihedral scattering, and volume
scattering. For the covariance matrix 〈[C3]〉, however, the real diagonal elements are
vitally significant because the specific response backscattered from targets can be compared
between co-polarization and cross-polarization terms, and the depolarized effects are
thus able to be investigated [48,59]. Figure 7 exhibits the multi-polluted ocean image of
the Yellow Sea of China, which was taken by the Radarsat-2 full-polarized SAR and is
investigated in this research. The prevalent scattering mechanism of green algae, open
water, and oil spill were overall analyzed, respectively, by using the polarimetric parameters
mentioned above. See the figure captions for details.

Quantitatively, the overall polarimetric signatures of targets can be delineated by
normalized σ0 of co- and cross-polarization [72,73]. In this investigation, the polarimetric
characteristics of three typical objects in SAR image, i.e., macroalgae, oil spill, and open
water, were further analyzed using Polarimetric Workstation Software Version 5.4 software,
which was developed by the Canada Centre for Remote Sensing (CCRS) (see Figure 8
for reference).
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channels for the floating biomass, according to (f). On the contrary, the oil spill, which is located in 
the upper center of the images, shows no dominant scattering mechanisms according to (e), and 
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Figure 7. The fully polarized SAR image, which was captured by Radarsat-2 at 22:07 UTC 4 July 2016,
shows the mix-polluted marine surface of the Yellow Sea of China. The images (a–d) correspond
to the four components of scattering matrix S, i.e., |SHH|, |SHV|, |SVH|, and |SVV|, respectively. The
color-coded image (e) is composed of the three real diagonal elements of the coherency matrix 〈[T3]〉:
R@〈[T22]〉, G@〈[T33]〉, and B@〈[T11]〉, respectively. The composite color image (f), on the other hand,
is composed of the covariance matrix 〈[C3]〉: R@〈[C11]〉, G@〈[C22]〉, and B@〈[C33]〉, respectively. It
can be seen from Figure 7 that the sea surface, which accounts for most area of the scene, is dominated
by the single bounce scattering, while co-pol is greater than cross-pol and VV is greater than HH
polarization, according to (e). The green algae, which are interpreted as the white patches on the sea
surface, correspond to a hybrid scattering mechanism. Both the surface scattering and the depolarized
scattering (also known as volume scattering) were observed because a much stronger response in
the green channel (corresponds to 〈[T33]〉 for (e) or corresponds to 〈[C22]〉 for (f)) was observed,
compared to the open water surface. In addition, two co-pol responses are strong enough, whereas
no significant difference is found between VV and HH channels for the floating biomass, according
to (f). On the contrary, the oil spill, which is located in the upper center of the images, shows no
dominant scattering mechanisms according to (e), and backscatters very low in all of the polarization
channels according to (f).

The green algae, which look like vegetables floating on the sea surface, showed
as single bounce scattering (Figure 8a). To be specific, for the green algae, the maxi-
mum response (−5.44 dB) of co-pol happened when VV polarization (ψ = 90◦, χ = 0◦)
was applied, whereas the minimum one (−17.88 dB) happened when RR polarization
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(ψ = 169◦, χ = −39◦) was applied. On the other hand, the maximum response (−7.05 dB)
of cross-pol occurred when LR polarization (ψ = 136◦, χ = −43◦) was applied, whereas
the minimum one (−24.56 dB) occurred when HV polarization (ψ = 0◦, χ = 0◦) was
applied (see Figure 8a for reference). This implies that circular polarized SAR in LR polar-
ization (i.e., right circular polarization transmitted and left circular polarization received)
is supposed to be a candidate as a novel sensor, considering a mission of global algae
monitoring and biomass of macroalgae evaluation around the world.
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Figure 8. Co-pol and cross-pol polarimetric response plots for macroalgae (a), oil spill (b), and
open water (c), respectively, that were processed by Polarimetric Workstation Software Version 5.4
(PWS V5.4, ©CCRS).

Moreover, the polarimetric signatures of oil spill (Figure 8b) and open water (Figure 8c),
similar to the green algae (Figure 8a), are interpreted as VV > HH� RR/LL (for co-pol)
and VH/HV� LR/RL (for cross-pol), corresponding to the typical surface scattering [74].

The NRCS, however, identically varied among three types of objects on the sea surface
according to Figure 8. For comparison, we summarized the NRCS of macroalgae, oil
spill, and open water in six polarimetric channels of SAR images in Figure 9. It can
be concluded that VV or HH are optimal co-polarization combinations to discriminate
between the pollutant (either macroalgae or oil spill) and the surrounding sea surface in
a polarimetric SAR image. LL and RR, on the contrary, are not able to distinguish the
oil spill from the background sea correctly because they are ‘look-alikes’ in LL/RR SAR
image, which might be produced by the compact polarimetric (CP) mode SAR data [75,76]
or the PALSAR-2 (the Phased Array type L-band Synthetic Aperture Radar) onboard
ALOS-2 (the Japanese Advanced Land Observing Satellite), for instance. In addition,
the LR polarimetric channel is the only cross-polarization combination candidate for the
discrimination between macroalgae, oil spill, and open water because of the ineffectiveness
of linear cross-polarization, i.e., HV or VH according to Figure 9.

3.3. Floating Algae Index of Polarimetric SAR

The macroalgae bloom (when eutrophic environment is applied, and abundant sun-
light is provided) results in the deterioration of marine ecosystem and the interference of
marine transportation. It is vital to identify green algae quantitatively by means of remote
sensing technology to evaluate this kind of ocean disaster effectively. Polarimetric SAR
images are widely used in target detection and natural hazards assessment [52,77] due
to their capability of the characteristic measurements of targets such as moisture content,
surface roughness, etc.



Remote Sens. 2023, 15, 3625 15 of 21Remote Sens. 2023, 14, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 9. The map of NRCS (in dB) in six polarimetric channel for Macroalgae (blue diamond line), 
open water (green square line), and oil spill (red circle line), respectively. 

3.3. Floating Algae Index of Polarimetric SAR 
The macroalgae bloom (when eutrophic environment is applied, and abundant 

sunlight is provided) results in the deterioration of marine ecosystem and the interference 
of marine transportation. It is vital to identify green algae quantitatively by means of 
remote sensing technology to evaluate this kind of ocean disaster effectively. Polarimetric 
SAR images are widely used in target detection and natural hazards assessment [52,77] 
due to their capability of the characteristic measurements of targets such as moisture 
content, surface roughness, etc. 

In this paper, a Floating Algae Index by Polarimetric SAR image (FAIPS) was 
proposed as follows: FAIPS = |Sୌୌ|ଶ + 2|Sୌ|ଶ + |S|ଶ (7)

where Sୌୌ, Sୌ, and S were the elements of S matrix in polarimetric SAR data, which 
are defined in Equation (1). From Equation (7), it can be concluded that FAIPS is 
determined by NRCS of all of four polarimetric channels. 

The features of macroalgae samples collected in eight sample stations are 
summarized in Table 3. It is worth noticing that the time when the first sample of 
macroalgae was collected in QD01 sample station, which is close to Shandong Peninsula 
(see Figure 2), was delayed for about 50 min since the Radasat-2 Quad-Polarization SAR 
image was acquired (referring to Figure 1), from which 〈|Sୌୌ|〉, 〈|Sୌ|〉, and 〈|S|〉 were 
statistically computed. Moreover, it can be seen from Table 3 that the maximum (0.0435) 
of cross-polarization response, i.e., |Sୌ| occurred when the maximum of wet biomass of 
macroalgae sample (QD02) was observed, which was two times greater than that of the 
lower biomass of macroalgae sample—QD07, for example. This demonstrated that the 
hybrid scattering happened when the sea surface was covered by macroalgae of a higher 
biomass. 

  

Figure 9. The map of NRCS (in dB) in six polarimetric channel for Macroalgae (blue diamond line),
open water (green square line), and oil spill (red circle line), respectively.

In this paper, a Floating Algae Index by Polarimetric SAR image (FAIPS) was proposed
as follows:

FAIPS = |SHH|2 + 2|SHV|2 + |SVV|2 (7)

where SHH, SHV, and SVV were the elements of S matrix in polarimetric SAR data, which
are defined in Equation (1). From Equation (7), it can be concluded that FAIPS is determined
by NRCS of all of four polarimetric channels.

The features of macroalgae samples collected in eight sample stations are summarized
in Table 3. It is worth noticing that the time when the first sample of macroalgae was
collected in QD01 sample station, which is close to Shandong Peninsula (see Figure 2), was
delayed for about 50 min since the Radasat-2 Quad-Polarization SAR image was acquired
(referring to Figure 1), from which 〈|SHH|〉, 〈|SHV|〉, and 〈|SVV|〉were statistically computed.
Moreover, it can be seen from Table 3 that the maximum (0.0435) of cross-polarization
response, i.e., |SHV| occurred when the maximum of wet biomass of macroalgae sample
(QD02) was observed, which was two times greater than that of the lower biomass of
macroalgae sample—QD07, for example. This demonstrated that the hybrid scattering
happened when the sea surface was covered by macroalgae of a higher biomass.

Table 3. The features of macroalgae that were sampled in this investigation.

Sample Station Wet Biomass per
Area (kg/m2)

Time Delay from Radarsat-2 Polarimetric
SAR Image Acquisition Time to the
Sample Time of the Station (min)

|SHH| |SHV| |SVV| FAIPS

QD01 2.2 50 0.1960 0.0343 0.2789 0.1186
QD02 4.3 65 0.2612 0.0435 0.3848 0.2201
QD03 1.9 87 0.1714 0.0271 0.2484 0.0924
QD04 1.65 103 0.1849 0.0310 0.2642 0.1060
QD05 0.95 121 0.1861 0.0319 0.2656 0.1072
QD06 1.05 132 0.1867 0.0301 0.2735 0.1115
QD07 1.15 153 0.1574 0.0265 0.2240 0.0763
QD08 1.5 167 0.2018 0.0344 0.2912 0.1279
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3.4. Floating Algae Biomass Evaluation Model

Figure 10 shows an exponential relationship between FAIPS and wet biomass per
area (kg/m2) of macroalgae sampled on the Yellow Sea of China in this investigation, on
5 July 2016.
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4. Discussions
4.1. Challenge of the Synchronization Experiment

We coordinated the satellite images acquisition and ground truth verification to im-
plement a synchronization experiment off the east coast of Qingdao, China, on 5 July 2016
in this investigation. Our team arrived at QD01 station and sampled the Ulva prolifera
at 22:56 UTC 4 July 2006, when about 50 minutes after the first polarimetric SAR image
(RadarSAT-2) was acquired (22:07 UTC 4 July 2006), or 70 minutes after the Cosmo-SkyMed
SAR image was acquired (21:46 UTC 4 July 2006). One of the challenges in this synchro-
nization experiment was to match the sample spot (referring to the coordinates recorded
by the GPS receiver that the team member carried) with the SAR image. Because of the
time delay of 50 min, it is probably tough to find the corresponding sample spot (quite
close to a macroalgae patch) on the SAR image. Firstly, we labeled the point of the first
sample station, for example, on the Radarsat-2 image in accordance with the coordinates
recorded. Following that, we moved the point to a spot 1.2 km away, northeastwards. This
is because, according to the regress model (Figure 6), the macroalgae patches would have
traveled around 1.2 km (at averaged speed of 0.4812 km/h), southwestwards (Figure 5), in
50 min. In this way, we were usually able to locate the Ulva prolifera patch on RadarSAT-2
polarimetric SAR image, where the ground truth team sampled the algae. Finally, we
statistically collected and set the NRCS (i.e., 〈|SHH|2〉, 〈|SHV|2〉 and 〈|SVV|2〉) of the patch
on SAR image as the feature values for the sample algae in Table 3.

In addition, the influence of clouds on optical images is another challenge in this
synchronization experiment. Because of the cloud, most of the macroalgae on HJ-1A CCD
image (02:20:54 UTC 5 July 2016) were not captured (see Figure 4c), resulting in fewer blue
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patches in Figure 5. This might deteriorate the predicting accuracy of the regression model
(Figure 6).

Last but not least, we selected a much bigger area of patches on SAR image to abstract
the features of algae samples, to reduce the accidental error produce by the sampling
procedure. This quantification, however, might induce additional uncertainty concerning
NRCS assessment because of the inhomogeneity of the floating algae samples on the sea
surface. The methodology of feature abstraction from the SAR images proposed in this
paper can be taken as a trade-off.

4.2. Macroalgae Biomass Assessment by Means of Remote Sensing Images

The regression equation (in Figure 10) proposed in this investigation can be used in
the evaluation of the biomass of Ulva prolifera macroalgae on the sea surface. Hu et al.
implemented an experiment in laboratories to measure the wet and dry biomass per area
of Ulva. prolifera and to establish an exponential model, relating the biomass per area to the
reflectance of macroalgae on MODIS images in 2017 [78]. Moreover, Xiao et al. found there
were significant exponential relationships between the biomass per area of Ulva prolifera
and EVI (Enhanced Vegetation Index), with R2 > 0.9 and the average percentage deviation
(APD) ≈ 20%, for the simulated MODIS Rrs (the reflectance measured in situ experiment
of water tank in 2019, by a FieldSpec4 ASD spectrometer with 1 nm resolution from 350
to 2500 nm) [79]. For the simulated MODIS Rrc (Rayleigh-corrected reflectance) and Rtoa
(top-of-atmosphere reflectance) under various aerosol optical depths at 550 nm (τ550), there
were exponential relationships between the biomass per area and various indices (e.g., RVI,
NDVI, FAI, KOSC, and OSABI). The coefficients of the fitting formulas, however, were
significantly affected by the AOT (Aerosol Optical Thickness).

The FAIPS proposed in this paper is hopefully a polarimetric SAR image-based index
that can be engaged in the identification of the floating Ulva prolifera macroalgae on the
sea surface, which is hardly influenced by the atmosphere effects and the lack of daylight.
Considering the absence of polarimetric SAR data, the dual polarized (HH/HV or VV/VH)
SAR image can also be used because of the co-polarization channel (HH or VV), which is
shown as a similar response to the macroalgae samples according to Figure 9.

Considering the FAIPS-based exponential regression model proposed in this investi-
gation (Figure 10),

y = 0.5613e8.9082x (8)

where x denotes the FAIPS index from the polarimetric SAR image and y denotes the
predicted wet biomass per area (in kg/m2) of macroalgae on the sea surface. We were
able to evaluate that the total wet biomass of macroalgae on the Yellow Sea of China was
around 28–43 kilotons, according to Equation (8), by using the Radarsat-2 polarimetric SAR
image taken on 4 July 2016 (see Table 1). This assessment was in good agreement with the
evaluated result (37.3 kilotons) by using MODIS data taken on 2 July 2016 in the study area
of this investigation [79,80].

5. Conclusions

Remote sensing evaluation of biomass for the macroalgae on the sea surface has been
reported by using satellite images such as MODIS, Landsat, etc., in recent years, based
on the spectral reflectance or feature indexes such as EVI, NDVI, etc. In this paper, we
implemented a synchronization experiment to coordinate the satellite image acquisition and
ground truth verification to obtain the relationship between wet biomass of macroalgae and
its features on polarimetric SAR images. Following that, the FAIPS index-based exponential
regression equation was proposed to evaluate the macroalgae biomass of Ulva prolifera
in the Yellow Sea of China by using polarimetric SAR images. The algorithm proposed
in this paper can be applied in the monitoring and biomass assessment of macroalgae
blooms when medium-high resolution polarimetric SAR images are available, regardless
of daylight and cloud coverage over the sea surface.
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