A Self-Adaptive Optimization Individual Tree Modeling Method for Terrestrial LiDAR Point Clouds
<p>Flowchart of the proposed method.</p> "> Figure 2
<p>Neighbors growing based on joint <span class="html-italic">K</span>-neighbors and fixed radius. (<b>a</b>) Neighbors growing based on <span class="html-italic">K</span>-neighbors; (<b>b</b>) neighbors growing under the constraint of the fixed radius. In (<b>a</b>), blue points are the starting points, while orange points are the growing points using <span class="html-italic">K</span> nearest neighbors. In (<b>b</b>), green points are the final growing points for the blue points under the constraint of a fixed radius. Red points are the excluded points.</p> "> Figure 3
<p>Branches separation based on the spatial connectivity of neighboring points set. <math display="inline"><semantics> <mrow> <mrow> <mo>{</mo> <mrow> <mi>S</mi> <mi>e</mi> <msub> <mi>t</mi> <mi>i</mi> </msub> </mrow> <mo>}</mo> </mrow> </mrow> </semantics></math> indicates the neighboring point set. Li represents the separated branches. Si along with the dotted line means the spatial connectivity analysis to the neighboring point set. Pi is the location where connectivity changes. Arrow means the growing direction.</p> "> Figure 4
<p>Spatial connectivity analysis to the neighboring point set. (<b>a</b>) The number of connected component is 1; (<b>b</b>) the number of connected components is 2.</p> "> Figure 5
<p>Local object primitive self-adaptive constraint adjustment. (<b>a</b>) Segmented object primitives based on the joint neighboring growing; (<b>b</b>) result of object primitive self-adaptive adjustment. Different primitives in (<b>a</b>,<b>b</b>) are rendered in different colors.</p> "> Figure 6
<p>Sketch map of neighboring point sets fusing.</p> "> Figure 7
<p>Graph structure for the tree.</p> "> Figure 8
<p>Abnormal fitting for local object primitive. (<b>a</b>) Local abnormal fitted diameter; (<b>b</b>) abnormal fitted cylinder. In (<b>a</b>), it can be found that R1 is obvious larger than R2. The red frame represents the abnormal cylinder.</p> "> Figure 9
<p>Variation in diameter of branches under natural conditions. (<b>a</b>) Variation in diameter of one branch; (<b>b</b>) variation in diameter of different branches.</p> "> Figure 10
<p>Branch model comparison before and after local optimization. (<b>a</b>) Branch model before optimization; (<b>b</b>) branch model after optimization. R1, R2, R3, and R4 are the diameters of the fitted cylinders.</p> "> Figure 11
<p>Self-revision of branch crosses. (<b>a</b>) Local abnormal cylinder; (<b>b</b>) cylinder after optimization; (<b>c</b>) shortest path analysis based on the constructed graph structure; (<b>d</b>) branch crosses after self-revision. In (<b>a</b>), ‘A’ represent the abnormal cylinder. In (<b>b</b>), ‘A’’ represents the optimized cylinder. In (<b>d</b>), ‘B’’ and ‘C’’ represent the cylinders filled the gap.</p> "> Figure 12
<p>Tree samples for the three forest sites. (<b>a</b>–<b>d</b>) tree samples from Peruvian site; (<b>e</b>–<b>h</b>) tree samples from Indonesian site; (<b>i</b>–<b>l</b>) tree samples from Guyanese site.</p> "> Figure 13
<p>Volume deviation for each sample.</p> "> Figure 14
<p>Tree height deviation for each sample.</p> "> Figure 15
<p>DBH deviation for each sample.</p> "> Figure 16
<p>QSM volume comparison among trees with different DBH and tree height. (<b>a</b>) QSM volume comparison among trees with DBH smaller than 70 cm and larger than 70 cm. (<b>b</b>) QSM volume comparison among trees with height lower than 30 m and higher than 30 m.</p> "> Figure 16 Cont.
<p>QSM volume comparison among trees with different DBH and tree height. (<b>a</b>) QSM volume comparison among trees with DBH smaller than 70 cm and larger than 70 cm. (<b>b</b>) QSM volume comparison among trees with height lower than 30 m and higher than 30 m.</p> "> Figure 17
<p>Regression analysis between the built QSM volume and harvested volume. (<b>a</b>) Regression analysis for TreeQSM; (<b>b</b>) regression analysis for AdQSM; (<b>c</b>) regression analysis for ProposedQSM.</p> "> Figure 17 Cont.
<p>Regression analysis between the built QSM volume and harvested volume. (<b>a</b>) Regression analysis for TreeQSM; (<b>b</b>) regression analysis for AdQSM; (<b>c</b>) regression analysis for ProposedQSM.</p> "> Figure 18
<p>Volume deviations of the 29 samples for the three methods.</p> ">
Abstract
:1. Introduction
- i.
- The robustness of the tree modeling is not strong. When encountering complex tree structure, the construction of local branch model is prone to error. As a result, the model accuracy is low.
- ii.
- The computation burden for tree modeling is huge. High time complexity and low modeling efficiency lead to the tree modeling methods are not suitable for large-scale and mass tree point cloud modeling.
- iii.
- The modeling methods lack adaptive modeling ability and cannot conduct adaptive optimization and adjustment for some incorrectly constructed model elements.
2. Method
2.1. Wood Points Segmentation Based on the Joint Neighboring Growing
2.2. Single-Branch Separation Based on Spatial Connectivity Analysis
2.3. Local Object Primitive Self-Adaptive Constraint Adjustment
2.4. Branch Topological Relation Construction Based on Graph Structure
2.5. Local Self-Adaptive Repair and Optimization of Branch Model
2.5.1. Abnormal Fitted Cylinder Optimization
2.5.2. Self-Revision of Branch Crosses
2.6. Global Optimization of Tree Model Guided by Prior Knowledge
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Terrestrial vegetation carbon sinks in China, 1981–2000. Sci. China Earth Sci. 2007, 50, 1341–1350. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xinliang, X.; Kerang, L. Biomass Carbon Sequestration by Planted Forests in China. Sci. China Earth Sci. 2010, 20, 289–297. [Google Scholar]
- Cao, L.; Gao, S.; Li, P.H.; Yun, T.; Shen, X.; Ruan, H.H. Aboveground Biomass Estimation of Individual Trees in a Coastal Planted Forest Using Full-Waveform Airborne Laser Scanning Data. Remote Sens. 2016, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Knapp, N.; Fischer, R.; Cazcarra-Bes, V.; Huth, A. Structure metrics to generalize biomass estimation from lidar across forest types from different continents. Remote Sens. Environ. 2020, 237, 111597. [Google Scholar] [CrossRef]
- Kukenbrink, D.; Gardi, O.; Morsdorf, F.; Thurig, E.; Schellenberger, A.; Mathys, L. Above-ground biomass references for urban trees from terrestrial laser scanning data. Ann. Bot. 2021, 128, 709–724. [Google Scholar] [CrossRef]
- Hu, M.; Pitkanen, T.P.; Minunno, F.; Tian, X.; Lehtonen, A.; Makela, A. A new method to estimate branch biomass from terrestrial laser scanning data by bridging tree structure models. Ann. Bot. 2021, 128, 737–751. [Google Scholar] [CrossRef]
- Cournede, P.H.; Mathieu, A.; Houllier, F.; Arthelemy, D.B.; Reffye, P.D. Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development. Ann. Bot. 2007, 101, 1207–1219. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Wan, P.; Wang, T.; Cai, S.; Chen, Y.; Jin, X.; Yan, G. A Novel Approach for the Detection of Standing Tree Stems from Plot-Level Terrestrial Laser Scanning Data. Remote Sens. 2019, 11, 211. [Google Scholar] [CrossRef] [Green Version]
- Hui, Z.; Jin, S.; Li, D.; Ziggah, Y.Y.; Liu, B. Individual Tree Extraction from Terrestrial LiDAR Point Clouds Based on Transfer Learning and Gaussian Mixture Model Separation. Remote Sens. 2021, 13, 223. [Google Scholar] [CrossRef]
- Hyyppa, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- Du, S.; Lindenbergh, R.; Ledoux, H.; Stoter, J.; Nan, L. AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees. Remote Sens. 2019, 11, 2074. [Google Scholar] [CrossRef] [Green Version]
- Hui, Z.; Jin, S.; Xia, Y.; Wang, L.; Ziggah, Y.Y.; Cheng, P. Wood and leaf separation from terrestrial LiDAR point clouds based on mode points evolution. ISPRS J. Photogramm. Remote Sens. 2021, 178, 219–239. [Google Scholar] [CrossRef]
- Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H.; Bauwens, S.; Bentley, L.P.; Chave, J.; Danson, F.M.; Demol, M.; Disney, M.; et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 2020, 251, 112102. [Google Scholar] [CrossRef]
- Jin, S.; Sun, X.; Wu, F.; Su, Y.; Li, Y.; Song, S.; Xu, K.; Ma, Q.; Baret, F.; Jiang, D.; et al. Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects. ISPRS J. Photogramm. Remote Sens. 2021, 171, 202–223. [Google Scholar] [CrossRef]
- Lau, A.; Calders, K.; Bartholomeus, H.; Martius, C.; Raumonen, P.; Herold, M.; Vicari, M.; Sukhdeo, H.; Singh, J.; Goodman, R.C. Terrestrial LiDAR: A Case Study in Guyana. Forests 2019, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Su, Y.; Hu, T.; Guan, H.; Jin, S.; Zhang, J.; Zhao, X.; Xu, K.; Wei, D.; Kelly, M.; et al. Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Geosci. Remote Sens. 2021, 9, 232–257. [Google Scholar] [CrossRef]
- Kelly, M.; Di Tommaso, S. Mapping forests with Lidar provides flexible, accurate data with many uses. Calif. Agr. 2015, 69, 14–20. [Google Scholar] [CrossRef]
- Pueschel, P.; Newnham, G.; Rock, G.; U De Lhoven, T.; Werner, W.; Hill, J. The influence of scan mode and circle fitting on tree stem detection, stem diameter and volume extraction from terrestrial laser scans. ISPRS J. Photogramm. Remote Sens. 2013, 77, 44–56. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, W.; Mellado, N.; Wang, N.; Jin, S.; Cai, S.; Luo, L.; Lejemble, T.; Yan, G. SLAM-aided forest plot mapping combining terrestrial and mobile laser scanning. ISPRS J. Photogramm. Remote Sens. 2020, 163, 214–230. [Google Scholar] [CrossRef]
- Liang, X.; Kukko, A.; Hyyppa, J.; Lehtomaki, M.; Pyorala, J.; Yu, X.; Kaartinen, H.; Jaakkola, A.; Wang, Y. In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories. ISPRS J. Photogramm. Remote Sens. 2018, 143, 97–107. [Google Scholar] [CrossRef]
- Stovall, A.E.L.; Anderson-Teixeira, K.J.; Shugart, H.H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecol. Manag. 2018, 427, 217–229. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef] [Green Version]
- Hackenberg, J.; Morhart, C.; Sheppard, J.; Spiecker, H.; Disney, M. Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description. Forests 2014, 5, 1069–1105. [Google Scholar] [CrossRef] [Green Version]
- Hackenberg, J.; Wassenberg, M.; Spiecker, H.; Sun, D. Non Destructive Method for Biomass Prediction Combining TLS Derived Tree Volume and Wood Density. Forests 2015, 6, 1274–1300. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Fang, T.; Mathiopoulos, P.T.; Qu, H.; Chen, D.; Wang, Y. A Structure-Aware Global Optimization Method for Reconstructing 3-D Tree Models from Terrestrial Laser Scanning Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5653–5669. [Google Scholar] [CrossRef]
- Bucksch, A.; Lindenbergh, R. CAMPINO-A Skeletonization Method for Point Cloud Processing. ISPRS J. Photogramm. Remote Sens. 2008, 63, 115–127. [Google Scholar] [CrossRef]
- Bucksch, A.; Lindenbergh, R.; Menenti, M. SkelTre: Robust Skeleton Extraction from Imperfect Point Clouds. Vis. Comput. 2010, 26, 1283–1300. [Google Scholar] [CrossRef] [Green Version]
- Delagrange, S.; Jauvin, C.; Rochon, P. PypeTree: A Tool for Reconstructing Tree Perennial Tissues from Point Clouds. Sensors 2014, 14, 4271–4289. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Nan, L.; Dong, Y.; Su, X.; Chen, F. AdQSM: A New Method for Estimating Above-Ground Biomass from TLS Point Clouds. Remote Sens. 2020, 12, 3089. [Google Scholar] [CrossRef]
- Huang, H.; Wu, S.; Cohen-Or, D.; Gong, M.; Zhang, H.; Li, G.; Chen, B. L1-medial skeleton of point cloud. ACM Trans. Graph. 2013, 32, 654. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Zhang, X.; Liu, Y. L-1-medial skeleton-based 3D point cloud model retrieval. Multimed. Tools Appl. 2019, 78, 479–488. [Google Scholar] [CrossRef]
- Wu, S.; Wen, W.; Xiao, B.; Guo, X.; Du, J.; Wang, C.; Wang, Y. An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants. Front. Plant Sci. 2019, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Tagliasacchi, A.; Olson, M.; Hao, Z.; Su, Z. Point cloud skeletons via Laplacian based contraction. In Proceedings of the SMI 2010, Shape Modeling International Conference, Aix en Provence, France, 21–23 June 2010; pp. 187–197. [Google Scholar]
- Su, Z.; Zhao, Y.; Zhao, C.; Guo, X.; Li, Z. Skeleton extraction for tree models. Math. Comput. Model. 2011, 54, 1115–1120. [Google Scholar] [CrossRef]
- Wang, D.; Takoudjou, S.M.; Casella, E. LeWoS: A universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods Ecol. Evol. 2020, 11, 376–389. [Google Scholar] [CrossRef]
- Gonzalez De Tanago, J.; Lau, A.; Bartholomeus, H.; Herold, M.; Avitabile, V.; Raumonen, P.; Martius, C.; Goodman, R.C.; Disney, M.; Manuri, S.; et al. Estimation of above-ground biomass of large tropical trees with terrestrial Li-DAR. Methods Ecol. Evol. 2017, 9, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Kankare, V.; Puttonen, E.; Hollaus, M.; Pfeifer, N. Reconstructing Stem Cross Section Shapes from Terres-trial Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2017, 14, 272–276. [Google Scholar] [CrossRef]
Peruvian Site | Indonesian Site | Guyanese Site | |
---|---|---|---|
Number of plots | 9 | 10 | 10 |
Forest type | Lowland tropical moist Terra firme forest | Peat swamp forest | Lowland tropical moist forest |
Region | Madre de Dios. South western Amazon | Mentaya River (Central Kalimantan) | Vaitarna Holding’s concession |
Sample | Species | Volume (m3) | Height (m) | DBH (cm) |
---|---|---|---|---|
PER01 | Buchenavia macrophylla | 41.934 | 38.957 | 137.6 |
PER02 | Dacryodes peruviana | 10.385 | 26.688 | 76.8 |
PER03 | Couratari macrocarpa | 7.799 | 31.878 | 77.4 |
PER04 | Couratari macrocarpa | 5.956 | 34.624 | 66.2 |
PER05 | Sloanea eichleri | 25.91 | 35.053 | 108 |
PER06 | Pterygota amazonica | 21.353 | 41.837 | 115.4 |
PER07 | Pterygota amazonica | 14.111 | 43.997 | 117 |
PER08 | Pseudopiptadenia suaveolens | 20.144 | 43.231 | 91.4 |
PER09 | Nectandra longifolia | 7.82 | 34.012 | 67.1 |
IND01 | Tetramerista glabra | 1.578 | 23.251 | 41.5 |
IND02 | Tetramerista glabra | 2.918 | 25.214 | 59.8 |
IND03 | Tetramerista glabra | 4.545 | 23.758 | 66.8 |
IND04 | Parastemon urophyllus | 1.751 | 26.288 | 38.3 |
IND05 | Cratoxylon glaucum | 0.974 | 21.446 | 34.6 |
IND07 | Shorea | 15.859 | 36.651 | 89.6 |
IND08 | Aglaia rubiginosa | 3.732 | 26.389 | 61.3 |
IND09 | Diospyros evena | 4.717 | 23.373 | 51 |
IND10 | Shorea teysmanniana | 2.697 | 24.999 | 49.1 |
IND11 | Shorea | 12.869 | 36.457 | 79.8 |
GUY01 | grandiflora | 13.207 | 32.261 | 88.3 |
GUY02 | jupunba | 5.646 | 31.781 | 63.9 |
GUY03 | grandiflora | 6.078 | 29.138 | 60.3 |
GUY04 | grandiflora | 6.527 | 28.476 | 62.6 |
GUY05 | grandiflora | 5.98 | 30.017 | 66.4 |
GUY06 | grandiflora | 6.382 | 31.484 | 70.5 |
GUY07 | grandiflora | 12.455 | 33.996 | 95.8 |
GUY08 | grandiflora | 8.661 | 28.924 | 75.9 |
GUY09 | coutinhoi | 16.817 | 35.051 | 95.2 |
GUY10 | falcata | 8.506 | 27.893 | 65.4 |
TreeQSM | AdQSM | ProposedQSM | |
---|---|---|---|
md (m3) | 4.257 | 2.364 | 1.427 |
rmse (m3) | 6.732 | 5.766 | 2.887 |
rmd | 36.45% | 20.24% | 12.22% |
rrmse | 57.60% | 49.40% | 24.70% |
ccc | 0.679 | 0.788 | 0.949 |
Fitted Linear Model | Sreg | Stot | R2 | |
---|---|---|---|---|
TreeQSM | y = 0.98 + 0.55x | 763.57 | 1048.33 | 0.73 |
AdQSM | y = 2.1 + 0.61x | 934.93 | 1195.21 | 0.78 |
ProposedQSM | y = −0.14 + 0.89x | 1999.39 | 2151.76 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, Z.; Cai, Z.; Liu, B.; Li, D.; Liu, H.; Li, Z. A Self-Adaptive Optimization Individual Tree Modeling Method for Terrestrial LiDAR Point Clouds. Remote Sens. 2022, 14, 2545. https://doi.org/10.3390/rs14112545
Hui Z, Cai Z, Liu B, Li D, Liu H, Li Z. A Self-Adaptive Optimization Individual Tree Modeling Method for Terrestrial LiDAR Point Clouds. Remote Sensing. 2022; 14(11):2545. https://doi.org/10.3390/rs14112545
Chicago/Turabian StyleHui, Zhenyang, Zhaochen Cai, Bo Liu, Dajun Li, Hua Liu, and Zhuoxuan Li. 2022. "A Self-Adaptive Optimization Individual Tree Modeling Method for Terrestrial LiDAR Point Clouds" Remote Sensing 14, no. 11: 2545. https://doi.org/10.3390/rs14112545
APA StyleHui, Z., Cai, Z., Liu, B., Li, D., Liu, H., & Li, Z. (2022). A Self-Adaptive Optimization Individual Tree Modeling Method for Terrestrial LiDAR Point Clouds. Remote Sensing, 14(11), 2545. https://doi.org/10.3390/rs14112545