Wetlands Classification Using Quad-Polarimetric Synthetic Aperture Radar through Convolutional Neural Networks Based on Polarimetric Features
"> Figure 1
<p>Pseudocolor images. (<b>a</b>)Training image 1, (<b>b</b>) Training image 2, (<b>c</b>) Training image 3, (<b>d</b>)Testing image, (<b>e</b>) A schematic of the classical coloring scheme of polarization decomposition using pseudo color synthesis.</p> "> Figure 2
<p>UAV images of ground objects. (<b>a</b>) Nearshore water, (<b>b</b>) Seawater, (<b>c</b>) Spartina alterniflora, (<b>d</b>) Suaeda salsa, (<b>e</b>) Tamarix, (<b>f</b>) Reed, (<b>g</b>) Tidal flat.</p> "> Figure 3
<p>Experimental flow on AlexNet (where C presents channels, K represents kernel size, S presents stride, P represents padding, MP represents max pooling).</p> "> Figure 4
<p>Results on AlexNet. (<b>a</b>) 4channels result, (<b>b</b>) 10 channels result, (<b>c</b>) 12 channels result, (<b>d</b>) 21 channels result, (<b>e</b>) Ground-truth map.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Preprocessing
2.1. Study Area and Data
2.2. Data Preprocessing
3. Method
3.1. Normalized Method
3.2. Schemes
3.3. Exp
3.4. Experiment
Pseudocodes of the experiment: QP Classification through CNNs Based on Polarimetric Features |
Input: GF-3 quad PolSAR images. |
Output: classified results. |
1: Calibrate GF-3 PolSAR images [66]. |
2: Nonlocal filtering [67]. |
3: Polarimetric decomposition [61]. |
4: Extract polarimetric features. |
5: Nonlinear normalization. |
6: Four schemes are proposed based on the relationship between the T matrix and span. |
7: Extract training datasets: validating datasets = 4:1. |
8: Inputting datasets into CNN [73,74]. |
for i < N do |
the train one time. |
If good fitting, then |
Save model, and break. |
else if over-fitting or under-fitting, then |
Adjust parameters includes, i.e., learning rate, bias. |
end |
9.Test images are input to the model, and do predict to the patches of all pixels. |
10. Do method evaluation, i.e., Statistic OA and Kappa coefficient. |
(N respents the epoches, H presents the image’s height and W presents the image’s width) |
3.5. Evaluation Method
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QP | Quad-polarimetric synthetic aperture radar |
CNNs | Convolutional neural networks |
ROI | Regin of interest |
SAS | Synthetic aperture sonar |
ViT | Vision transformer |
NAS | Neural architecture search |
DARTS | Differentiable architecture search |
DOAJ | Directory of open access journals |
SGD | Stochastic gradient descent |
FCN | Fully convolutional network |
CV-SDFCN | Complex-valued domain stacked-dilated convolution |
RSD | Reflection symmetry decomposition |
OA | Overall accuracy |
SAR | Synthetic aperture radar |
SVM | Support vector machine |
GAN | Generative adversarial network |
NB | Naive Bayes |
RF | Random forest |
MLP | Multilayer perceptron |
SSVIT | Spatial-spectral vision transformer |
PolSAR | Polarimetric synthetic aperture radar |
DEM | Digital elevation model |
DBN | Deep belief network |
SAE | Stack autoencoder |
DCAE | Deep convolution autoencoder |
DSCNN | Deep supervised contraction neural network |
QPSI | Quad polarization band 1 |
UAV | Unmanned aerial vehicle |
References
- Baolei, Z.; Qiaoyun, Z.; Chaoyang, F.; Qingyu, F.; Shumin, Z. Understanding land use and land cover dynamics from 1976 to 2014 in yellow river delta. Land 2017, 6, 1–20. [Google Scholar]
- Touzi, R.; Deschamps, A.; Rother, G. Scattering type phase for wetland classification using C-band polarimetric SAR. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2008; pp. II-285–II-288. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.; Wang, J.; Xiao, R. The Influence of Polarimetric Parameters and an Object-Based Approach on Land Cover Classification in Coastal Wetlands. Remote Sens. 2014, 6, 12575–12592. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ren, G.; Ma, Y.; Fan, Y. Coastal wetland classification based on high resolution SAR and optical image fusion. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2016; pp. 886–889. [Google Scholar] [CrossRef]
- He, Z.; He, D.; Mei, X.; Hu, S. Wetland Classification Based on a New Efficient Generative Adversarial Network and Jilin-1 Satellite Image. Remote Sens. 2019, 11, 2455. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, P.; Tu, C.; Wang, H.; Zhou, Z.; Feng, Z.; Shen, F.; Li, Z. Spatiotemporal Change Detection of Coastal Wetlands Using Multi-Band SAR Coherence and Synergetic Classification. Remote Sens. 2022, 14, 2610. [Google Scholar] [CrossRef]
- Gao, Y.; Song, X.; Li, W.; Wang, J.; He, J.; Jiang, X.; Feng, Y. Fusion Classification of HSI and MSI Using a Spatial-Spectral Vision Transformer for Wetland Biodiversity Estimation. Remote Sens. 2022, 14, 850. [Google Scholar] [CrossRef]
- Gao, Y.; Li, W.; Zhang, M.; Wang, J.; Sun, W.; Tao, R.; Du, Q. Hyperspectral and multispectral classification for coastal wetland using depthwise feature interaction network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.; Xu, J.; Zhang, R.; Lu, Y. Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands. Remote Sens. 2020, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- DeLancey, E.R.; Simms, J.F.; Mahdianpari, M.; Brisco, B.; Mahoney, C.; Kariyeva, J. Comparing Deep Learning and Shallow Learning for Large-Scale Wetland Classification in Alberta, Canada. Remote Sens. 2020, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- Banks, S.; White, L.; Behnamian, A.; Chen, Z.; Montpetit, B.; Brisco, B.; Pasher, J.; Duffe, J. Wetland Classification with Multi-Angle/Temporal SAR Using Random Forests. Remote Sens. 2019, 11, 670. [Google Scholar] [CrossRef]
- Faizabadi, A.R.; Zaki, H.F.B.M.; Abidin, Z.B.Z.; Hashim, N.N.W.N.; Husman, M.A.B. Efficient Region of Interest Based Metric Learning for Effective Open World Deep Face Recognition Applications. IEEE Access 2022, 10, 76168–76184. [Google Scholar] [CrossRef]
- Yang, M.; Kong, B.; Dang, R.; Yan, X. Classifying urban functional regions by integrating buildings and points-of-interest using a stacking ensemble method. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102753. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, S.-W.; Chen, L.; Zuo, C. Detection of Alzheimer’s disease using features of brain region-of-interest-based individual network constructed with the sMRI image. Comput. Med Imaging Graph. 2022, 98, 102057. [Google Scholar] [CrossRef] [PubMed]
- Ullah, B.; Khan, A.; Fahad, M.; Alam, M.; Noor, A.; Saleem, U.; Kamran, A.M. A Novel Approach to Enhance Dual-Energy X-Ray Images Using Region of Interest and Discrete Wavelet Transform. J. Inf. Processing Syst. 2022, 18, 319–331. [Google Scholar] [CrossRef]
- Steiniger, Y.; Kraus, D.; Meisen, T. Survey on deep learning based computer vision for sonar imagery. Eng. Appl. Artif. Intell. 2022, 114, 105157. [Google Scholar] [CrossRef]
- Yutong, G.; Khishe, M.; Mohammadi, M.; Rashidi, S.; Nateri, M.S. Evolving Deep Convolutional Neural Networks by Extreme Learning Machine and Fuzzy Slime Mould Optimizer for Real-Time Sonar Image Recognition. Int. J. Fuzzy Syst. 2022, 24, 1371–1389. [Google Scholar] [CrossRef]
- Fernandes, J.d.C.V.; de Moura, N.N., Jr.; de Seixas, J.M. Deep Learning Models for Passive Sonar Signal Classification of Military Data. Remote Sens. 2022, 14, 2648. [Google Scholar] [CrossRef]
- Gerg, I.D.; Monga, V. Structural Prior Driven Regularized Deep Learning for Sonar Image Classification. In IEEE Transactions on Geoscience and Remote Sensing; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2022; Volume 60, pp. 1–16. [Google Scholar] [CrossRef]
- Varga, D. No-Reference Image Quality Assessment with Convolutional Neural Networks and Decision Fusion. Appl. Sci. 2022, 12, 101. [Google Scholar] [CrossRef]
- Pardamean, B.; Cenggoro, T.W.; Rahutomo, R.; Budiarto, A.; Karuppiah, E.K. Transfer learning from chest x-ray pre-trained convolutional neural network for learning mammogram data—Sciencedirect. Procedia Comput. Sci. 2018, 135, 400–407. [Google Scholar] [CrossRef]
- Khan, H.A.; Wu, J.; Mushtaq, M.; Mushtaq, M.U. Brain tumor classification in mri image using convolutional neural network. Math. Biosci. Eng. 2020, 17, 6203–6216. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xing, C.; Yin, J.; Yang, J. Land Cover Classification for Polarimetric SAR Images Based on Vision Transformer. Remote Sens. 2022, 14, 4656. [Google Scholar] [CrossRef]
- Dong, H.; Zou, B.; Zhang, L.; Zhang, S. Automatic Design of CNNs via Differentiable Neural Architecture Search for PolSAR Image Classification. In IEEE Transactions on Geoscience and Remote Sensing; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2020; Volume 58, pp. 6362–6375. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zhang, L.; Zou, B. Exploring Vision Transformers for Polarimetric SAR Image Classification. In IEEE Transactions on Geoscience and Remote Sensing; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2022; Volume 60, pp. 1–15. [Google Scholar] [CrossRef]
- Nie, W.; Huang, K.; Yang, J.; Li, P. A Deep Reinforcement Learning-Based Framework for PolSAR Imagery Classification. In IEEE Transactions on Geoscience and Remote Sensing; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2022; Volume 60, pp. 1–15. [Google Scholar] [CrossRef]
- Xie, W.; Jiao, L.; Hua, W. Complex-Valued Multi-Scale Fully Convolutional Network with Stacked-Dilated Convolution for PolSAR Image Classification. Remote Sens. 2022, 14, 3737. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I. A tutorial on synthetic aperture radar. Geosci. Remote Sens. Mag. IEEE 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Li, S.; Liao, Z.; Liao, M. Texture Classification of PolSAR Data Based on Sparse Coding of Wavelet Polarization Textons. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4576–4590. [Google Scholar] [CrossRef]
- Parikh, H.; Patel, S.; Patel, V. Classification of SAR and PolSAR images using deep learning: A review. Int. J. Image Data Fusion 2019, 11, 1–32. [Google Scholar] [CrossRef]
- Yamagata, Y.; Yasuoka, Y. Classification of wetland vegetation by texture analysis methods using ERS-1 and JERS-1 images. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993. [Google Scholar]
- Hong, S.H.; Kim, H.O.; Wdowinski, S.; Feliciano, E. Evaluation of polarimetric SAR decomposition for classifying wetland vegetation types. Remote Sens. 2015, 7, 8563–8585. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools, and Challenges for the Community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Zhong, P.; Wang, R. Learning Conditional Random Fields for Classification of Hyperspectral Images. IEEE Trans. Image Process 2010, 19, 1890–1907. [Google Scholar] [CrossRef] [PubMed]
- Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification with an Edge: Improving Semantic Image Segmentation with Boundary Detection. ISPRS J. Photogramm. Remote Sens. 2018, 135, 158–172. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xiang, S.; Liu, C.-L.; Pan, C.-H. Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797–1801. [Google Scholar] [CrossRef]
- Ghedira, H.; Bernier, M.; Ouarda, T.B.M.J. Application of neural networks for wetland classification in RADARSAT SAR imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Hänsch, R.; Hellwich, O. Classification of polarimetric SAR data by complex valued neural networks. In Proceedings of the ISPRS Workshop High-Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 2–5 June 2009. [Google Scholar]
- Tison, C.; Nicolas, J.M.; Tupin, F.; Maitre, H. A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2046–2057. [Google Scholar] [CrossRef]
- Bentes, C.; Velotto, D.; Lehner, S. Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Geng, J.; Fan, J.; Wang, H.; Ma, X.; Li, B.; Chen, F. High-Resolution SAR Image Classification via Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2351–2355. [Google Scholar] [CrossRef]
- Jie, G.; Wang, H.; Fan, J.; Ma, X. Deep Supervised and Contractive Neural Network for SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2442–2459. [Google Scholar]
- Zhang, L.; Ma, W.; Zhang, D. Stacked sparse autoencoder in PolSAR data classification using local spatial information. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1359–1363. [Google Scholar] [CrossRef]
- Hou, B.; Kou, H.; Jiao, L. Classification of Polarimetric SAR Images Using Multilayer Autoencoders and Superpixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 9, 3072–3081. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiao, L.; Zhao, J.; Gu, J.; Zhao, J. Discriminant deep belief network for high-resolution SAR image classification. Pattern Recognit. 2017, 61, 686–701. [Google Scholar] [CrossRef]
- Gao, F.; Huang, T.; Wang, J.; Sun, J.; Hussain, A.; Yang, E. Dual-branch deep convolution neural network for polarimetric SAR image classification. Appl. Sci. 2017, 7, 447. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, C.; Liu, X.; Liao, M. A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification. Remote Sens. 2018, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Guo, J.; Sun, W. Object-oriented ensemble classification for polarimetric SAR Imagery using restricted Boltzmann machines. Remote Sens. Lett. 2016, 8, 204–213. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.Q. Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 13, 1935–1939. [Google Scholar] [CrossRef]
- Chen, S.W.; Tao, C.S. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Xie, H.; Wang, S.; Liu, K.; Lin, S.; Hou, B. Multilayer feature learning for polarimetric synthetic radar data classification. In Proceedings of the IGARSS 2014—2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, W.; Hu, Y.; Chu, Q.; Liu, L. An improved sea ice classification algorithm with Gaofen-3 dual-polarization SAR data based on deep convolutional neural networks. Remote Sens. 2022, 14, 906. [Google Scholar] [CrossRef]
- Chen, B.; Wang, S.; Jiao, L.; Stolkin, R.; Liu, H. A three-component fisher-based feature weighting method for supervised PolSAR image classification. IEEE Geosci. Remote Sens. Lett. 2014, 12, 731–735. [Google Scholar] [CrossRef]
- He, C.; Tu, M.; Xiong, D.; Liao, M. Nonlinear manifold learning integrated with fully convolutional networks for PolSAR image classification. Remote Sens. 2020, 12, 655. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zhang, L.; Zou, A. PolSAR Image Classification with Lightweight 3D Convolutional Networks. Remote Sens. 2020, 12, 396. [Google Scholar] [CrossRef]
- An, W.T.; Lin, M.S. A reflection symmetry approximation of multi-look polarimetric SAR data and its application to freeman-durden decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3649–3660. [Google Scholar] [CrossRef]
- Bentes, C.; Velotto, D.; Tings, B. Ship classification in TerraSAR-X images with convolutional neural networks. IEEE J. Ocean. Eng. 2018, 43, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Sunaga, Y.; Natsuaki, R.; Hirose, A. Land form classification and similar land-shape discovery by using complex-valued convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7907–7917. [Google Scholar] [CrossRef]
- Hou, X.; Wei, A.; Song, Q.; Lai, J.; Wang, H.; Xu, F. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci. China Inf. Sci. 2020, 63, 140303. [Google Scholar] [CrossRef] [Green Version]
- China Ocean Satellite Data Service System. Available online: https://osdds.nsoas.org.cn/ (accessed on 5 October 2022).
- User Manual of Gaofen-3 Satellite Products. China Resources Satellite Application Center: Hong Kong, China, 2016.
- Chen, J.; Chen, Y.L.; An, W.T.; Cui, Y.; Yang, J. Nonlocal filtering for polarimetric SAR data: A pretest approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1744–1754. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- An, W.; Cui, Y.; Yang, J. Three-Component Model-Based Decomposition for Polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2732–2739. [Google Scholar]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Cui, Y.; Yamaguchi, Y.; Yang, J.; Kobayashi, H.; Park, S.; Singh, G. On Complete Model-Based Decomposition of Polarimetric SAR Coherency Matrix Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1991–2001. [Google Scholar] [CrossRef]
- An, W.; Xie, C. An Improvement on the Complete Model-Based Decomposition of Polarimetric SAR Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1926–1930. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. Comput. Sci. 2014, 60, 84–90. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
Id | Date | Time (UTC) | Inc. Angle (°) | Mode | Resolution | Use |
---|---|---|---|---|---|---|
1 | 2021-09-14 | 22:14:11 | 30.98 | QPSI | 8 m | Train |
2 | 2021-09-14 | 22:14:06 | 30.97 | QPSI | 8 m | Train |
3 | 2021-10-13 | 10:05:35 | 37.71 | QPSI | 8 m | Train |
4 | 2017-10-12 | 22:07:36 | 36.89 | QPSI | 8 m | Test |
Images | Nearshore Water | Seawater | Spartina Alterniflora | Tamarix | Reed | Tidal Flat | Suaeda Salsa |
---|---|---|---|---|---|---|---|
20210914_1 | 500 | 400 | 1000 | 500 | 500 | 500 | 500 |
20210914_2 | 500 | 200 | 0 | 0 | 0 | 500 | 0 |
20211013 | 0 | 400 | 0 | 500 | 500 | 0 | 500 |
Total | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
ID | Channels | Polarimetric Parameters |
---|---|---|
1 | 4 | T11, T22, T33, P0 |
2 | 10 | T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23), P0 |
3 | 12 | PS, PD, PV, P2, P3, θ, φ, x, y, a, b, P0 |
4 | 21 | T11, T22, T33, Re(T12), Re(T13), Re(T23), Im(T12), Im(T13), Im(T23), PS, PD, PV, P2, P3, θ, φ, x, y, a, b, P0 |
ID | Ground-Objects | Nearshore Water | Seawater | Spartina Alterniflora | Tamarix | Reed | Tidal Flat | Suaeda Salsa | Acc (%) | OA (%) | K |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | Nearshore water | 898 | 1 | 0 | 0 | 0 | 101 | 0 | 89.9 | 88.41 | 0.88 |
Seawater | 16 | 982 | 0 | 0 | 0 | 0 | 2 | 98.2 | |||
Spartina alterniflora | 0 | 0 | 782 | 63 | 153 | 0 | 2 | 78.2 | |||
Tamarix | 0 | 0 | 0 | 947 | 53 | 0 | 0 | 94.7 | |||
Reed | 0 | 0 | 334 | 0 | 666 | 0 | 0 | 66.6 | |||
Tidal flat | 34 | 24 | 0 | 0 | 0 | 942 | 0 | 94.2 | |||
Suaeda salsa | 0 | 0 | 28 | 0 | 0 | 0 | 972 | 97.2 | |||
10 | Nearshore water | 964 | 7 | 0 | 0 | 0 | 29 | 0 | 96.4 | 93.66 | 0.93 |
Seawater | 12 | 987 | 0 | 0 | 0 | 0 | 1 | 98.7 | |||
Spartina alterniflora | 0 | 0 | 955 | 30 | 12 | 0 | 3 | 95.5 | |||
Tamarix | 0 | 0 | 0 | 960 | 40 | 0 | 0 | 96 | |||
Reed | 0 | 0 | 0 | 8 | 992 | 0 | 0 | 99.2 | |||
Tidal flat | 72 | 212 | 0 | 0 | 0 | 716 | 0 | 71.6 | |||
Suaeda salsa | 12 | 0 | 6 | 0 | 0 | 0 | 982 | 98.2 | |||
12 | Nearshore water | 796 | 0 | 0 | 0 | 0 | 204 | 0 | 79.6 | 95.44 | 0.95 |
Seawater | 6 | 993 | 0 | 0 | 0 | 1 | 0 | 99.3 | |||
Spartina alterniflora | 0 | 0 | 966 | 31 | 2 | 0 | 1 | 96.6 | |||
Tamarix | 0 | 0 | 0 | 998 | 2 | 0 | 0 | 99.8 | |||
Reed | 0 | 0 | 24 | 9 | 967 | 0 | 0 | 96.7 | |||
Tidal flat | 1 | 1 | 0 | 0 | 0 | 998 | 0 | 99.8 | |||
Suaeda salsa | 16 | 0 | 21 | 0 | 0 | 0 | 963 | 96.36 | |||
21 | Nearshore water | 921 | 6 | 0 | 0 | 0 | 11 | 0 | 92.1 | 96.54 | 0.97 |
Seawater | 9 | 994 | 0 | 0 | 0 | 1 | 0 | 99.4 | |||
Spartina alterniflora | 0 | 0 | 965 | 0 | 0 | 0 | 27 | 96.5 | |||
Tamarix | 0 | 0 | 28 | 949 | 32 | 0 | 0 | 94.9 | |||
Reed | 0 | 0 | 7 | 29 | 968 | 0 | 0 | 96.8 | |||
Tidal flat | 70 | 0 | 0 | 0 | 0 | 988 | 0 | 98.8 | |||
Suaeda salsa | 0 | 0 | 0 | 22 | 0 | 0 | 973 | 97.3 |
ID | Ground-Objects | Nearshore Water | Seawater | Spartina Alterniflora | Tamarix | Reed | Tidal Flat | Suaeda Salsa | Acc (%) | OA (%) | K |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | Nearshore water | 891 | 39 | 0 | 0 | 0 | 70 | 0 | 89.1 | 89.53 | 0.88 |
Seawater | 5 | 992 | 0 | 0 | 0 | 0 | 3 | 99.2 | |||
Spartina alterniflora | 0 | 0 | 861 | 46 | 93 | 0 | 0 | 86.1 | |||
Tamarix | 0 | 0 | 0 | 963 | 37 | 0 | 0 | 96.3 | |||
Reed | 0 | 0 | 62 | 0 | 938 | 0 | 0 | 93.8 | |||
Tidal flat | 337 | 26 | 2 | 0 | 0 | 635 | 0 | 63.5 | |||
Suaeda salsa | 0 | 0 | 13 | 0 | 0 | 0 | 987 | 98.70 | |||
10 | Nearshore water | 889 | 74 | 0 | 0 | 0 | 37 | 0 | 88.9 | 92.06 | 0.91 |
Seawater | 7 | 991 | 0 | 0 | 0 | 0 | 2 | 99.1 | |||
Spartina alterniflora | 7 | 0 | 993 | 0 | 0 | 0 | 0 | 99.3 | |||
Tamarix | 0 | 0 | 0 | 979 | 21 | 0 | 0 | 97.5 | |||
Reed | 0 | 0 | 73 | 0 | 927 | 0 | 0 | 92.7 | |||
Tidal flat | 70 | 257 | 0 | 0 | 0 | 670 | 3 | 67 | |||
Suaeda salsa | 0 | 0 | 11 | 0 | 0 | 0 | 989 | 98.9 | |||
12 | Nearshore water | 868 | 25 | 0 | 0 | 0 | 107 | 0 | 86.8 | 92.21 | 0.91 |
Seawater | 5 | 995 | 0 | 0 | 0 | 0 | 0 | 99.5 | |||
Spartina alterniflora | 0 | 0 | 964 | 36 | 0 | 0 | 0 | 96.4 | |||
Tamarix | 0 | 0 | 206 | 648 | 0 | 0 | 146 | 64.8 | |||
Reed | 0 | 0 | 0 | 6 | 994 | 0 | 0 | 99.4 | |||
Tidal flat | 12 | 1 | 0 | 0 | 0 | 987 | 0 | 98.7 | |||
Suaeda salsa | 0 | 0 | 1 | 0 | 0 | 0 | 999 | 99.9 | |||
21 | Nearshore water | 922 | 10 | 0 | 0 | 0 | 68 | 0 | 92.2 | 94.93 | 0.94 |
Seawater | 5 | 993 | 1 | 0 | 0 | 1 | 0 | 99.3 | |||
Spartina alterniflora | 0 | 0 | 968 | 32 | 0 | 0 | 0 | 96.8 | |||
Tamarix | 0 | 0 | 12 | 846 | 142 | 0 | 0 | 84.6 | |||
Reed | 0 | 0 | 7 | 29 | 968 | 0 | 0 | 96.8 | |||
Tidal flat | 70 | 0 | 0 | 0 | 0 | 988 | 0 | 98.8 | |||
Suaeda salsa | 0 | 0 | 0 | 22 | 0 | 0 | 973 | 97.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; An, W.; Zhang, Y.; Cui, L.; Xie, C. Wetlands Classification Using Quad-Polarimetric Synthetic Aperture Radar through Convolutional Neural Networks Based on Polarimetric Features. Remote Sens. 2022, 14, 5133. https://doi.org/10.3390/rs14205133
Zhang S, An W, Zhang Y, Cui L, Xie C. Wetlands Classification Using Quad-Polarimetric Synthetic Aperture Radar through Convolutional Neural Networks Based on Polarimetric Features. Remote Sensing. 2022; 14(20):5133. https://doi.org/10.3390/rs14205133
Chicago/Turabian StyleZhang, Shuaiying, Wentao An, Yue Zhang, Lizhen Cui, and Chunhua Xie. 2022. "Wetlands Classification Using Quad-Polarimetric Synthetic Aperture Radar through Convolutional Neural Networks Based on Polarimetric Features" Remote Sensing 14, no. 20: 5133. https://doi.org/10.3390/rs14205133