A New Approach for the Development of Grid Models Calculating Tropospheric Key Parameters over China
<p>Distribution of 89 radiosonde stations over China. Blue dots are radiosonde stations, and red triangles are representative grid points.</p> "> Figure 2
<p>Relationships between temperature and geopotential height at four MERRA-2 grid points over China in 2016: (<b>a</b>) 42°N, 90°E; (<b>b</b>) 42°N, 120°E; (<b>c</b>) 30°N, 90°E; (<b>d</b>) 30°N, 120°E. Blue dots are the temperature of MERRA-2 in each height, and red lines are the linear fit to them.</p> "> Figure 3
<p>Time series of tropospheric parameters for pressure (<b>a</b>), parameters for water vapor pressure (<b>b</b>), parameters for temperature (<b>c</b>), and parameters for T<sub>m</sub> (<b>d</b>) provided by MERRA-2 data from 2012 to 2016. The dots shown are the mean values of each latitude interval for each epoch. Blue dots are at high latitude, green dots are at middle latitude, red dots are at low latitude, and orange dots are the mean value.</p> "> Figure 4
<p>Distribution of the annual mean of the tropospheric parameters for pressure (<b>a</b>), parameters for water vapor pressure (<b>b</b>), parameters for temperature (<b>c</b>), and parameters for T<sub>m</sub> (<b>d</b>) calculated from MERRA-2 data.</p> "> Figure 5
<p>Distribution of the annual mean of the lapse rate for pressure (<b>a</b>), decrease factor for water vapor pressure (<b>b</b>), lapse rate for temperature (<b>c</b>), and lapse rate for T<sub>m</sub> (<b>d</b>).</p> "> Figure 6
<p>Realization process of the sliding window algorithm over China. The red rectangles denote the size of the sliding windows, and the red dots denote the center point of each window. The new grid over China consists of red dots and blue dashed lines.</p> "> Figure 7
<p>Distribution of the performance of pressure at each radiosonde site in 2017 by the CTrop and GPT3 models: (<b>a</b>) Bias of GPT3; (<b>b</b>) Bias of CTrop; (<b>c</b>) RMS of GPT3; (<b>d</b>) RMS of CTrop. The positive bias means the model outputs are larger than the reference values, while the negative bias means they are smaller than the reference values.</p> "> Figure 8
<p>Distribution of the performance of water vapor pressure at each radiosonde site in 2017 by the CTrop and GPT3 models: (<b>a</b>) Bias of GPT3; (<b>b</b>) Bias of CTrop; (<b>c</b>) RMS of GPT3; (<b>d</b>) RMS of CTrop.</p> "> Figure 9
<p>Distribution of the performance of T<sub>m</sub> at each radiosonde site in 2017 by the CTrop and GPT3 models: (<b>a</b>) Bias of GPT3; (<b>b</b>) Bias of CTrop; (<b>c</b>) RMS of GPT3; (<b>d</b>) RMS of CTrop.</p> "> Figure 10
<p>Distribution of the performance of temperature at each radiosonde site in 2017 by the CTrop and GPT3 models: (<b>a</b>) Bias of GPT3; (<b>b</b>) Bias of CTrop; (<b>c</b>) RMS of GPT3; (<b>d</b>) RMS of CTrop.</p> "> Figure 11
<p>Distribution of the performance of water vapor pressure in different resolutions of the CTrop and GPT3 models validated by radiosonde sites in 2017: (<b>a</b>) Bias of GPT3-5; (<b>b</b>) Bias of CTrop-5; (<b>c</b>) Bias of CTrop-2; (<b>d</b>) RMS of GPT3-5; (<b>e</b>) RMS of CTrop-5; (<b>f</b>) RMS of CTrop-2. The positive bias means the model outputs are larger than the reference values, while the negative bias means they are smaller than the reference values.</p> "> Figure 12
<p>Distribution of the performance of pressure in different resolutions of the CTrop and GPT3 models validated by radiosonde sites in 2017: (<b>a</b>) Bias of GPT3-5; (<b>b</b>) Bias of CTrop-5; (<b>c</b>) Bias of CTrop-2; (<b>d</b>) RMS of GPT3-5; (<b>e</b>) RMS of CTrop-5; (<b>f</b>) RMS of CTrop-2.</p> "> Figure 13
<p>Distribution of the performance of T<sub>m</sub> in different resolutions of the CTrop and GPT3 models validated by radiosonde sites in 2017: (<b>a</b>) Bias of GPT3-5; (<b>b</b>) Bias of CTrop-5; (<b>c</b>) Bias of CTrop-2; (<b>d</b>) RMS of GPT3-5; (<b>e</b>) RMS of CTrop-5; (<b>f</b>) RMS of CTrop-2.</p> "> Figure 14
<p>Distribution of the performance of temperature in different resolutions of the CTrop and GPT3 models validated by radiosonde sites in 2017: (<b>a</b>) Bias of GPT3-5; (<b>b</b>) Bias of CTrop-5; (<b>c</b>) Bias of CTrop-2; (<b>d</b>) RMS of GPT3-5; (<b>e</b>) RMS of CTrop-5; (<b>f</b>) RMS of CTrop-2.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Radiosonde Data
2.2. MERRA-2 Reanalysis Product Data
2.3. Analysis of Model Parameters
2.3.1. Analysis of Tropospheric Parameters
2.3.2. Analysis of the Characteristics of the Lapse Rate
3. Development of the CTrop Model
4. Results and Discussion
4.1. Analysis of the Accuracy of the CTrop Model
4.2. Analysis of the Accuracy of Different Resolutions of the CTrop Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Géodésique 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Guo, J.; Hou, R.; Zhou, M.; Jin, X.; Li, C.; Liu, X.; Gao, H. Monitoring 2019 Forest Fires in Southeastern Australia with GNSS Technique. Remote Sens. 2021, 13, 386. [Google Scholar] [CrossRef]
- Boutiouta, S.; Lahcene, A. Preliminary study of GNSS meteorology techniques in Algeria. Int. J. Remote Sens. 2013, 34, 5105–5118. [Google Scholar] [CrossRef]
- Tunalı, E.; Özlüdemir, M.T. GNSS PPP with different troposphere models during severe weather conditions. GPS Solut. 2019, 23, 82. [Google Scholar] [CrossRef]
- Li, Z.; Wen, Y.; Zhang, P.; Liu, Y.; Zhang, Y. Joint Inversion of GPS, Leveling, and InSAR Data for the 2013 Lushan (China) Earthquake and Its Seismic Hazard Implications. Remote Sens. 2020, 12, 715. [Google Scholar] [CrossRef] [Green Version]
- Ning, T.; Wickert, J.; Deng, Z.; Heise, S.; Dick, G.; Vey, S.; Schöne, T. Homogenized time series of the atmospheric water vapor content obtained from the GNSS reprocessed data. J. Clim. 2016, 29, 2443–2456. [Google Scholar] [CrossRef]
- Hopfield, H.S. Two-Quartic tropospheric refractivity profile for correcting satellite data. J. Geophys. Res. 1969, 74, 4487–4499. [Google Scholar] [CrossRef]
- Black, H.D. An easily implemented algorithm for the tropospheric range correction. J. Geophys. Res. 1978, 83, 1825–1828. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Cheng, J.; Dick, G.; Ge, M.; Wickert, J.; Schuh, H. Real-time tropospheric delay retrieval from multi-GNSS PPP ambiguity resolution: Validation with final troposphere products and a numerical weather model. Remote Sens. 2018, 10, 481. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Zhang, B.; Li, J.; Yao, Y.; Liu, L.; Ran, Q.; Xiong, Z. A Regional Model for Predicting Tropospheric Delay and Weighted Mean Temperature in China Based on GRAPES_MESO Forecasting Products. Remote Sens. 2021, 13, 2644. [Google Scholar] [CrossRef]
- Li, T.; Wang, L.; Chen, R.; Fu, W.; Xu, B.; Jiang, P.; Liu, J.; Zhou, H.; Han, Y. Refining the empirical global pressure and temperature model with the ERA5 reanalysis and radiosonde data. J. Geod. 2021, 95, 31. [Google Scholar] [CrossRef]
- Wu, M.; Jin, S.; Li, Z.; Cao, Y.; Ping, F.; Tang, X. High-Precision GNSS PWV and Its Variation Characteristics in China Based on Individual Station Meteorological Data. Remote Sens. 2021, 13, 1296. [Google Scholar] [CrossRef]
- Zhang, W.; Lou, Y.; Huang, J.; Liu, W. A refined regional empirical pressure and temperature model over China. Adv. Space Res. 2018, 62, 1065–1074. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Yao, Y.; Liu, L.; Sun, Z.; Yan, X. A Refined Regional Model for Estimating Pressure, Temperature, and Water Vapor Pressure for Geodetic Applications in China. Remote Sens. 2020, 12, 1713. [Google Scholar] [CrossRef]
- Huang, L.; Liu, L.; Yao, C. A zenith tropospheric delay correction model based on the regional CORS network. Geod. Geodyn. 2012, 3, 53–62. [Google Scholar]
- Huang, L.; Xie, S.; Liu, L.; Li, J.; Chen, J.; Kang, C. SSIEGNOS: A New Asian Single Site Tropospheric Correction Model. ISPRS Int. J. Geo-Inf. 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Leandro, R.F.; Santos, M.C.; Langley, R.B. UNB neutral atmosphere models: Development and performance. In Proceedings of the ION NTM 2006, Monterey, CA, USA, 18–20 January 2006; pp. 564–573. [Google Scholar]
- Leandro, R.F.; Langley, R.B.; Santos, M.C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. GPS Solut. 2008, 12, 65–70. [Google Scholar] [CrossRef]
- Penna, N.; Dodson, A.; Chen, W. Assessment of EGNOS tropospheric correction model. J. Navig. 2001, 54, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Krueger, E.; Schüler, T.; Hein, G.; Martellucci, A.; Blarzino, G. Galileo tropospheric correction approaches developed within GSTB-V1. In Proceedings of the ENC-GNSS 2004, Rotterdam, The Netherlands, 16–19 May 2004. [Google Scholar]
- Schüler, T. The TropGrid2 standard tropospheric correction model. GPS Solut. 2014, 18, 123–131. [Google Scholar] [CrossRef]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical Slant Delay Modelfor Radio Space Geodetic Techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved blind model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433. [Google Scholar] [CrossRef] [Green Version]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- Ding, J.; Chen, J. Assessment of Empirical Troposphere Model GPT3 Based on NGL’s Global Troposphere Products. Sensors 2020, 20, 3631. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhang, B.; Yao, Y.B. An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions. Earth Space Sci. 2019, 6, 1926–1941. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Chen, Q.; Zeng, Z.; Liu, H.; Wang, Y.; Zheng, Y.; Sun, T.; Liao, T.; Wang, H.; et al. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmos Res. 2017, 197, 461–473. [Google Scholar] [CrossRef]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Errico, R.M.; Yang, R. Improving incremental balance in the GSI 3DVAR analysis system. Mon. Weather. Rev. 2009, 137, 1046–1060. [Google Scholar] [CrossRef]
- Wu, W.S.; Purser, R.J.; Parrish, D.F. Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Weather. Rev. 2002, 130, 2905–2916. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Verma, S.; Bhatla, R.; Chandel, A.S.; Singh, J.; Payra, S. Validation of surface temperature derived from MERRA-2 Reanalysis against IMD gridded data set over India. Earth Space Sci. 2020, 7, e2019EA000910. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Mo, Z.; Liu, L.; Zeng, Z.; Chen, J.; Xiong, S.; He, H. Evaluation of hourly PWV products derived from ERA5 and MERRA-2 over the Tibetan Plateau using ground-based GNSS observations by two enhanced models. Earth Space Sci. 2021, 8, e2020EA001516. [Google Scholar] [CrossRef]
- Huang, L.K.; Jiang, W.P.; Liu, L.L.; Chen, H.; Ye, S.R. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor. J. Geod. 2019, 93, 159–176. [Google Scholar] [CrossRef]
- Yao, Y.B.; Zhang, B.; Xu, C.Q.; Chen, J.J. Analysis of the global T m-T s correlation and establishment of the latitude-related linear model. Chin. Sci. Bull. 2014, 59, 2340–2347. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Yao, Y.B.; Xu, C.Q.; Shi, J.B.; Cao, N.; Zhang, B.; Yang, J.J. ITG: A New Global GNSS Tropospheric Correction Model. Sci. Rep. 2015, 5, 10273. [Google Scholar] [CrossRef] [Green Version]
- Askne, J.; Nordius, H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 1987, 22, 379–386. [Google Scholar] [CrossRef]
- Huang, L.K.; Zhu, G.; Liu, L.L.; Chen, H.; Jiang, W.P. A global grid model for the correction of the vertical zenith total delay based on a sliding window algorithm. GPS Solut. 2021, 25, 98. [Google Scholar] [CrossRef]
Model | CTrop/GPT3 | ||||
---|---|---|---|---|---|
Parameters | e (hPa) | P (hPa) | T (K) | Tm (K) | |
bias | mean | 0.01/0.34 | –2.35/–2.12 | –0.11/–1.25 | 0.19/1.46 |
min | –2.08/–3.83 | –31.67/–31.72 | –2.43/–5.03 | –0.94/–1.89 | |
max | 1.59/3.19 | 2.14/2.73 | 4.15/1.16 | 2.31/6.75 | |
RMS | mean | 2.60/2.86 | 5.51/5.83 | 3.09/3.44 | 3.35/3.87 |
min | 1.04/1.09 | 1.86/2.04 | 1.12/1.00 | 2.04/1.88 | |
max | 4.83/5.06 | 32.07/42.71 | 5.15/6.01 | 5.02/7.27 |
Model | CTrop/GPT3 | ||||
---|---|---|---|---|---|
Height (m) | e (hPa) | P (hPa) | T (K) | Tm (K) | |
bias | <500 | 0.07/0.47 | –2.18/–2.05 | –0.11/–0.88 | 0.53/0.88 |
500~2000 | 0.04/0.45 | –3.57/2.50 | –0.37/–1.94 | 0.19/1.99 | |
>2000 | –0.38/–0.57 | –0.91/–1.21 | 0.81/–0.80 | 0.13/2.45 | |
RMS | <500 | 3.20/3.29 | 5.69/6.55 | 2.84/3.15 | 3.48/3.61 |
500~2000 | 2.09/2.47 | 5.96/5.51 | 3.32/3.91 | 3.37/4.13 | |
>2000 | 1.50/2.02 | 3.14/3.46 | 3.43/3.32 | 2.67/4.32 |
Models | e (hPa) | P (hPa) | T (K) | Tm (K) |
---|---|---|---|---|
Mean [Min, Max] | ||||
CTrop-2 | –0.03 [–1.87, 2.01] | –2.83 [–32.94, 2.79] | –0.05 [–2.85, 5.04] | 0.27 [–1.32, 2.39] |
CTrop-5 | 0.32 [–1.69, 2.53] | –2.78 [–33.17, 2.38] | –0.15 [–3.25, 5.86] | 0.30 [–2.32, 2.46] |
GPT3-5 | 0.16 [–3.45, 2.84] | –0.46 [–29.90, 6.44] | 1.76 [–2.22, 13.77] | –1.19 [–6.14, 3.77] |
Models | e (hPa) | P (hPa) | T (K) | Tm (K) |
---|---|---|---|---|
Mean [Min, Max] | ||||
CTrop-2 | 2.64 [1.08, 5.02] | 5.59 [2.00, 33.15] | 3.16 [1.17, 5.72] | 3.37 [1.82, 5.11] |
CTrop-5 | 2.71 [1.13, 5.34] | 5.61 [2.00, 33.36] | 3.26 [1.24, 6.41] | 3.43 [1.87, 5.28] |
GPT3-5 | 2.84 [1.05, 5.10] | 6.18 [1.77, 42.89] | 4.20 [2.15, 14.18] | 3.52 [1.03, 7.37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, G.; Huang, L.; Liu, L.; Li, C.; Li, J.; Huang, L.; Zhou, L.; He, H. A New Approach for the Development of Grid Models Calculating Tropospheric Key Parameters over China. Remote Sens. 2021, 13, 3546. https://doi.org/10.3390/rs13173546
Zhu G, Huang L, Liu L, Li C, Li J, Huang L, Zhou L, He H. A New Approach for the Development of Grid Models Calculating Tropospheric Key Parameters over China. Remote Sensing. 2021; 13(17):3546. https://doi.org/10.3390/rs13173546
Chicago/Turabian StyleZhu, Ge, Liangke Huang, Lilong Liu, Chen Li, Junyu Li, Ling Huang, Lv Zhou, and Hongchang He. 2021. "A New Approach for the Development of Grid Models Calculating Tropospheric Key Parameters over China" Remote Sensing 13, no. 17: 3546. https://doi.org/10.3390/rs13173546
APA StyleZhu, G., Huang, L., Liu, L., Li, C., Li, J., Huang, L., Zhou, L., & He, H. (2021). A New Approach for the Development of Grid Models Calculating Tropospheric Key Parameters over China. Remote Sensing, 13(17), 3546. https://doi.org/10.3390/rs13173546