Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China
<p>The western Chinese cities investigated in this paper.</p> "> Figure 2
<p>Some representative parts of the radiance images: (<b>a</b>) Luojia 1-01 image of Kunming in Spring Festival; (<b>b</b>) NPP/VIIRS image of Kunming in Spring Festival; (<b>c</b>) Luojia 1-01 image of Lhasa in non-festival; (<b>d</b>) NPP/VIIRS image of Lhasa in non-festival.</p> "> Figure 3
<p>The LA and ALI in the Spring Festival and non-festival in Chengdu: (<b>a</b>) Light Area (LA); (<b>b</b>) Average Light Intensity (ALI).</p> "> Figure 4
<p>The LA and ALI in the Spring Festival and non-festival in Panzhihua: (<b>a</b>) Light Area (LA); (<b>b</b>) Average Light Intensity (ALI).</p> "> Figure 5
<p>The LA and ALI in Spring Festival and non-festival in Kunming: (<b>a</b>) Light Area (LA); (<b>b</b>) Average Light Intensity (ALI).</p> "> Figure 6
<p>The LA and ALI in Spring Festival and non-festival in Yuxi: (<b>a</b>) Light Area (LA); (<b>b</b>) Average Light Intensity (ALI).</p> "> Figure 7
<p>The LA and ALI in Spring Festival and non-festival in Lhasa: (<b>a</b>) Light Area (LA); (<b>b</b>) Average Light Intensity (ALI).</p> "> Figure 8
<p>The LA and ALI in the Spring Festival and non-festival in Jinchang: (<b>a</b>) Light Area (LA); (<b>b</b>) Average Light Intensity (ALI).</p> "> Figure 9
<p>The normalized change of LA between the Spring Festival and non-festival and the corresponding normalized net immigration.</p> ">
Abstract
:1. Introduction
2. Datasets
3. Methods
3.1. Data Preprocessing
3.2. Light Area Extraction
Non-light pixel, if L < or = 0
3.3. Average Light Intensity
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Shi, J. How inter-city high-speed rail influences tourism arrivals: Evidence from social media check-in data. Curr. Issues Tour. 2019, 22, 1025–1042. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, M.; Ding, X.; Tian, W.; Zhai, Y.; Chen, J.; Liu, L.; Ye, X. Exploring human mobility patterns using geo-tagged social media data at the group level. J. Spat. Sci. 2019, 64, 221–238. [Google Scholar] [CrossRef]
- Fang, J.; Hu, J.; Shi, X.; Zhao, L. Assessing disaster impacts and response using social media data in China: A case study of 2016 Wuhan rainstorm. Int. J. Disaster. Risk Reduct. 2019, 34, 275–282. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Ye, X. Comparing mobility patterns between residents and visitors using geo-tagged social media data. Trans. GIS 2018, 22, 1372–1389. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Levin, N. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 2017, 193, 150–164. [Google Scholar] [CrossRef]
- Croft, T.A. Nighttime images of the earth from space. Sci. Am. 1978, 239, 86–89. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The Vegetation Adjusted NTL Urban Index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Yu, B.L.; Song, W.; Liu, H.X.; Wu, Q.S.; Shi, K.F.; Wu, J.P. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Trans. Geosci. Remote 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Wu, W.J.; Zhao, H.R.; Jiang, S.L. A zipf’s law-based method for mapping urban areas using NPP-VIIRS nighttime light data. Remote Sens. 2018, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wan, B.; Guo, Q.H.; Hu, M.S.; Zhou, S.P. Mapping regional urban extent using NPP-VIIRS DNB and MODIS NDVI data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.H.; Weng, Q.H.; Fu, P. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sens. Environ. 2019, 225, 160–174. [Google Scholar] [CrossRef]
- Jiang, Y.T.; Sun, S.K.; Zheng, S.N. Exploring urban expansion and socioeconomic vitality using NPP-VIIRS data in Xia-Zhang-Quan, China. Sustainability 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.F.; Yu, B.L.; Huang, Y.X.; Hu, Y.J.; Yin, B.; Chen, Z.Q.; Chen, L.J.; Wu, J.P. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of china at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.M.; Zhou, C.H.; Li, M.C.; Wang, N.; Liu, Q.Y. GDP spatialization and economic differences in south china based on NPP-VIIRS nighttime light imagery. Remote Sens. 2017, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Román, M.O.; Stokes, E.C. Holidays in lights: Tracking cultural patterns in demand for energy services. Earths Future 2015, 3, 182–205. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Levin, N.; Jendryke, M. Tracing cultural festival patterns using time-series of VIIRS monthly products. Remote Sens. Lett. 2019, 10, 1172–1181. [Google Scholar] [CrossRef]
- Dataset Overview|National Centers of Environment Information (NCEI). Available online: https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/STP/DMSP/iso/xml/G01119.xml&view=getDataView&header=none (accessed on 23 June 2019).
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the potential of LJ1-01 nighttime light data for modeling socio-economic parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Su, Z.; Zhang, G.; Chen, Z.; Meng, Y.; Li, D.; Liu, Y. Analysis and reduction of solar stray light in the nighttime imaging camera of Luojia-1 satellite. Sensors 2019, 19, 1130. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of using Luojia 1-01 nighttime light imagery to investigate artificial light pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M. A preliminary investigation of Luojia-1 night-time light imagery. Remote Sens. Lett. 2019, 10, 526–535. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping urban extent using Luojia 1-01 nighttime light imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Li, X.; Tong, F.; Li, Z.; Jendryke, M. Mapping urban expansion using night-time light images from Luojia1-01 and International Space Station. Int. J. Remote Sens. 2020, 41, 2603–2623. [Google Scholar] [CrossRef]
- Wang, L.; Chen, R.; Li, D.; Zhang, G.; Shen, X.; Yu, B.; Wu, C.; Xie, S.; Zhang, P.; Li, M.; et al. Initial assessment of the LEO based navigation signal augmentation system from Luojia-1A satellite. Sensors 2018, 18, 3919. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Z.; Chen, X.; Sun, J. Assessing the ability of luojia 1-01 imagery to detect feeble nighttime lights. Sensors 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Liu, X.; Liu, P.; Liu, X. Evaluation of Luojia 1-01 nighttime light imagery for impervious surface detection: A comparison with NPP-VIIRS nighttime light data. Int. J. Appl. Earth. Obs. 2019, 81, 1–12. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data. Int. J. Appl. Earth Obs. 2020, 85. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Jiang, Y.; Zhou, P.; Zhao, Y.; Xu, Y. On-orbit geometric calibration and validation of Luojia 1-01 night-light satellite. Remote Sens. 2019, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D. On-orbit relative radiometric calibration of the night-time sensor of the LuoJia1-01 satellite. Sensors 2018, 18, 4225. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Zhong, X.; Zhang, G.; Li, Y.; He, X.; Wang, Q.; Wei, Z.; He, C.; Li, D. High sensitive night-time light imaging camera design and in-orbit test of Luojia1-01 satellite. Sensors 2019, 19, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Li, Q.; Kong, L.; Gu, S.; Zhang, L. Quasi-all-passive thermal control system design and on-orbit validation of Luojia 1-01 satellite. Sensors 2019, 19, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zhong, X.; Zhang, G.; Li, D.; Su, Z.; Meng, Y.; Jiang, Y. Thermal stability optimization of the Luojia 1-01 nighttime light remote-sensing camera’s principal distance. Sensors 2019, 19, 990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, L.; Xu, Z.; Zhang, G.; Zhang, Z. Night-Light image restoration method based on night scattering model for luojia 1-01 satellite. Sensors 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.; Jiang, Y.; Wang, J.; Zhang, G. Star-Based Calibration of the Installation Between the Camera and Star Sensor of the Luojia 1-01 Satellite. Remote Sens. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhong, X.; Su, Z. On-Orbit Signal-to-Noise Ratio Test Method for Night-Light Camera in Luojia 1-01 Satellite Based on Time-Sequence Imagery. Sensors 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wu, L. The influence of population movements on the urban relative humidity of Beijing during the Chinese Spring Festival holiday. J. Clean. Prod. 2018, 170, 1508–1513. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, J. Assessing population movement impacts on urban heat island of Beijing during the Chinese New Year holiday: Effects of meteorological conditions. Theor. Appl. Climatol. 2018, 131, 1203–1210. [Google Scholar] [CrossRef]
City | Province | Acquisition Time (YYMMDD) | Festival or Non-Festival Image |
---|---|---|---|
Chengdu | Sichuan | 20181015 | Non-festival |
20190207 | Spring Festival | ||
Panzhihua | Sichuan | 20181212 | Non-festival |
20190208 | Spring Festival | ||
Kunming | Yunnan | 20190208 | Spring Festival |
20190313 | Non-festival | ||
Yuxi | Yunnan | 20181212 | Non-festival |
20190208 | Spring Festival | ||
Lhasa | Xizang | 20181030 | Non-festival |
20190205 | Spring Festival | ||
Jinchang | Gansu | 20181015 | Non-festival |
20190207 | Spring Festival |
City | Time (YYMMDD) | Festival | LA (km2) | ALI 1 | Immig. 2 | Emig. 2 | Net Immig. |
---|---|---|---|---|---|---|---|
Chengdu | 20181015 | Non-festival | 2908.77 | 4651 | 174.00 | 269.25 | −95.25 |
20190207 | Spring Festival | 1236.31↓ 3 | 44535↑ | ||||
Panzhihua | 20181212 | Non-festival | 68.81 | 27042 | 8.90 | 10.00 | −1.10 |
20190208 | Spring Festival | 40.39↓ | 96894↑ | ||||
Kunming | 20190208 | Spring Festival | 1623.34 | 26520 | 158.78 | 118.88 | 39.90 |
20190313 | Non-festival | 2032.58↑ | 19130↓ | ||||
Yuxi | 20181212 | Non-festival | 113.77 | 36436 | 19.55 | 20.09 | −0.54 |
20190208 | Spring Festival | 101.43↓ | 83314↑ | ||||
Lhasa | 20181030 | Non-festival | 117.70 | 43267 | 6.32 | 8.80 | −2.48 |
20190205 | Spring Festival | 50.30↓ | 141350↑ | ||||
Jinchang | 20181015 | Non-festival | 102.35 | 9867 | 3.11 | 3.23 | −0.12 |
20190207 | Spring Festival | 81.66↓ | 20654↑ |
City | LA1 | LA2 | Normalized Change of LA 1 | Immig. | Emig. | Normalized Net Immigration 2 |
---|---|---|---|---|---|---|
Chengdu | 2908.77 | 1236.31 | −0.4035 | 174.00 | 269.25 | −0.2149 |
Panzhihua | 68.81 | 40.39 | −0.2603 | 8.90 | 10.00 | −0.0583 |
Kunming | 1623.34 | 2032.58 | 0.1119 | 158.78 | 118.88 | 0.1438 |
Yuxi | 113.77 | 101.43 | −0.0573 | 19.55 | 20.09 | −0.0135 |
Lhasa | 117.70 | 50.30 | −0.4012 | 6.32 | 8.80 | −0.1642 |
Jinchang | 102.35 | 81.66 | −0.1124 | 3.11 | 3.23 | −0.0193 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Pei, Y.; Li, J.; Qin, Q.; Yue, J. Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China. Remote Sens. 2020, 12, 1416. https://doi.org/10.3390/rs12091416
Zhang C, Pei Y, Li J, Qin Q, Yue J. Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China. Remote Sensing. 2020; 12(9):1416. https://doi.org/10.3390/rs12091416
Chicago/Turabian StyleZhang, Chengye, Yanqiu Pei, Jun Li, Qiming Qin, and Jun Yue. 2020. "Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China" Remote Sensing 12, no. 9: 1416. https://doi.org/10.3390/rs12091416
APA StyleZhang, C., Pei, Y., Li, J., Qin, Q., & Yue, J. (2020). Application of Luojia 1-01 Nighttime Images for Detecting the Light Changes for the 2019 Spring Festival in Western Cities, China. Remote Sensing, 12(9), 1416. https://doi.org/10.3390/rs12091416