Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data
"> Figure 1
<p>Workflow diagram of the classification approach with three main steps: (1) broad land cover classification, (2) tree species identification within the forest strata and (3) change detection to mask out areas where forest activities took place.</p> "> Figure 2
<p>Overview of the study area and the 6-class land cover reference data. (<b>a</b>) Regular grid for reference data collection for the land cover classification covering the biosphere reserve and some surrounding areas (background: Sentinel-2 bands 8-4-3). (<b>b</b>) Examples (10 and 20 m grid cells) for each class (background: CIR orthoimage). (<b>c</b>) Location of the biosphere reserve Wienerwald within Austria and Sentinel-2 orbit cover.</p> "> Figure 3
<p>(<b>a</b>) Distribution of the reference data set for the tree species classification and (<b>b</b>) examples (10 and 20 m grid cells) for each tree species. Background images: Color Infrared composites of Sentinel-2 (<b>a</b>) and orthoimages (<b>b</b>).</p> "> Figure 4
<p>Overall accuracies of all possible Sentinel-2 combinations based on models using only spectral bands (<b>a</b>–<b>c</b>) and using spectral bands and vegetation indices (<b>d</b>–<b>f</b>). Strata-specific results are displayed in the rows: results for broadleaf species (<b>a</b>,<b>d</b>), coniferous species (<b>b</b>,<b>e</b>) and all tree species together (<b>c</b>,<b>f</b>).</p> "> Figure 5
<p>Aggregated feature importance derived from the combination of all classification models, excluding models involving spectral vegetation indices. A larger dot size indicates a higher importance of the specific band and date combination. The bars on the top and right side of the graphs summarize the importance of the individual months and spectral bands, respectively. (<b>a</b>) Results for the broadleaf stratum, (<b>b</b>) coniferous species and (<b>c</b>) all tree species pooled together. Different colors indicate the year of the Sentinel-2 acquisition.</p> "> Figure 6
<p>Final map based on aggregation of the best models of the land cover, broadleaf trees and coniferous trees classifications and the results of the change detection.</p> "> Figure A1
<p>Aggregated feature importance for the broadleaf stratum derived from the combination of all classification models, based on spectral bands and vegetation indices (please see <a href="#remotesensing-11-02599-f004" class="html-fig">Figure 4</a> for more details about the graph and <a href="#remotesensing-11-02599-t0A1" class="html-table">Table A1</a> for the Vegetation indices description).</p> "> Figure A2
<p>Aggregated feature importance for the coniferous stratum derived from the combination of all classification models, based on spectral bands and vegetation indices (please see <a href="#remotesensing-11-02599-f004" class="html-fig">Figure 4</a> for more details about the graph and <a href="#remotesensing-11-02599-t0A1" class="html-table">Table A1</a> for the Vegetation indices description).</p> "> Figure A3
<p>Aggregated feature importance for all tree species together derived from the combination of all classification models based on spectral bands and vegetation indices (please see <a href="#remotesensing-11-02599-f004" class="html-fig">Figure 4</a> for more details about the graph and <a href="#remotesensing-11-02599-t0A1" class="html-table">Table A1</a> for the Vegetation indices description).</p> ">
Abstract
:1. Introduction
- To evaluate the potential of multi-temporal Sentinel-2 data for mapping 12 tree species at 10 m spatial resolution for the entire Wienerwald biosphere reserve.
- To identify the best acquisition dates and scene combinations for tree species separation.
- To identify the most important Sentinel-2 bands for tree species classification and the added value of several vegetation indices.
- To evaluate the benefits of stratified classifications.
- To apply an additional short-term change detection analysis to monitor forest management activities and to ensure that the final tree species maps are up-to-date.
2. Materials and Methods
2.1. Study Site Wienerwald Biosphere Reserve
2.2. Reference Data Sets
2.3. Sentinel-2 Data Sets
2.4. Random Forest Classification Approach
2.5. Input Data Evaluation
2.6. Change Detection
3. Results
3.1. Land Cover Classification
3.2. Tree Species Classification
4. Discussion
4.1. Classification Accuracy
4.2. Acquisition Date
4.3. Sentinel-2 Bands and Vegetation Indices
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Name | Formula | Reference |
---|---|---|
Built-up Area Index (BAI) | [61] | |
Chlorophyll Green index (CGI) | [62] | |
Global Environmental Monitoring Index (GEMI) | [63] | |
Greenness Index (GI) | [64] | |
Green Normalized Difference Vegetation Index (gNDVI) | [65] | |
Leaf Chlorophyll Content Index (LCCI) | [29] | |
Moisture Stress Index (MSI) | [66] | |
Normalized Difference Red-Edge and SWIR2 (NDRESWIR) | [67] | |
Normalized Difference Tillage Index (NDTI) | [68] | |
Normalized Difference Vegetation Index (NDVI) | [69] | |
Red-Edge Normalized Difference Vegetation Index (reNDVI) | [65] | |
Normalized Difference Water Index 1 (NDWI1) | [70] | |
Normalized Difference Water Index 2 (NDWI2) | [65] | |
Normalized Humidity Index (NHI) | [71] | |
Red-Edge Peak Area (REPA) | [67,72] | |
Red SWIR1 Difference (DIRESWIR) | [73] | |
Red-Edge Triangular Vegetation Index (RETVI) | [74] | |
Soil Adjusted Vegetation Index (SAVI) | [75] | |
Blue and RE1 ratio (SRBRE1) | [64] | |
Blue and RE2 ratio (SRBRE2) | [76] | |
Blue and RE3 ratio (SRBRE3) | [67] | |
NIR and Blue ratio (SRNIRB) | [77] | |
NIR and Green ratio (SRNIRG) | [64] | |
NIR and Red ratio (SRNIRR) | [77] | |
NIR and RE1 ratio (SRNIRRE1) | [62] | |
NIR and RE2 ratio (SRNIRRE2) | [67] | |
NIR and RE3 ratio (SRNIRR3) | [67] | |
Soil Tillage Index (STI) | [68] | |
Water Body Index (WBI) | [78] |
References
- IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Díaz, S., Settele, J., Brondizio, E.S., Ngo, H.T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., et al., Eds.; IPBES secretariat: Bonn, Germany, 2019; p. 45. [Google Scholar]
- Kuenzer, C.; Ottinger, M.; Wegmann, M.; Guo, H.; Wang, C.; Zhang, J.; Dech, S.; Wikelski, M. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks. Int. J. Remote Sens. 2014, 35, 6599–6647. [Google Scholar] [CrossRef]
- Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377–2400. [Google Scholar] [CrossRef]
- Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Lucas, R.; Schaepman, M.E.; Wang, T.; O’Connor, B.; et al. Framing the concept of satellite remote sensing essential biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131. [Google Scholar] [CrossRef]
- Pettorelli, N.; Safi, K.; Turner, W. Satellite remote sensing, biodiversity research and conservation of the future. Phil. Trans. R. Soc. B 2014, 369, 20130190. [Google Scholar] [CrossRef] [PubMed]
- Kissling, W.D.; Walls, R.; Bowser, A.; Jones, M.O.; Kattge, J.; Agosti, D.; Amengual, J.; Basset, A.; van Bodegom, P.M.; Cornelissen, J.H.C.; et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2018, 2, 1531–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlerf, M.; Atzberger, C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Margules, C.R.; Botkin, D.B. Indicators of biodiversity for ecologically sustainable forest management. Conserv. Biol. 2000, 14, 941–950. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High spatial resolution remotely sensed data for ecosystem characterization. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef]
- Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317. [Google Scholar] [CrossRef]
- Fassnacht, F.; Neumann, C.; Forster, M.; Buddenbaum, H.; Ghosh, A.; Clasen, A.; Joshi, P.; Koch, B. Comparison of Feature Reduction Algorithms for Classifying Tree Species With Hyperspectral Data on Three Central European Test Sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2547–2561. [Google Scholar] [CrossRef]
- Maschler, J.; Atzberger, C.; Immitzer, M. Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data. Remote Sens. 2018, 10, 1218. [Google Scholar] [CrossRef]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 2013, 79, 19–28. [Google Scholar] [CrossRef]
- Carleer, A.; Wolff, E. Exploitation of very high resolution satellite data for tree species identification. Photogramm. Eng. Remote Sens. 2004, 70, 135–140. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Mangold, D.; Schäfer, J.; Immitzer, M.; Kattenborn, T.; Koch, B.; Latifi, H. Estimating stand density, biomass and tree species from very high resolution stereo-imagery—Towards an all-in-one sensor for forestry applications? For. Int. J. For. Res. 2017, 90, 613–631. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with Random Forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Böck, S.; Einzmann, K.; Vuolo, F.; Pinnel, N.; Wallner, A.; Atzberger, C. Fractional cover mapping of spruce and pine at 1ha resolution combining very high and medium spatial resolution satellite imagery. Remote Sens. Environ. 2018, 204, 690–703. [Google Scholar] [CrossRef]
- Metzler, J.W.; Sader, S.A. Model development and comparison to predict softwood and hardwood per cent cover using high and medium spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 3749–3761. [Google Scholar] [CrossRef]
- EEA Forests—Copernicus Land Monitoring Service. Available online: http://land.copernicus.eu/pan-european/high-resolution-layers/forests (accessed on 8 February 2017).
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Bolyn, C.; Michez, A.; Gaucher, P.; Lejeune, P.; Bonnet, S. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. Biotechnol. Agron. Soc. Environ. 2018, 22, 172–187. [Google Scholar]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest Stand Species Mapping Using the Sentinel-2 Time Series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Einzmann, K.; Ng, W.-T.; Böck, S.; Atzberger, C. Verwendung von multispektralen Sentinel-2 Daten für die Baumartenklassifikation und Vergleich mit anderen Satellitensensoren. In Proceedings of the Beiträge zur 36. Wissenschaftlich-Technischen Jahrestagung der DGPF, Bern, Switzerland, 7–9 June 2016; Volume 25. [Google Scholar]
- Ng, W.-T.; Rima, P.; Einzmann, K.; Immitzer, M.; Atzberger, C.; Eckert, S. Assessing the Potential of Sentinel-2 and Pléiades Data for the Detection of Prosopis and Vachellia spp. in Kenya. Remote Sens. 2017, 9, 74. [Google Scholar] [CrossRef]
- Persson, M.; Lindberg, E.; Reese, H. Tree Species Classification with Multi-Temporal Sentinel-2 Data. Remote Sens. 2018, 10, 1794. [Google Scholar] [CrossRef]
- Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for forest classification in Mediterranean environments. Ann. Silvic. Res. 2018, 42, 32–38. [Google Scholar]
- Wulf, H.; Stuhler, S. Sentinel-2: Land Cover, Preliminary User Feedback on Sentinel-2A Data. In Proceedings of the Sentinel-2A Expert Users Technical Meeting, Frascati, Italy, 29–30 September 2015; pp. 29–30. [Google Scholar]
- Sheeren, D.; Fauvel, M.; Josipović, V.; Lopes, M.; Planque, C.; Willm, J.; Dejoux, J.-F. Tree Species Classification in Temperate Forests Using Formosat-2 Satellite Image Time Series. Remote Sens. 2016, 8, 734. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M. Evaluating Multitemporal Sentinel-2 Data for Forest Mapping Using Random Forest. Master’s Thesis, Stockholm University, Stockholm, Sweden, 2017. [Google Scholar]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of Different Machine Learning Algorithms for Scalable Classification of Tree Types and Tree Species Based on Sentinel-2 Data. Remote Sens. 2018, 10, 1419. [Google Scholar] [CrossRef]
- Hościło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. [Google Scholar] [CrossRef]
- Staudinger, M.; Scheiblhofer, J. Artenreichtum, Artenverteilung und räumliche Aspekte der Biodiversität der Gefäßpflanzen in Wäldern des Biosphärenpark Wienerwald. Wiss. Mitteilungen Niederösterreichischen Landesmus. 2014, 25, 249–268. [Google Scholar]
- Mrkvicka, A.; Drozdowski, I.; Brenner, H. Kernzonen im Biosphärenpark Wienerwald—Urwälder von morgen. Wiss. Mitteilungen Niederösterreichischen Landesmus. 2014, 25, 41–88. [Google Scholar]
- Drozdowski, I.; Mrkvicka, A. Der Wienerwald ist UNESCO-Biosphärenpark—Eine Modellregion für Nachhaltigkeit. Wiss. Mitteilungen Niederösterreichischen Landesmus. 2014, 25, 9–40. [Google Scholar]
- Pflug, B.; Bieniarz, J.; Debaecker, V.; Louis, J.; Müller-Wilms, U. Some experience using sen2cor. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016; Volume 18. [Google Scholar]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Bucur, A.; Wagner, W.; Elefante, S.; Naeimi, V.; Briese, C. Development of an Earth Observation Cloud Platform in Support to Water Resources Monitoring. In Earth Observation Open Science and Innovation; Mathieu, P.-P., Aubrecht, C., Eds.; ISSI Scientific Report, Series; Springer International Publishing: Cham, Switzerland, 2018; pp. 275–283. ISBN 978-3-319-65633-5. [Google Scholar] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Toscani, P.; Immitzer, M.; Atzberger, C. Texturanalyse mittels diskreter Wavelet Transformation für die objektbasierte Klassifikation von Orthophotos. Photogramm. Fernerkund. Geoinf. 2013, 2, 105–121. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Einzmann, K.; Immitzer, M.; Böck, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow Detection in European Forests with Very High-Resolution Optical Data. Forests 2017, 8, 21. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84858-7. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Soleimannejad, L.; Ullah, S.; Abedi, R.; Dees, M.; Koch, B. Evaluating the potential of sentinel-2, landsat-8, and irs satellite images in tree species classification of hyrcanian forest of iran using random forest. J. Sustain. For. 2019, 38, 615–628. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features. Remote Sens. Environ. 2018, 210, 193–207. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Vuolo, F.; Ng, W.-T.; Atzberger, C. Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 202–213. [Google Scholar] [CrossRef]
- Elatawneh, A.; Rappl, A.; Rehush, N.; Schneider, T.; Knoke, T. Forest tree species identification using phenological stages and RapidEye data: A case study in the forest of Freising. In Proceedings of the 5th RESA Workshop, From the Basics to the Service, DLR e.V., Neustrelitz, Germany, 20–21 March 2013; pp. 21–38. [Google Scholar]
- Hill, R.A.; Wilson, A.K.; George, M.; Hinsley, S.A. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests 2013, 4, 922–944. [Google Scholar] [CrossRef] [Green Version]
- Schriever, J.R.; Congalton, R.G. Evaluating seasonal variability as an aid to cover-type mapping from Landsat Thematic Mapper data in the Northeast. Photogramm. Eng. Remote Sens. 1995, 61, 321–327. [Google Scholar]
- Stoffels, J.; Hill, J.; Sachtleber, T.; Mader, S.; Buddenbaum, H.; Stern, O.; Langshausen, J.; Dietz, J.; Ontrup, G. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests 2015, 6, 1982–2013. [Google Scholar] [CrossRef]
- Li, D.; Ke, Y.; Gong, H.; Li, X. Object-Based Urban Tree Species Classification Using Bi-Temporal WorldView-2 and WorldView-3 Images. Remote Sens. 2015, 7, 16917–16937. [Google Scholar] [CrossRef] [Green Version]
- Mascaro, J.; Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Martin, R.E.; Anderson, C.; Higgins, M.; Chadwick, K.D. A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping. PLoS ONE 2014, 9, e85993. [Google Scholar] [CrossRef]
- Guerif, M.; Gu, X.F.; Inra, J.P.G. Crop-system characterization by multitemporal SPOT data in the South-East of France. Int. J. Remote Sens. 1992, 13, 1843–1851. [Google Scholar] [CrossRef]
- Shahi, K.; Shafri, H.Z.M.; Taherzadeh, E.; Mansor, S.; Muniandy, R. A novel spectral index to automatically extract road networks from WorldView-2 satellite imagery. Egypt. J. Remote Sens. Space Sci. 2015, 18, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M.M. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N. Spectral Characterization of Suspected Acid Deposition Damage in Red Spruce (picea Rubens) Stands from Vermont. In Proceedings of the Airborne Imaging Spectrometer Data Anal. Workshop, Pasadena, CA, USA, 8–10 April 1985; pp. 51–55. [Google Scholar]
- Radoux, J.; Chomé, G.; Jacques, D.C.; Waldner, F.; Bellemans, N.; Matton, N.; Lamarche, C.; d’Andrimont, R.; Defourny, P. Sentinel-2′s Potential for Sub-Pixel Landscape Feature Detection. Remote Sens. 2016, 8, 488. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.M.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Jacques, D.C.; Kergoat, L.; Hiernaux, P.; Mougin, E.; Defourny, P. Monitoring dry vegetation masses in semi-arid areas with MODIS SWIR bands. Remote Sens. Environ. 2014, 153, 40–49. [Google Scholar] [CrossRef]
- Chen, P.-F.; Tremblay, N.; Wang, J.-H.; Vigneault, P.; Huang, W.-J.; Li, B.-G. New index for crop canopy fresh biomass estimation. Spectrosc. Spectr. Anal. 2010, 30, 512–517. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Lichtenthaler, H.; Lang, M.; Sowinska, M.; Heisel, F.; Miehé, J. Detection of Vegetation Stress Via a New High Resolution Fluorescence Imaging System. J. Plant Physiol. 1996, 148, 599–612. [Google Scholar] [CrossRef]
- Blackburn, G.A. Quantifying Chlorophylls and Caroteniods at Leaf and Canopy Scales: An Evaluation of Some Hyperspectral Approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Domenech, E.; Mallet, C. Change Detection in High resolution land use/land cover geodatabases (at object level). EuroSDR Off. Publ. 2014, 64. [Google Scholar]
Class Name | Definition | Samples | Amount [%] |
---|---|---|---|
Broadleaf forest | Broadleaf-dominated forests | 388 | 48.68 |
Coniferous forest | Conifer-dominated forests | 97 | 12.17 |
Grassland | Grassland, meadows, lawns, pastures, parks, etc. | 104 | 13.05 |
Cropland | Agricultural crops, wine yards | 77 | 9.66 |
Built-up | Sealed surfaces - buildings, roads, infrastructure, etc. | 116 | 14.56 |
Water | Lakes, rivers, ponds, etc. | 15 | 1.88 |
797 | 100.00 |
Tree Species | Scientific Name | Acronym | Samples | Amount [%] |
---|---|---|---|---|
European beech | Fagus sylvatica | FS | 215 | 21.37 |
European alder | Alnus glutinosa | AG | 52 | 5.17 |
European ash | Fraxinus excelsior | FE | 60 | 5.96 |
Oaks | Quercus sp. | QU | 130 | 12.92 |
Cherry | Prunus sp. | PR | 25 | 2.49 |
European hornbeam | Carpinus betulus | CP | 65 | 6.46 |
Maple | Acer sp. | AC | 33 | 3.28 |
Norway spruce | Picea abies | PA | 135 | 13.42 |
Austrian pine | Pinus nigra | PN | 107 | 10.64 |
Scots pine | Pinus sylvestris | PS | 79 | 7.85 |
European larch | Larix decidua | LD | 49 | 4.87 |
Douglas fir | Pseudotsuga menziesii | PM | 56 | 5.57 |
∑ | 1006 | 100.00 |
Sentinel-2 Satellite | Date | Orbit | Sun Zenith Angle | Sun Azimuth Angle |
---|---|---|---|---|
A | 30.08.2015 | 122 | 40.64 | 160.67 |
A | 25.12.2015 | 79 | 72.89 | 165.72 |
A | 27.03.2016 | 122 | 46.92 | 161.03 |
A | 13.04.2016 | 79 | 40.99 | 157.03 |
A | 06.05.2016 | 122 | 32.93 | 159.34 |
A | 31.08.2016 | 79 | 41.81 | 157.47 |
A | 13.09.2016 | 122 | 45.77 | 164.04 |
A | 30.09.2016 | 79 | 52.43 | 164.31 |
A | 11.01.2017 | 122 | 71.18 | 165.83 |
A | 01.04.2017 | 122 | 45.04 | 160.96 |
A | 28.05.2017 | 79 | 29.06 | 151.92 |
A | 20.06.2017 | 122 | 26.83 | 153.18 |
A | 01.08.2017 | 79 | 33.19 | 150.41 |
A | 29.08.2017 | 122 | 40.48 | 160.55 |
A | 08.09.2017 | 122 | 43.90 | 162.88 |
A | 28.09.2017 | 122 | 51.20 | 167.02 |
B | 30.09.2017 | 79 | 52.35 | 164.20 |
A | 15.10.2017 | 79 | 57.79 | 166.70 |
Reference | ||||||||
---|---|---|---|---|---|---|---|---|
BF | CF | GL | CL | BU | WB | UA | ||
Classification | Broadleaf forest (BF) | 387 | 7 | 2 | 0 | 2 | 0 | 97.3% |
Conifer forest (CF) | 0 | 90 | 0 | 0 | 0 | 0 | 100.0% | |
Grassland (GL) | 1 | 0 | 94 | 5 | 0 | 0 | 94.0% | |
Cropland (CL) | 0 | 0 | 6 | 70 | 3 | 0 | 88.6% | |
Build-up (BU) | 0 | 0 | 2 | 2 | 111 | 0 | 96.5% | |
Waterbody (WB) | 0 | 0 | 0 | 0 | 0 | 15 | 100.0% | |
∑ reference data | 388 | 97 | 104 | 77 | 116 | 15 | 797 | |
PA | 99.7% | 92.8% | 90.4% | 90.9% | 95.7% | 100% | ||
OA | 96.2% | Kappa | 0.946 |
Reference | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FS | AG | FE | QU | PR | CP | AC | PA | PN | PS | LD | PM | UA | ||
Classification | Fagus sylvatica (FS) | 211 | 4 | 7 | 7 | 4 | 12 | 8 | 83.4% | |||||
Alnus glutinosa (AG) | 0 | 44 | 0 | 1 | 0 | 0 | 0 | 97.8% | ||||||
Fraxinus excelsior (FE) | 0 | 0 | 44 | 3 | 0 | 0 | 7 | 81.5% | ||||||
Quercus sp. (QU) | 0 | 1 | 5 | 117 | 1 | 4 | 2 | 90.0% | ||||||
Prunus sp. (PR) | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 100.0% | ||||||
Carpinus betulus (CB) | 4 | 2 | 3 | 1 | 1 | 48 | 0 | 81.4% | ||||||
Acer sp. (AC) | 0 | 1 | 1 | 1 | 1 | 1 | 16 | 76.2% | ||||||
Picea abies (PA) | 132 | 0 | 3 | 1 | 1 | 96.4% | ||||||||
Pinus nigra (PN) | 1 | 101 | 1 | 1 | 2 | 95.3% | ||||||||
Pinus sylvestris (PS) | 1 | 4 | 75 | 0 | 0 | 93.8% | ||||||||
Larix decidua (LD) | 1 | 1 | 0 | 46 | 1 | 93.9% | ||||||||
Pseudotsuga menziesii (PM) | 0 | 1 | 0 | 1 | 52 | 96.3% | ||||||||
∑ Reference data | 215 | 52 | 60 | 130 | 25 | 65 | 33 | 135 | 107 | 79 | 49 | 56 | ||
PA | 98.1% | 84.6% | 73.3% | 90.0% | 72.0% | 73.8% | 48.5% | 97.8% | 94.4% | 94.9% | 93.9% | 92.9% | ||
OA | 89.9% | Kappa | 0.885 |
Reference | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FS | AG | FE | QU | PR | CP | AC | PA | PN | PS | LD | PM | UA | ||
Classification | Fagus sylvatica (FS) | 210 | 3 | 4 | 7 | 4 | 11 | 8 | 0 | 0 | 0 | 0 | 0 | 85.0% |
Alnus glutinosa (AG) | 0 | 43 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 95.6% | |
Fraxinus excelsior (FE) | 0 | 0 | 46 | 2 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 83.6% | |
Quercus sp. (QU) | 2 | 2 | 7 | 115 | 1 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 85.8% | |
Prunus sp. (PR) | 0 | 0 | 1 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 89.5% | |
Carpinus betulus (CB) | 2 | 3 | 0 | 3 | 2 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 83.1% | |
Acer sp. (AC) | 0 | 1 | 2 | 1 | 1 | 1 | 15 | 0 | 0 | 0 | 0 | 0 | 71.4% | |
Picea abies (PA) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 132 | 0 | 3 | 1 | 5 | 93.6% | |
Pinus nigra (PN) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 98 | 1 | 1 | 1 | 96.1% | |
Pinus sylvestris (PS) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 74 | 1 | 0 | 89.2% | |
Larix decidua (LD) | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 45 | 2 | 86.5% | |
Pseudotsuga menziesii (PM) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 100.0% | |
∑ Reference data | 215 | 52 | 60 | 130 | 25 | 65 | 33 | 135 | 107 | 79 | 49 | 56 | ||
PA | 97.7% | 82.7% | 76.7% | 88.5% | 68.0% | 75.4% | 45.5% | 97.8% | 91.6% | 93.7% | 91.8% | 85.7% | ||
OA | 88.7% | Kappa | 0.871 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. https://doi.org/10.3390/rs11222599
Immitzer M, Neuwirth M, Böck S, Brenner H, Vuolo F, Atzberger C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sensing. 2019; 11(22):2599. https://doi.org/10.3390/rs11222599
Chicago/Turabian StyleImmitzer, Markus, Martin Neuwirth, Sebastian Böck, Harald Brenner, Francesco Vuolo, and Clement Atzberger. 2019. "Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data" Remote Sensing 11, no. 22: 2599. https://doi.org/10.3390/rs11222599
APA StyleImmitzer, M., Neuwirth, M., Böck, S., Brenner, H., Vuolo, F., & Atzberger, C. (2019). Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sensing, 11(22), 2599. https://doi.org/10.3390/rs11222599