SSIEGNOS: A New Asian Single Site Tropospheric Correction Model
<p>Distribution of the IGS sites in Asia. The abscissa represents longitude, and the ordinate represents latitude.</p> "> Figure 2
<p>Variation of the daily bias and spectral analysis based on Fourier transformation at IISC, LHAZ, WUHN, GMSD, POL2 and NOVM sites in 2008–2010. The latitude, longitude, and altitude of each site are listed in the brackets.</p> "> Figure 3
<p>Variation of the daily bias and RMS in 2008–2010 at sites IRKJ, CHUM, TSK2, and CUSV for the EGNOS and SSIEGNOS models. The black line represents EGNOS model and the red line represents SSIEGNOS model.</p> "> Figure 4
<p>Variation of the monthly bias and RMS error in 2008–2010 over Asia. Yellow bars and red bars indicate the bias and RMS error of the EGNOS model and SSIEGNOS model, respectively.</p> "> Figure 5
<p>Distribution of annual bias and RMS error of the EGNOS and SSIEGNOS models from 2008–2010 over Asia. The color denotes the magnitude of the annual bias and RMS error.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) show the annual bias and RMS error in each altitude range, respectively; (<b>c</b>,<b>d</b>) denote the correlations between altitude and bias and RMS error, respectively. Black stems and white bars represent the mean bias and RMS error of the EGNOS and SSIEGNOS models, respectively.</p> "> Figure 7
<p>(<b>a</b>,<b>b</b>) show the annual bias and RMS error in each latitude range; (<b>c</b>,<b>d</b>) show the correlations between bias and latitude, respectively. Black stems and white bars denote the mean bias and RMS error of the EGNOS and SSIEGNOS models, respectively.</p> "> Figure 8
<p>(<b>a</b>,<b>b</b>) show the annual bias and RMS error in each longitude range; whereas (<b>c</b>,<b>d</b>) show the mean correlations between bias and longitude. Black stems and white bars represent the mean bias and RMS error of the EGNOS and SSIEGNOS models, respectively.</p> "> Figure 9
<p>The distribution of the annual predicted bias and RMS error of the EGNOS, UNB3m, and SSIEGNOS models over Asia in 2011. The color denotes the magnitudes of the annual predicted bias and RMS error.</p> "> Figure 10
<p>Distribution histogram of predicted bias and RMS error of the EGNOS, UNB3m, and SSIEGNOS models over Asia in 2011. The left shows the EGNOS model results, the middle shows the UNB3m model results, and the right shows the SSIEGNOS model results. The vertical axis denotes the number of samples.</p> "> Figure 11
<p>(<b>a</b>,<b>b</b>) and (<b>c</b>,<b>d</b>) show the monthly and seasonal variations of predicted bias and RMS error in 2011 over Asia using the EGNOS, UNB3m, and SSIEGNOS models, respectively. The blue color denotes the EGNOS model, the green color denotes the UNB3m model, and the red color denotes the SSIEGNOS model.</p> "> Figure 12
<p>(<b>a</b>,<b>b</b>) Time series of daily predicted bias and RMS from 2011–2012 at the IRKT site. The blue line denotes the EGNOS model, the green line denotes the UNB3m model, and the red line denotes the SSIEGNOS model. (<b>c</b>–<b>h</b>) Histograms of the daily predicted bias and RMS error from 2011–2012 for the three models, respectively.</p> "> Figure 13
<p>(<b>a</b>,<b>b</b>) Time series of daily predicted bias and RMS error from 2011–2012 at the PIMO site. The blue line denotes the EGNOS model, the green line denotes the UNB3m model, and the red line denotes the SSIEGNOS model. (<b>c</b>–<b>h</b>) Histograms of the daily predicted bias and RMS error from 2011–2012 for the three models.</p> "> Figure 14
<p>(<b>a</b>,<b>b</b>) Time series of daily predicted bias and RMS error from 2011–2012 at the POL2 site. The blue line denotes the EGNOS model, the green line denotes the UNB3m model, and the red line denotes the SSIEGNOS model. (<b>c</b>–<b>h</b>) Histograms of the daily predicted bias and RMS error from 2011–2012 for the three models.</p> "> Figure 15
<p>(<b>a</b>,<b>b</b>) Time series of daily predicted bias and RMS error from 2011–2012 at the TSK2 site. The blue line denotes the EGNOS model, the green line denotes the UNB3m model, and the red line denotes the SSIEGNOS model. (<b>c</b>–<b>h</b>) Histograms of the daily predicted bias and RMS error from 2011–2012 for the three models.</p> "> Figure 16
<p>Monthly mean predicted bias and RMS from 2011–2012 at the TSK2, POL2, IRKT, and TSK2 sites. The blue bars, green bars, and red bars denote the monthly bias and RMS error of the EGNOS, UNB3m, and SSIEGNOS models, respectively.</p> "> Figure 17
<p>Seasonal mean predicted bias and RMS error from 2011–2012 at the TSK2, POL2, IRKT, and TSK2 sites. The blue bars, green bars and red bars denote the monthly bias and RMS error of the EGNOS, UNB3m, and SSIEGNOS models, respectively.</p> ">
Abstract
:1. Introduction
2. Determination of the SSIEGNOS Model
2.1. Data Sources
2.2. Establishment of the SSIEGNOS Model
3. SSIEGNOS Model Validation
3.1. The Temporal Variation of the Bias and RMS Error
3.1.1. Variation of the Daily Bias and RMS Error
3.1.2. Variation of the Monthly Bias and RMS Error
3.1.3. Variation of the Annual Bias and RMS Error
3.2. Spatial Characteristics of Annual Bias and RMS Error
3.2.1. Relations between the Altitude and the Annual Bias and RMS Error
3.2.2. Relations between Latitude and the Annual Bias and RMS Error
3.2.3. Relations between Longitude and the Annual Bias and RMS Error
3.3. Assessment of Predicted ZTD Derived from the SSIEGNOS Model
3.3.1. The Performance of the SSIEGNOS Model for Predicting ZTD
3.3.2. Investigation of the Long-Term Time Series of Predicted ZTD
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, W.; Yuan, Y.B.; Ou, J.K.; Li, H.; Li, Z.S. A global zenith tropospheric delay model IGGtrop for GNSS applications. Chin. Sci. Bull. 2012, 57, 1317–1325. [Google Scholar] [CrossRef]
- Shi, J.B.; Gao, Y. A troposphere constraint method to improve PPP ambiguity-resolved height solution. J. Navig. 2014, 67, 249–262. [Google Scholar] [CrossRef]
- Yao, Y.B.; Yu, C.; Hu, Y.F. A new method to accelerate PPP convergence time by using a global zenith troposphere delay estimate model. J. Navig. 2014, 67, 899–910. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys. 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Haase, J.; Ge, M.R.; Vedel, H.; Calais, E. Accuracy and variability of GPS tropospheric delay measurements of water vapor in the Western Mediterranean. J. Appl. Meteor. 2003, 42, 1547–1568. [Google Scholar] [CrossRef]
- Basili, P.; Bonafoni, S.; Ferrara, R. Assessment of precipitable water vapour by use of a local GPS network and microwave ground-based radiometer. IEEE Antennas Wirel. Propag. Lett. 2003, 2, 72–76. [Google Scholar]
- Bonafoni, S.; Mazzoni, A.; Cimini, D.; Montopoli, M.; Pierdicca, N.; Basili, P.; Ciotti, P.; Carlesimo, G. Assessment of water vapor retrievals from a GPS receiver network. GPS Solut. 2013, 17, 475–484. [Google Scholar] [CrossRef]
- Farah, A.; Moore, T.; Hill, C.J. High spatial variation tropospheric model for GPS-data simulation. J. Navig. 2005, 58, 459–470. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Wang, S.H. Evaluation of the NCEP-NCAR and ECMWF 15-and 40-yr reanalyses using Rawinsonde data from two independent Arctic field experiments. Mon. Weather Rev.-Spec. Sect. 2005, 133, 3562–3578. [Google Scholar] [CrossRef]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. 2006, 111, B02406. [Google Scholar] [CrossRef]
- Ibrahim, H.E.; EI-RRabbany, A. Regional stochastic models for NOAA-based residual tropospheric delays. J. Navig. 2008, 61, 209–219. [Google Scholar] [CrossRef]
- Chen, Q.M.; Song, S.L.; Heise, S.; Liou, Y.; Zhu, W.Y.; Zhao, J.Y. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China. GPS Solut. 2011, 15, 415–425. [Google Scholar] [CrossRef]
- Chen, Q.M.; Song, S.L.; Zhu, W.Y. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area. Chin. J. Geophys. 2012, 55, 1541–1548. [Google Scholar] [CrossRef]
- Collins, J.P.; Langley, R.B. A Tropospheric Delay Model for the User of the Wide Area Augmentation System; Department of Geodesy and Geomatics Engineering, University of New Brunswick: Fredericton, NB, Canada, 1997. [Google Scholar]
- Krueger, E.; Schuler, T.; Hein, G.W.; Martellucci, A.; Blarzino, G. Galileo tropospheric correction approaches developed within GSTB-V1. In Proceedings of the ENC-GNSS 2004, Rotterdam, The Netherlands, 16–19 May 2004.
- Schuler, T. The TropGrid2 standard tropospheric correction model. GPS Solut. 2014, 18, 123–131. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Boehm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Böhm, J.; Moeller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef]
- Yao, Y.B.; Xu, C.Q.; Shi, J.B.; Cao, N.; Zhang, B.; Yang, J.J. ITG: A new global GNSS tropospheric correction model. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.B.; Zhang, B.; Xu, C.Q.; He, C.Y.; Yu, C.; Yan, F. A global empirical model for estimating zenith tropospheric delay. Sci. China Earth Sci. 2016, 59, 118–128. [Google Scholar] [CrossRef]
- Tomislav, K.; Maja, B.; Ivan, M. Evaluation of EGNOS tropospheric delay model in south-eastern Europe. J. Navig. 2009, 62, 341–349. [Google Scholar]
- Penna, N.; Dodson, A.; Chen, W. Assessment of EGNOS tropospheric correction model. J. Navig. 2001, 54, 37–55. [Google Scholar] [CrossRef]
- Bock, O.; Willis, P.; Lacarra, M.; Bosser, P. An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data. Adv. Space Res. 2010, 46, 1648–1660. [Google Scholar] [CrossRef]
- Teke, K.; Böhm, J.; Nilsson, T.; Schuh, H.; Steigenberger, P.; Dach, R.; Heinkelmann, R.; Willis, P.; Haas, R.; Garcia-Espada, S.; et al. Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J. Geod. 2011, 85, 395–413. [Google Scholar] [CrossRef]
- Wei, H.H.; Jin, S.G.; He, X.F. Effects and disturbances on GPS-derived zenith tropospheric delay during the CONT08 campaign. Adv. Space Res. 2012, 50, 632–641. [Google Scholar] [CrossRef]
- Ning, T.; Haas, R.; Elgered, G.; Willen, U. Multi-technique comparisons of 10 years of wet delay estimations on the West Coast of Sweden. J. Geod. 2012, 86, 565–575. [Google Scholar] [CrossRef]
- Teke, K.; Nilsson, T.; Böhm, J.; Hobiger, T.; Steigenberger, P.; Garcia-Espada, S.; Haas, R.; Willis, P. Tropospheric delays from space geodetic techniques, water vapor radiometers, and numerical weather models over a series of continuous VLBI campaigns. J. Geod. 2013, 87, 981–1001. [Google Scholar] [CrossRef]
- Huang, Y.; Chang, S.Q.; Li, P.J.; Hu, X.G.; Wang, G.L.; Liu, Q.H.; Zheng, W.M.; Fan, M. Orbit determination of Chang’E-3 and positioning of the lander and the rover. Chin. Sci. Bull. 2014, 59, 3858–3867. [Google Scholar] [CrossRef]
- Lou, Y.D.; Liu, Y.; Shi, C.; Wang, B.; Yao, X.G.; Zheng, F. Precise orbit determination of BeiDou constellation: Method comparison. GPS Solut. 2016, 20, 259–268. [Google Scholar] [CrossRef]
- Ping, J.S.; Su, X.L.; Huang, Q.; Yan, J.G. The Chang’E-1 orbiter plays a distinctive role in China’s first successful selenodetic lunar mission. Sci. Chin. Phys. Mech. Astron. 2011, 54, 2130–2144. [Google Scholar] [CrossRef]
- Hefty, J.; Gontier, A. Sensitivity of UT1 determined by single-baseline VLBI to atmospheric delay model, terrestrial and celestial reference frames. J. Geod. 1997, 71, 253–261. [Google Scholar] [CrossRef]
- Hobiger, T.; Otsubo, T. Combination of GPS and VLBI on the observation level during CONT11—Common parameters, ties and inter-technique biases. J. Geod. 2014, 88, 1017–1028. [Google Scholar] [CrossRef]
- Nilsson, T.; Karbon, M.; Soja, B.; Heinkelmann, R.; Lu, C.X.; Schuh, H. Atmospheric modeling for co-located VLBI antennas and twin telescopes. J. Geod. 2015, 89, 655–665. [Google Scholar] [CrossRef]
- Böhm, J.; Schuh, H.; Weber, R. Influence of tropospheric zenith delays obtained by GPS and VLBI on station heights. Vert. Ref. Syst. 2002, 124, 107–112. [Google Scholar]
- Deblonde, G.; Macpherson, S.; Mireault, Y.; Heroux, P. Evaluation of GPS precipitable water over Canada and the IGS network. J. Appl. Meteor. 2005, 44, 153–166. [Google Scholar] [CrossRef]
- Byun, S.H.; Bar-Sever, Y.E. A new type of troposphere zenith path delay product of the international GNSS service. J. Geod. 2009, 83, 367–373. [Google Scholar] [CrossRef]
- Leandro, R.F.; Langley, R.B.; Santos, M.C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques. GPS Solut. 2008, 12, 65–70. [Google Scholar] [CrossRef]
Season | EGNOS | SSIEGNOS | ||
---|---|---|---|---|
Bias | RMS | Bias | RMS | |
Spring | 2.27 | 5.02 | 0.05 | 2.42 |
Summer | −4.29 | 6.55 | 0.10 | 2.60 |
Autumn | −0.05 | 5.56 | 0.01 | 3.06 |
Winter | 2.86 | 4.61 | 0.23 | 2.30 |
EGNOS | UNB3m | SSIEGNOS | |
---|---|---|---|
Bias (cm) | −0.2 [−17.5, 4.0] | 0.2 [−4.0, 5.6] | −0.1 [−1.4, 0.8] |
RMS (cm) | 6.1 [1.9, 18.6] | 5.4 [1.7, 8.6] | 3.1 [1.3, 4.8] |
Site Name | EGNOS | UNB3m | SSIEGNOS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2011 | 2012 | 2011 | 2012 | |||||||
Bias | RMS | Bias | RMS | Bias | RMS | Bias | RMS | Bias | RMS | Bias | RMS | |
PIMO | −6.24 | 8.36 | −5.90 | 7.45 | 3.94 | 8.00 | 5.57 | 7.80 | −0.84 | 3.57 | −0.48 | 4.03 |
TSK2 | 0.78 | 6.96 | 2.04 | 5.37 | 1.10 | 6.93 | 0.17 | 5.90 | 0.08 | 3.53 | 0.65 | 3.29 |
POL2 | 0.45 | 1.89 | 0.89 | 1.66 | 0.57 | 2.17 | 0.01 | 1.75 | 0.10 | 1.36 | 0.56 | 1.40 |
IRKT | 1.71 | 3.54 | 1.52 | 2.94 | 1.09 | 3.02 | 1.13 | 2.89 | −0.11 | 1.88 | −0.23 | 1.73 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Xie, S.; Liu, L.; Li, J.; Chen, J.; Kang, C. SSIEGNOS: A New Asian Single Site Tropospheric Correction Model. ISPRS Int. J. Geo-Inf. 2017, 6, 20. https://doi.org/10.3390/ijgi6010020
Huang L, Xie S, Liu L, Li J, Chen J, Kang C. SSIEGNOS: A New Asian Single Site Tropospheric Correction Model. ISPRS International Journal of Geo-Information. 2017; 6(1):20. https://doi.org/10.3390/ijgi6010020
Chicago/Turabian StyleHuang, Liangke, Shaofeng Xie, Lilong Liu, Junyu Li, Jun Chen, and Chuanli Kang. 2017. "SSIEGNOS: A New Asian Single Site Tropospheric Correction Model" ISPRS International Journal of Geo-Information 6, no. 1: 20. https://doi.org/10.3390/ijgi6010020