PolSAR Image Classification with Lightweight 3D Convolutional Networks
"> Figure 1
<p>Illustrations of vanilla 2D convolution. (<b>a</b>) When the input is a single <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>×</mo> <mi>w</mi> </mrow> </semantics></math> map, each kernel is <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>×</mo> <mi>k</mi> </mrow> </semantics></math> and the corresponding output is a 2D <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>h</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>×</mo> <mo>(</mo> <mi>w</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> map. (<b>b</b>) When the input is <span class="html-italic">c</span> numbers <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>×</mo> <mi>w</mi> </mrow> </semantics></math> maps, each kernel is <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>×</mo> <mi>k</mi> <mo>×</mo> <mi>c</mi> </mrow> </semantics></math>. Doing the same operation on each channel as in (a), getting <span class="html-italic">c</span> 2D maps and add them up. The outputs of two sub-graphs are 2D maps with the same size.</p> "> Figure 2
<p>Illustrations of vanilla 3D convolution (C3D). C3D is an intuitive extension of 2D convolution. (<b>a</b>) When the input is a single <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>×</mo> <mi>w</mi> <mo>×</mo> <mi>d</mi> </mrow> </semantics></math> cube, each kernel is <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>×</mo> <mi>k</mi> <mo>×</mo> <mi>k</mi> </mrow> </semantics></math> and the corresponding output is a 3D <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>h</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>×</mo> <mo>(</mo> <mi>w</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>×</mo> <mo>(</mo> <mi>d</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math> cube. (<b>b</b>) When the input is <span class="html-italic">c</span> numbers <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>×</mo> <mi>w</mi> <mo>×</mo> <mi>d</mi> </mrow> </semantics></math> cubes, each kernel is <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>×</mo> <mi>k</mi> <mo>×</mo> <mi>k</mi> <mo>×</mo> <mi>c</mi> </mrow> </semantics></math>. Same as the operations in (a), <span class="html-italic">c</span> numbers 3D cubes can be obtained and add them up. The outputs of two sub-graphs are 3D cubes with the same size.</p> "> Figure 3
<p>The process of pseudo-3D convolution (P3D). P3D is divided into two steps to achieve low-latency approximation to C3D, and a nonlinear activation exists between the two. (<b>a</b>) Step 1: Operating 2D convolution in the spatial dimension of the <math display="inline"><semantics> <mrow> <mi>h</mi> <mo>×</mo> <mi>w</mi> <mo>×</mo> <mi>d</mi> </mrow> </semantics></math> input, each kernel is <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>×</mo> <mi>k</mi> <mo>×</mo> <mn>1</mn> </mrow> </semantics></math> and the corresponding output is a <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>h</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>×</mo> <mo>(</mo> <mi>w</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>×</mo> <mi>d</mi> </mrow> </semantics></math> cube. (<b>b</b>) Step 2: Operating 1D convolution in the depth dimension, each kernel is <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <mn>1</mn> <mo>×</mo> <mi>k</mi> </mrow> </semantics></math>. Getting the final output with the size of <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>h</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>×</mo> <mo>(</mo> <mi>w</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>×</mo> <mo>(</mo> <mi>d</mi> <mo>−</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Illustrations of C3D and 3D-depthwise separable convolution with multi groups of kernels. Different filters are coded by different colors, and the convolution kernels within the same group are marked by the same color. (<b>a</b>) When the number of the kernels of C3D is <span class="html-italic">c</span>. (<b>b</b>) The process of 3D-depthwise separable convolution in the same situation. All 2D operations in depth separable convolution are replaced by 3D operations in (b). Firstly, doing vanilla 3D convolutions on each channel of the input with the kernel size of <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>×</mo> <mi>k</mi> <mo>×</mo> <mi>k</mi> </mrow> </semantics></math> (3D depthwise convolution). Then, doing <span class="html-italic">c</span> times <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>×</mo> <mn>1</mn> <mo>×</mo> <mn>1</mn> </mrow> </semantics></math> convolutions to the intermediates (3D pointwise convolution), and the output with the same size of C3D can be obtained.</p> "> Figure 5
<p>General flow chart of the CNNs-based PolSAR images classification methods.</p> "> Figure 6
<p>3D architectures for PolSAR image classification. (<b>a</b>) The architecture of 3D-convoluted neural networks (CNN) proposed by [<a href="#B31-remotesensing-12-00396" class="html-bibr">31</a>]. (<b>b</b>) The updated version of 3D-CNN in this paper. (<b>c</b>) The proposed 3D-CNN framework with lightweight 3D convolutions and global average pooling.</p> "> Figure 7
<p>An intuitive comparison between fully connected layer and global average pooling layer for multi-channel 2D input.</p> "> Figure 8
<p>AIRSAR Flevoland dataset. (<b>a</b>) Pauli RGB map. (<b>b</b>) Ground truth map.</p> "> Figure 9
<p>ESAR Oberpfaffenhofen dataset. (<b>a</b>) Pauli RGB map. (<b>b</b>) Ground truth map.</p> "> Figure 10
<p>EMISAR Foulum dataset. (<b>a</b>) Pauli RGB map. (<b>b</b>) Ground truth map.</p> "> Figure 11
<p>The influence of epoch on the performance of 3D-CNN. (<b>a</b>) The results on the AIRSAR Flevoland dataset. (<b>b</b>) The results on the EMISAR Foulum dataset.</p> "> Figure 12
<p>Classification results of the whole map on the AIRSAR Flevoland data with different methods. (<b>a</b>) Ground truth. (<b>b</b>) Result of CNN. (<b>c</b>) Result of depthwise separable (DW)-CNN. (<b>d</b>) Result of 3D-CNN. (<b>e</b>) Result of P3D-CNN. (<b>f</b>) Result of 3D-depthwise separable convolution-based CNN (3DDW-CNN).</p> "> Figure 13
<p>Classification results overlaid with the ground truth map on ESAR Oberpfaffenhofen data with different methods. (<b>a</b>) Ground truth. (<b>b</b>) Result of CNN. (<b>c</b>) Result of DW-CNN. (<b>d</b>) Result of 3D-CNN. (<b>e</b>) Result of P3D-CNN. (<b>f</b>) Result of 3DDW-CNN.</p> "> Figure 14
<p>Classification results overlaid with the ground truth map on the EMISAR Foulum data with different methods. (<b>a</b>) Ground truth. (<b>b</b>) Result of CNN. (<b>c</b>) Result of DW-CNN. (<b>d</b>) Result of 3D-CNN. (<b>e</b>) Result of P3D-CNN. (<b>f</b>) Result of 3DDW-CNN.</p> "> Figure 15
<p>Comparisons of accuracy and complexity.</p> ">
Abstract
:1. Introduction
- Two lightweight 3D-CNN architectures are introduced for the fast PolSAR interpretation speed during testing.
- Two lightweight 3D convolution operations, i.e., pseudo-3D and 3D-depthwise separable convolutions, and global average pooling are applied to reduce the redundancy of 3D-CNNs.
- A lightweight 3D-CNN framework can be summarized. Compared with ordinary 3D-CNNs, the architectures under the framework have fewer model parameters and lower computational complexity.
- The performance of the lightweight architectures is verified on three PolSAR benchmark datasets.
2. Related Works
2.1. Vanilla Convolutions
2.2. Pseudo-3D Convolution
2.3. 3D-Depthwise Separable Convolution
3. Proposed Methods
3.1. Representation of PolSAR Images
3.2. Lightweight 3D-CNNs for PolSAR Classification
4. Experiments
4.1. Datasets and Settings
4.1.1. AIRSAR Flevoland
4.1.2. ESAR Oberpfaffenhofen
4.1.3. EMISAR Foulum
4.2. Experiments Starting
4.3. Results and Comparisons
4.4. Studies of Complexity
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar] [CrossRef]
- Lardeux, C.; Frison, P.; Tison, C.; Souyris, J.; Stoll, B.; Fruneau, B.; Rudant, J. Support vector machine for multifrequency SAR polarimetric data classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4143–4152. [Google Scholar] [CrossRef]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional neural network with data augmentation for SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Pei, J.; Huang, Y.; Huo, W.; Zhang, Y.; Yang, J.; Yeo, T. SAR automatic target recognition based on multiview deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 2196–2210. [Google Scholar] [CrossRef]
- Ren, Z.; Hou, B.; Wen, Z.; Jiao, L. Patch-sorted deep Feature Learning for high resolution SAR image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3113–3126. [Google Scholar] [CrossRef]
- Gong, M.; Zhao, J.; Liu, J.; Miao, Q.; Jiao, L. Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 125–138. [Google Scholar] [CrossRef]
- Corentin, H.; Azimi, S.; Merkle, N. Road segmentation in SAR satellite images with deep fully convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1867–1871. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Liu, F. Wishart deep stacking network for fast PolSAR image classification. IEEE Trans. Image Process. 2016, 25, 3273–3286. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y. Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 13, 1935–1939. [Google Scholar] [CrossRef]
- Bi, H.; Sun, J.; Xu, Z. A graph-based semisupervised deep learning model for PolSAR image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2116–2132. [Google Scholar] [CrossRef]
- Yan, W.; Chu, H.; Liu, X.; Liao, M. A hierarchical fully convolutional network integrated with sparse and low-rank subspace representations for PolSAR imagery classification. Remote Sens. 2018, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Bruzzone, L.; Bhattacharya, A.; Bovolo, F.; Chaudhuri, S. A novel technique based on deep learning and a synthetic target database for classification of urban areas in PolSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 154–170. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, L.; Zou, B. Densely connected convolutional neural network based polarimetric SAR image classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 3764–3767. [Google Scholar] [CrossRef]
- Geng, J.; Ma, X.; Fan, J.; Wang, H. Semisupervised classification of polarimetric SAR image via superpixel restrained deep neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 122–126. [Google Scholar] [CrossRef]
- Bi, H.; Xu, F.; Wei, Z.; Xue, Y.; Xu, Z. An active deep learning approach for minimally supervised PolSAR image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9378–9395. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Chen, S.; Tao, C. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Hänsch, R. Complex-valued multi-layer perceptrons-An application to polarimetric SAR data. Photogramm. Eng. Remote Sens. 2010, 76, 1081–1088. [Google Scholar] [CrossRef]
- Hänsch, R.; Hellwich, O. Complex-valued convolutional neural networks for object detection in PolSAR data. In Proceedings of the 8th European Conference on Synthetic Aperture Radar (EUSAR), Aachen, Germany, 7–10 June 2010; pp. 1–4. [Google Scholar]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Shang, R.; Wang, G.; Michael, A.; Jiao, L. Complex-valued convolutional autoencoder and spatial pixel-squares refinement for polarimetric SAR image classification. Remote Sens. 2019, 11, 522. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wu, Y.; Zhang, P.; Liang, W.; Li, M. Pixel-wise PolSAR image classification via a novel complex-valued deep fully convolutional network. Remote Sens. 2019, 11, 2653. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Li, X.; Li, L.; Liu, X.; Liu, F.; Jiao, L. Semi-supervised complex-valued GAN for polarimetric SAR image classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 29 July–2 August 2019; pp. 3245–3248. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Tu, M.; Wang, Y.; He, C. Polarimetric phase difference aided network for PolSAR image classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 6667–6670. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.; Zou, B. Efficiently utilizing complex-valued PolSAR image data via a multi-task deep learning framework. ISPRS J. Photogramm. Remote Sens. 2019, 157, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3D convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4489–4497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, Z.; Zou, B. Polarimetric SAR terrain classification using 3D convolutional neural network. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium(IGARSS), Valencia, Spain, 22–27 July 2018; pp. 4551–4554. [Google Scholar] [CrossRef]
- Tan, X.; Li, M.; Zhang, P.; Wu, Y.; Song, W. Complex-valued 3-D convolutional neural network for PolSAR image classification. IEEE Geosci. Remote Sens. Lett. 2019, in press. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, F.; Tang, B.; Yin, Q.; Sun, X. Slim and efficient neural network design for resource-constrained SAR target recognition. Remote Sens. 2018, 10, 1618. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Yao, T.; Mei, T. Learning spatio-temporal representation with pseudo-3D residual networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5534–5542. [Google Scholar] [CrossRef] [Green Version]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar] [CrossRef] [Green Version]
- Ye, R.; Liu, F.; Zhang, L. 3D depthwise convolution: Reducing model parameters in 3D vision tasks. arXiv 2018, arXiv:1808.01556. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. arXiv 2014, arXiv:1406.2199. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar] [CrossRef] [Green Version]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Earth Online. Available online: http://envisat.esa.int/POLSARpro/datasets.html2 (accessed on 1 December 2019).
- Yu, P.; Qin, A.; Clausi, D. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1302–1317. [Google Scholar] [CrossRef]
- Liu, B.; Hu, H.; Wang, H.; Wang, K.; Liu, X.; Yu, W. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 907–924. [Google Scholar] [CrossRef]
- Skriver, H.; Dall, J.; Le Toan, T.; Quegan, S.; Ferro-Famil, L.; Pottier, E.; Lumsdon, P.; Moshammer, R. Agriculture classification using PolSAR data. In Proceedings of the 2nd International Workshop on POLinSAR, Frascati, Italy, 17–21 January 2005; pp. 213–218. [Google Scholar]
- Conradsen, K.; Nielsen, A.; Schou, J.; Skriver, H. A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 4–19. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
AIRSAR Flevoland | ||
---|---|---|
Category Code | Name | Reference Data |
1 | Buildings | 963 |
2 | Rapeseed | 17,195 |
3 | Beet | 11,516 |
4 | Stem beans | 6812 |
5 | Peas | 11,394 |
6 | Forest | 20,458 |
7 | Lucerne | 11,411 |
8 | Potatoes | 19,480 |
9 | Bare soil | 6116 |
10 | Grass | 8159 |
11 | Barley | 8046 |
12 | Water | 8824 |
13 | Wheat one | 16,906 |
14 | Wheat two | 12,728 |
15 | Wheat three | 24,584 |
Total | - | 184,592 |
ESAR Oberpfaffenhofen | ||
---|---|---|
Category Code | Name | Reference Data |
1 | Built-up areas | 310,829 |
2 | Woodland | 263,238 |
3 | Open areas | 733,075 |
Total | - | 1,307,142 |
EMISAR Foulum | ||
---|---|---|
Category Code | Name | Reference Data |
1 | Lake | 93,829 |
2 | Buildings | 41,098 |
3 | Forest | 113,765 |
4 | Peas | 26,493 |
5 | Winter rape | 37,240 |
6 | Winter wheat | 76,401 |
7 | Beet | 42,263 |
Total | - | 431,088 |
EMISAR Foulum | ESAR Oberpfaffenhofen | AIRSAR Flevoland | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Num | CNN | 3D-CNN | Increase | Num | CNN | 3D-CNN | Increase | Num | CNN | 3D-CNN | Increase |
500 | 73.57 | 76.45 | N/A | 300 | 90.10 | 91.81 | N/A | 300 | 76.80 | 90.47 | N/A |
1000 | 79.26 | 83.11 | 5.69/6.66 | 600 | 91.26 | 92.75 | 1.16/0.94 | 600 | 87.99 | 95.40 | 11.19/4.93 |
2000 | 83.81 | 87.15 | 4.55/4.04 | 1000 | 92.36 | 93.83 | 1.10/1.08 | 1200 | 93.46 | 97.21 | 5.47/1.81 |
4000 | 87.39 | 89.15 | 3.58/2.00 | 2000 | 92.97 | 94.22 | 0.61/0.39 | 2400 | 93.61 | 97.55 | 0.15/0.34 |
6000 | 87.75 | 89.67 | 0.36/0.52 | 4000 | 93.02 | 94.57 | 0.05/0.35 | 3600 | 93.83 | 97.58 | 0.22/0.03 |
Category | CNN [12] | DW-CNN [35] | 3D-CNN [31] | P3D-CNN | 3DDW-CNN |
---|---|---|---|---|---|
1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
2 | 82.38 | 92.65 | 90.63 | 95.65 | 96.55 |
3 | 93.20 | 96.68 | 96.50 | 96.25 | 97.98 |
4 | 98.18 | 99.45 | 99.05 | 99.48 | 99.55 |
5 | 96.60 | 98.10 | 98.55 | 98.85 | 99.05 |
6 | 94.70 | 98.38 | 97.40 | 98.68 | 95.93 |
7 | 93.60 | 97.15 | 98.83 | 98.80 | 98.73 |
8 | 90.53 | 97.60 | 96.88 | 97.10 | 97.15 |
9 | 98.68 | 98.63 | 99.73 | 94.38 | 98.98 |
10 | 95.48 | 96.03 | 97.03 | 96.50 | 95.98 |
11 | 90.98 | 96.45 | 98.23 | 99.65 | 99.55 |
12 | 97.50 | 99.28 | 100.00 | 100.00 | 100.00 |
13 | 91.85 | 97.80 | 97.33 | 99.25 | 97.35 |
14 | 91.04 | 93.42 | 93.22 | 97.05 | 94.52 |
15 | 92.15 | 95.65 | 96.85 | 99.53 | 96.50 |
OA | 93.46 | 97.00 | 97.21 | 97.97 | 97.74 |
Kappa | 92.97 | 96.77 | 97.00 | 97.82 | 97.57 |
Category | CNN [12] | DW-CNN [35] | 3D-CNN [31] | P3D-CNN | 3DDW-CNN |
---|---|---|---|---|---|
1 | 89.19 | 91.25 | 92.14 | 94.27 | 92.93 |
2 | 93.35 | 93.97 | 94.85 | 94.44 | 95.79 |
3 | 94.55 | 93.85 | 94.51 | 94.99 | 96.87 |
OA | 92.36 | 93.02 | 93.83 | 94.53 | 95.20 |
Kappa | 88.54 | 89.53 | 90.75 | 91.63 | 92.79 |
Category | CNN [12] | DW-CNN [35] | 3D-CNN [31] | P3D-CNN | 3DDW-CNN |
---|---|---|---|---|---|
1 | 88.66 | 92.16 | 94.06 | 94.56 | 94.32 |
2 | 97.48 | 95.32 | 99.10 | 97.34 | 98.04 |
3 | 97.10 | 96.06 | 98.46 | 99.10 | 98.30 |
4 | 71.48 | 73.84 | 69.96 | 80.12 | 74.28 |
5 | 84.24 | 87.14 | 84.28 | 83.08 | 82.52 |
6 | 81.70 | 86.17 | 84.97 | 86.06 | 86.75 |
7 | 91.04 | 92.18 | 93.16 | 90.24 | 89.58 |
OA | 87.39 | 88.99 | 89.15 | 90.08 | 89.12 |
Kappa | 85.29 | 87.15 | 87.34 | 88.43 | 87.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Zhang, L.; Zou, B. PolSAR Image Classification with Lightweight 3D Convolutional Networks. Remote Sens. 2020, 12, 396. https://doi.org/10.3390/rs12030396
Dong H, Zhang L, Zou B. PolSAR Image Classification with Lightweight 3D Convolutional Networks. Remote Sensing. 2020; 12(3):396. https://doi.org/10.3390/rs12030396
Chicago/Turabian StyleDong, Hongwei, Lamei Zhang, and Bin Zou. 2020. "PolSAR Image Classification with Lightweight 3D Convolutional Networks" Remote Sensing 12, no. 3: 396. https://doi.org/10.3390/rs12030396