Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

SkelTre

Robust skeleton extraction from imperfect point clouds

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Terrestrial laser scanners capture 3D geometry of real world objects as a point cloud. This paper reports on a new algorithm developed for the skeletonization of a laser scanner point cloud. The skeletonization algorithm proposed in this paper consists of three steps: (i) extraction of a graph from an octree organization, (ii) reduction of the graph to a skeleton, and (iii) embedding of the skeleton into the point cloud. For these three steps, only one input parameter is required. The results are validated on laser scanner point clouds representing 2 classes of objects; first on botanic trees as a special application and secondly on popular arbitrary objects. The presented skeleton found its first application in obtaining botanic tree parameters like length and diameter of branches and is presented here in a new, generalized version. Its definition as Reeb Graph, proofs the usefulness of the skeleton for applications like shape analysis. In this paper we show that the resulting skeleton contains the Reeb Graph and investigate the practically relevant parameters: centeredness and topological correctness. The robustness of this skeletonization method against undersampling, varying point density and systematic errors of the point cloud is demonstrated on real data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls and the medial axis transform. Comput. Geom., Theory Appl. 19(2–3), 127–153 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Arthur, D., Vassilvitskii, S.: On the worst case complexity of the k-means method. Technical Report, Stanford 698 (2005)

  3. Blum, H.: A transformation for extracting new descriptors of shape. In: Proceedings Models for Perception of Speech and Visual Form, pp. 362–380 (1967)

  4. Bucksch, A., Lindenbergh, R.: Campino—a skeletonization method for point cloud processing. ISPRS J. Photogramm. Remote Sens. 63, 115–127 (2008)

    Article  Google Scholar 

  5. Bucksch, A., Lindenbergh, R., Menenti, M.: Skeltre—Fast skeletonization of imperfect point clouds of botanic trees. In: Proceedings 3D Object Retrieval Workshop 2009 (3DOR), pp. 13–20 (2009)

  6. Chen, H.H., Huang, T.S.: A survey of construction and manipulation of octrees. Comput. Vis. Graph. Image Process. Arch. 43(3), 409–431 (1988)

    Article  Google Scholar 

  7. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom. 32(2), 231–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007)

    Article  Google Scholar 

  9. Côtè, J.F., Widlowski, J.L., Fournier, R.A., Verstraete, M.M.: The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens. Environ. 113(5), 1067–1081 (2009)

    Article  Google Scholar 

  10. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: Proceedings 4th Eurographics Symposium on Geometry Processing, pp. 143–152 (2006)

  11. Foreman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  Google Scholar 

  12. Gorte, B.: Skeletonization of laser-scanned trees in the 3d raster domain. In: Proceedings 3DGeoInfo 2006 (2006)

  13. Gorte, B., Pfeifer, N.: Structuring laser-scanned trees using 3D mathematical morphology. Int. Arch. Photogramm. Remote Sens. XXXV(B5), 929–933 (2004)

    Google Scholar 

  14. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  15. Musser, D., Saini, A.: Stl Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison-Wesley Professional Computing Series. Addison-Wesley, Reading (1996)

    Google Scholar 

  16. Palagyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai, C., Erdohelyi, B., Hausegger, K.: A sequential 3D thinning algorithm and its medical applications. In: Proceedings 17th International Conference Information Processing in Medical Imaging, pp. 409–415 (2001)

  17. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26(3), 58 (2007)

    Article  Google Scholar 

  18. Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  19. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complèment intégrable ou d’une fonction numérique. C. R. Acad. Sci. 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  20. Saito, T., Toriwaki, J.: New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recogn. 27, 1551–1565 (1994)

    Article  Google Scholar 

  21. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  22. Shan, J., Todd, C. (eds.): Topographic Laser Ranging and Scanning. CRC Press, Boca Raton (2008)

    Google Scholar 

  23. Shinagawa, Y., Kunii, T.L.: Surface coding based on Morse theory. IEEE Comput. Graph. Appl. 11, 66–78 (1991)

    Article  Google Scholar 

  24. Verroust, A., Lazarus, F.: Extracting skeletal curves from 3d scattered data. Vis. Comput. 16, 15–25 (2000)

    Article  MATH  Google Scholar 

  25. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 26(4), 19 (2007)

    Article  Google Scholar 

  26. Yan, D.M., Wintz, J., Mourrain, B., Wang, W., Boudon, F., Godin, C.: Efficient and robust branch model reconstruction from laser scanned points. In: Proceedings 11th IEEE International Conference on Computer-Aided Design and Computer Graphics (2009)

  27. Zhou, Y., Kaufman, A., Toga, A.W.: Three-dimensional skeleton and centerline generation based on an approximate minimum distance field. Vis. Comput. 14(7), 303–314 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bucksch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucksch, A., Lindenbergh, R. & Menenti, M. SkelTre. Vis Comput 26, 1283–1300 (2010). https://doi.org/10.1007/s00371-010-0520-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0520-4

Keywords

Navigation