Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network
"> Figure 1
<p>The ocean oil spill image of RadarSat-2 in fine quad-polarization imaging mode used in this study: (<b>a</b>) oil spill image of RadarSat-2 SAR (Dataset 1); and (<b>b</b>) oil spill image of RadarSat-2 SAR (Dataset 2). There are oil spill, water, island, and oil platform in the image of Dataset 1, and there are oil spill, water and oil platform in the image of Dataset 2.</p> "> Figure 2
<p>Presentation of several fully Pol-SAR features of Dataset 1 and Dataset 2.</p> "> Figure 3
<p>Frame chart of experimental process for ocean oil spill classification.</p> "> Figure 4
<p>Clusters of ocean oil spill and water in region of interesting in two and three dimensional feature space: (<b>a</b>) <span class="html-italic">span</span>-<math display="inline"> <semantics> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> </semantics> </math>; (<b>b</b>) <span class="html-italic">span</span>-<span class="html-italic">H</span>; and (<b>c</b>) <math display="inline"> <semantics> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> </semantics> </math>-<span class="html-italic">span</span>-<span class="html-italic">H</span>.</p> "> Figure 5
<p>Probability density of ocean oil spill and water in region of interesting in one dimensional feature space: (<b>a</b>) <span class="html-italic">span</span>; and (<b>b</b>) <span class="html-italic">H</span>.</p> "> Figure 6
<p>The difference of identifying ability of oil spill from the boat wake and drilling platforms based on several fully Pol-SAR features extracted from Dataset 1. (<b>a</b>) the image of fully Pol-SAR feature H (polarization entropy); (<b>b</b>) the image of fully Pol-SAR feature <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>α</mi> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics> </math> (mean scattering angle); (<b>c</b>) is the image of fully Pol-SAR feature span (backscattered energy).</p> "> Figure 7
<p><span class="html-italic">J-M</span> distance index of different fully Pol-SAR features of Dataset 1 and Dataset 2. span: backscattered energy [<a href="#B8-remotesensing-09-00799" class="html-bibr">8</a>]; <math display="inline"> <semantics> <mi>ρ</mi> </semantics> </math>: co-polarized complex correlation [<a href="#B7-remotesensing-09-00799" class="html-bibr">7</a>]; H: polarization entropy [<a href="#B1-remotesensing-09-00799" class="html-bibr">1</a>]; A: anisotropy coefficient [<a href="#B25-remotesensing-09-00799" class="html-bibr">25</a>]; <math display="inline"> <semantics> <mover accent="true"> <mi>α</mi> <mo>¯</mo> </mover> </semantics> </math>: mean scattering angle [<a href="#B25-remotesensing-09-00799" class="html-bibr">25</a>]; <math display="inline"> <semantics> <mi>μ</mi> </semantics> </math>: conformity coefficient [<a href="#B15-remotesensing-09-00799" class="html-bibr">15</a>]; P: degree of polarization [<a href="#B22-remotesensing-09-00799" class="html-bibr">22</a>].</p> "> Figure 8
<p>Wavelet neural network architecture with a single hidden layer.</p> "> Figure 9
<p>Flow chart for the training process of the wavelet neural network.</p> "> Figure 10
<p>Classification overall accuracy of optimized and un-optimized WNN with different hidden layer nodes of Dataset 1.</p> "> Figure 11
<p>Classification results of Dataset 1.</p> "> Figure 12
<p>Classification overall accuracy of optimized and un-optimized WNN with different hidden layer nodes of Dataset 2.</p> "> Figure 13
<p>Classification results of Dataset 2.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Remote Sensing Data
2.2. Introduction of Method Frame for Classifying the Ocean Oil Spills from Water
2.2.1. The Combination of Multiple Fully Pol-SAR Features for Improving Ocean Oil Spill Identification
2.2.2. Selection Criteria of Fully Pol-SAR Features Based on J-M Distance Method
2.2.3. Optimization Strategy of the Initial Value of Wavelet Neural Network
The Architecture of the Wavelet Neural Network
Optimization Method of the WNN
- Step 1
- Implement the preprocessing of the original image. The Pol-SAR features are extracted, and the expert interpretation map is determined. The region of interest is selected.
- Step 2
- Build the WNN model. The number of nodes in each layer is determined. Numbers of the input layer nodes equal to numbers of the selected features (in Dataset 1 experiment, span, H, , and P fully Pol-SAR features are selected, and, in Dataset 2 experiment, , H, , and P features are selected by J-M index). Numbers of hidden layer nodes are determined by the testing. In this study, we set the number of the hidden layer nodes as 15, 20, 25, 30, 35, and 40 to evaluate the convergence and classification performance under different neural network structure. The numbers of output layer nodes is equal to the number of classified types. In this study, the classified types are oil spill and water, the number of the output layer nodes is 2.
- Step 3
- Train the wavelet neural network. The pixel values of the selected fully Pol-SAR features (span, H, , and P of Dataset 1; , H, , and P of Dataset 2) in the region of interest are used as the input of the WNN to conduct the training of the network. The number of iterations is set to 100. The minimum output error Emin of the neural is set to 1 × 10−5. If the output error E < Emin, then the training iteration ends. If E > Emin, then the training iteration continues.
- Step 4
- Obtain the classification results.
3. Result
3.1. Classification Result and Accuracy Analysis
3.2. Effect of Different Numbers of Hidden Layer Nodes on WNN Classification Performance
4. Discussion
4.1. Combination Pattern of Pol-SAR Features for Oil Spill Classification Should Be Taken into Consideration
4.2. More Advanced Classifier Should Be Introduced or Developed for Further Promoting Ocean Oil Spill Classification Performance
5. Conclusions
- J-M distance index method is beneficial to select the fully Pol-SAR features. , H, span, P, and are selected in this study. Strong contrast degree of gray level of pixels between oil spill and water illustrates the selected features have good separability of oil spill and seawater.
- Jointly using multiple fully Pol-SAR features shows better classification performance of oil spill and seawater, compared with the classification results of only using single fully Pol-SAR feature.
- We build a more robust WNN classifier through setting optimal initial values of the network for oil spill classification. The experimental results demonstrate that the optimized WNN classifier can promote the classification performance largely, compared to an un-optimized WNN classifier.
- Since both the combined usage of fully Pol-SAR features and an optimized WNN classifier can improve classification performance, it proves the effectiveness and applicableness of the proposed method for ocean oil spill classification.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Garcia-Pineda, O.; Zimmer, B.; Howard, M.; Pichel, W.; Li, X.; MacDonald, I.R. Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (tcnna). Can. J. Remote Sens. 2009, 35, 411–421. [Google Scholar] [CrossRef]
- Migliaccio, M.; Gambardella, A.; Tranfaglia, M. SAR polarimetry to observe oil spills. IEEE Trans. Geosci. Remote Sens. 2007, 45, 506–511. [Google Scholar] [CrossRef]
- Hu, C.; Li, X.; Pichel, W.G.; Mullerkarger, F.E. Detection of natural oil slicks in the NW gulf of Mexico using Modis imagery. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, C.; Li, X.; He, M.; Pichel, W.G. Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm. Int. J. Remote Sens. 2010, 31, 4819–4833. [Google Scholar] [CrossRef]
- Robinson, I.S. Measuring the Ocean from Space—The Principles and Methods of Satellite Oceanography; Springer: Berlin/Heidelberg, Germany, 2004; pp. 178–179. [Google Scholar]
- Cheng, Y.; Li, X.; Xu, Q.; Garcia-Pineda, O.; Andersen, O.B.; Pichel, W.G. SAR observation and model tracking of an oil spill event in coastal waters. Mar. Pollut. Bull. 2011, 62, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, M.; Nunziata, F.; Gambardella, A. On the co-polarized phase difference for oil spill observation. Int. J. Remote Sens. 2009, 30, 1587–1602. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Eltoft, T. Characterization of marine surface slicks by Radarsat-2 multi polarization features. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5302–5319. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Yang, Z.; Pichel, W. SAR imaging of ocean surface oil seep trajectories induced by near inertial oscillation. Remote Sens. Environ. 2013, 130, 182–187. [Google Scholar] [CrossRef]
- Garciapineda, O.; Macdonald, I.R.; Li, X.; Jackson, C.R.; Pichel, W.G. Oil spill mapping and measurement in the Gulf of Mexico with textural classifier neural network algorithm (tcnna). IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 2517–2525. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Wei, Y.; Tang, Z.; Cheng, Y.; Pichel, W.G. Satellite observations and modeling of oil spill trajectories in the Bohai Sea. Mar. Pollut. Bull. 2013, 71, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, B.; Li, X.; Nunziata, F.; Xu, Q.; Ding, X.; Migliaccio, M.; Pichel, W.G. Monitoring of oil spill trajectories with Cosmo-Skymed X-band SAR images and model simulation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2895–2901. [Google Scholar] [CrossRef]
- Kim, T.S.; Park, K.A.; Li, X.; Lee, M.; Hong, S.; Lyu, S.J.; Nam, S. Detection of the Hebei spirit oil spill on SAR imagery and its temporal evolution in a coastal region of the Yellow sea. Adv. Space Res. 2015, 56, 1079–1093. [Google Scholar] [CrossRef]
- Migliaccio, M.; Nunziata, F.; Montuori, A.; Li, X.; Pichel, W.G. A multifrequency polarimetric SAR processing chain to observe oil fields in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4729–4737. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, W.G. Mapping sea surface oil slicks using Radarsat-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38, 415–421. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Qu, J.J.; Wang, W.; Zhao, C.; Pichel, W.G. Oil spill detection with fully polarimetric UAVSAR data. Mar. Pollut. Bull. 2011, 62, 2611–2618. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, M.; Nunziata, F.; Brown, C.E.; Holt, B.; Li, X.; Pichel, W.G.; Shimada, M. Polarimetric synthetic aperture radar utilized to track oil spills. Eos Trans. Am. Geophys. Union 2013, 93, 161–162. [Google Scholar] [CrossRef]
- Nunziata, F.; Migliaccio, M.; Li, X. Sea oil slick observation using hybrid-polarity SAR architecture. IEEE J. Ocean. Eng. 2015, 40, 426–440. [Google Scholar] [CrossRef]
- Buono, A.; Nunziata, F.; Migliaccio, M.; Li, X. Polarimetric analysis of compact-polarimetry SAR architectures for sea oil slick observation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5862–5874. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Perrie, W.; Garcia-Pineda, O. Compact polarimetric synthetic aperture radar for marine oil platform and slick detection. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1–17. [Google Scholar] [CrossRef]
- Nunziata, F.; Migliaccio, M.; Gambardella, A. Pedestal height for sea oil slick observation. IET Radar Sonar Navig. 2011, 5, 103–110. [Google Scholar] [CrossRef]
- Shirvany, R.; Chabert, M.; Tourneret, J.Y. Ship and oil-spill detection using the degree of polarization in linear and Hybrid/Compact Dual-Pol SAR. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Y.; Liang, X.S.; Tsou, J. Comparison of oil spill classifications using fully and compact polarimetric SAR Images. Appl. Sci. 2017, 7, 193–214. [Google Scholar] [CrossRef]
- Migliaccio, M.; Gambardella, A.; Nunziata, F.; Shimada, M.; Isoguchi, O. The PALSAR polarimetric mode for sea oil slick observation. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4032–4041. [Google Scholar] [CrossRef]
- Minchew, B.; Jones, C.E.; Holt, B. Polarimetric analysis of backscatter from the deepwater horizon oil spill using l-band synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3812–3830. [Google Scholar] [CrossRef]
- Migliaccio, M.; Nunziata, F.; Buono, A. SAR polarimetry for sea oil slick observation. Int. J. Remote Sens. 2015, 36, 3243–3273. [Google Scholar] [CrossRef]
- Singha, S.; Bellerby, T.J.; Trieschmann, O. In detection and classification of oil spill and look-alike spots from SAR imagery using an artificial neural network. IEEE Trans. Geosci. Remote Sens. 2012, 53, 5630–5633. [Google Scholar]
- Collingwood, A.; Treitz, P.; Charbonneau, F.; Atkinson, D. Artificial neural network modeling of high arctic phytomass using synthetic aperture radar and multispectral data. Remote Sens. 2014, 6, 2134–2153. [Google Scholar] [CrossRef]
- Taravat, A.; Proud, S.; Peronaci, S.; del Frate, F.; Oppelt, N. Multilayer perceptron neural networks model for meteos at second generation SEVIRI daytime cloud masking. Remote Sens. 2015, 7, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Heermann, P.D.; Khazenie, N. Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Trans. Geosci. Remote Sens. 1992, 30, 81–88. [Google Scholar] [CrossRef]
- Zuo, L. Supervised classification of multispectral remote sensing image using BP neural network. J. Infrared Millim. Waves 1998, 17, 153–156. [Google Scholar]
- Li, J.; Du, Q.; Li, Y. An efficient radial basis function neural network for hyperspectral remote sensing image classification. Soft Comput. 2015, 20, 1–7. [Google Scholar] [CrossRef]
- Karayiannis, N.B.; Venetsanopoulos, A.N. Fast learning algorithms for neural networks. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1992, 39, 453–474. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Swain, P.H.; Ersoy, O.K. Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data. Int. J. Remote Sens. 1993, 14, 2883–2903. [Google Scholar] [CrossRef]
- Jin, C. Structure modality of the error function for feed forward neural networks. J. Comput. Res. Dev. 2003, 40, 913–917. [Google Scholar]
- Zhang, Q.G.; Benveniste, A. A wavelet networks. IEEE Trans. Neural Netw. 1992, 3, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Chen, S.; Ma, Y.; Shen, C.; Zhang, Y. Impact of different saturation encoding modes on object classification using a BP wavelet neural network. Int. J. Remote Sens. 2014, 35, 7878–7897. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, G.; Liu, H. Fault diagnosis of analog circuit based on BP wavelet neural network. Meas. Control. Technol. 2007, 26, 64–69. [Google Scholar]
- Song, D.; Zhang, Y.; Shan, X. “Over-Learning” phenomenon of wavelet neural networks in remote sensing image classifications with different entropy error functions. Entropy 2017, 19, 101–119. [Google Scholar] [CrossRef]
- Song, D.; Liu, B. Hyperspectral data spectrum and texture band selection based on the subspace-rough set method. Int. J. Remote Sens. 2015, 36, 2113–2128. [Google Scholar] [CrossRef]
- Hara, Y.; Atkins, R.; Shin, R. Application of neural networks for sea ice classification in Polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 1995, 33, 740–748. [Google Scholar] [CrossRef]
- Soh, L.; Tsatsoulis, C. Texture Analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef]
- Dabboor, M.; Howell, S.; Shokr, M.; Yackel, J. The jeffries–matusita distance for the case of complex wishart distribution as a separability criterion for fully polarimetric SAR data. Int. J. Remote Sens. 2014, 35, 6859–6873. [Google Scholar]
- Marçal, A.; Borges, J.S.; Gomes, J.A.; Costa, J.F.P.D. Land cover update by supervised classification of segmented aster images. Int. J. Remote Sens. 2005, 26, 1347–1362. [Google Scholar] [CrossRef]
- Chen, M. Optimal bands selection of remote sensing image based on core attribute of rough set theory. J. Ningde Teach. Coll. (Nat. Sci.) 2016, 18, 378–380. [Google Scholar]
- Asl, M.G.; Mobasheri, M.R.; Mojaradi, B. Unsupervised feature selection using geometrical measures in prototype space for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3774–3787. [Google Scholar]
- Fu, G.; Liu, C.; Zhou, R. Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens. 2017, 9, 2–21. [Google Scholar] [CrossRef]
- Hinton, G.; Osindero, S.; Welling, M.; Teh, Y.W. Unsupervised discovery of nonlinear structure using contrastive backpropagation. Cogn. Sci. 2006, 30, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2014, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A novel connectionist system for improved unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Prasad, S. Convolutional recurrent neural networks for hyperspectral data classification. Remote Sens. 2017, 9, 298. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6250. [Google Scholar] [CrossRef]
- Ghamisi, P.; Chen, Y.; Zhu, X.X. A self-improving convolution neural network for the classification of hyperspectral data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1537–1541. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Xie, W.; Li, H. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recogn. 2016, 63, 371–383. [Google Scholar] [CrossRef]
- Nogueira, K.; Penatti, O.A.B.; Santos, J.A.D. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn. 2017, 61, 539–556. [Google Scholar] [CrossRef]
Pol-SAR Feature | Slick-Free Sea Surface/Lookalike | Oil Slice-Covered Sea Surface | References |
---|---|---|---|
Low | High | Migliaccio, Gambardella, and Tranfaglia (2007) [2], Migliaccio, Nunziata, Montuori, et al. (2012) [14], Minchew, Jones, and Holt (2012) [25] | |
Low | High | Minchew, Jones, and Holt (2012) [25], Skrunes, Brekke, and Eltoft (2014) [8] | |
High | Low | Skrunes, Brekke, and Eltoft (2014) [8] | |
Low | High | Minchew, Jones, and Holt (2012) [25] | |
High | Low | Skrunes, Brekke, and Eltoft (2014) [8] | |
Migliaccio et al. (2011) [14] | |||
>0 | <0 | Zhang et al. (2011) [15], Skrunes Brekke, and Eltoft (2014) [8] | |
High | Low | Shivany, Chabert, and Tourneret (2012) [22] | |
Low | High | Nunziata, Migliaccio, and Gambardella (2011) [21] |
Product Type | SLC (Single Look Complex) |
---|---|
Start Time | 2015-05-08 T 23:53:36 |
Beam Mode | FQ8W |
Polarization | HH VV HV VH |
Look Direction | Right |
Pixel Spacing | 4.73 m × 4.78 m |
Incidence Angle | 2.60E1~2.93E1 |
Area Covered | 32.95 km × 23.2 km |
Product Type | SLC (Single Look Complex) |
---|---|
Start Time | 2011-06-17 T 11:48:20 |
Beam Mode | FQ25 |
Polarization | HH VV HV VH |
Look Direction | Right |
Pixel Spacing | 4.73 m × 5.05 m |
Incidence Angle | 4.36E1~4.49E1 |
Area Covered | 37.17 km × 19.34 km |
Feature | Formula | Symbol | Characterization |
---|---|---|---|
span | : represents scattering amplitudes | the total power of SAR scattering target | |
: weight of corresponding scattering mechanisms : pseudo-probability | characterizes the degree of randomness of the polarimetric scattering behavior | ||
: element of scattering matrix : real part | represents the different scattering mechanism | ||
(): element of scattered Stokes vector | characterize that how close the scattering mechanism of the observed scene is to be deterministic | ||
: phase related to each scattering mechanism | describes the scattering mechanism that characterizes the observed scene |
Parameter | Definition |
---|---|
number of input samples | |
number of nodes in the input layer | |
number of nodes in the hidden layer | |
number of nodes in the output layer | |
weight matrix n × M from the input layer to the hidden layer, with wjk as the weight connecting node j of hidden layer with the node k of the input layer); (the initial value is a random value of −1–1) | |
weight matrix N × n from the hidden layer to the output layer, with wij as the weight connecting the node i of the output layer and node j of the hidden layer; (the initial value is a random value of −1–1) | |
The kth input of the pth sample in the input layer | |
input of the jth node in the hidden layer of the pth sample | |
input of the ith node in the output layer of the pth sample | |
and | scaling parameter and translation parameter of the jth node of the hidden layer, respectively |
output of the jth node of the hidden layer of the pth sample | |
threshold value at the ith node of the output layer, (the initial value is a random value of −1–1) | |
the ith actual output in the output layer of the pth sample |
Input(s) | Training Samples | Testing Samples | Optimized WNN | Un-Optimized WNN | ||||
---|---|---|---|---|---|---|---|---|
OA (%) | Kappa | Convergence Rate | OA (%) | Kappa | Convergence Rate | |||
Four features | 600 | 2000 | 96.55 | 0.936 | 174/180 | 91.90 | 0.877 | 149/180 |
500 | 2000 | 88.80 | 0.876 | 155/180 | 88.25 | 0.810 | 105/180 | |
P | 500 | 2000 | 90.76 | 0.854 | 151/180 | 88.78 | 0.840 | 107/180 |
H | 500 | 2000 | 92.85 | 0.860 | 170/180 | 87.99 | 0.842 | 108/180 |
span | 500 | 2000 | 94.42 | 0.827 | 109/180 | 91.25 | 0.841 | 107/180 |
Input(s) | Training Samples | Testing Samples | Optimized WNN | Un-Optimized WNN | ||||
---|---|---|---|---|---|---|---|---|
OA (%) | Kappa | Convergence Rate | OA (%) | Kappa | Convergence Rate | |||
Four features | 600 | 2000 | 97.67 | 0.948 | 153/180 | 92.71 | 0.877 | 135/180 |
500 | 2000 | 92.56 | 0.871 | 145/180 | 91.66 | 0.810 | 101/180 | |
P | 500 | 2000 | 95.05 | 0.854 | 151/180 | 92.10 | 0.840 | 103/180 |
H | 500 | 2000 | 94.10 | 0.860 | 170/180 | 92.64 | 0.842 | 110/180 |
500 | 2000 | 93.29 | 0.827 | 113/180 | 91.31 | 0.841 | 102/180 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, D.; Ding, Y.; Li, X.; Zhang, B.; Xu, M. Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network. Remote Sens. 2017, 9, 799. https://doi.org/10.3390/rs9080799
Song D, Ding Y, Li X, Zhang B, Xu M. Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network. Remote Sensing. 2017; 9(8):799. https://doi.org/10.3390/rs9080799
Chicago/Turabian StyleSong, Dongmei, Yaxiong Ding, Xiaofeng Li, Biao Zhang, and Mingyu Xu. 2017. "Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network" Remote Sensing 9, no. 8: 799. https://doi.org/10.3390/rs9080799
APA StyleSong, D., Ding, Y., Li, X., Zhang, B., & Xu, M. (2017). Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network. Remote Sensing, 9(8), 799. https://doi.org/10.3390/rs9080799