On the Interest of Optical Remote Sensing for Seasonal Snowmelt Parameterization, Applied to the Everest Region (Nepal)
"> Figure 1
<p>Study area. Left: the northern part (blue limits) of the Dudh Koshi River basin (red limits). Right: the sub-basins studied: Pheriche (orange limits), Dingboche (yellow limits), Tauche (green limits), and Phakding (blue limits). Source: SRTM (Shuttle Radar Topography Mission) digital elevation map [<a href="#B36-remotesensing-11-02598" class="html-bibr">36</a>].</p> "> Figure 2
<p>Hypsometric curve of Phakding, Pheriche, and the northern part of the Dudh Koshi River basin and the elevation of the meteorological stations. Source: SRTM (Shuttle Radar Topography Mission) digital elevation map [<a href="#B36-remotesensing-11-02598" class="html-bibr">36</a>].</p> "> Figure 3
<p>Maps of the average total and solid precipitation and the air temperature for the river basins studied over the period 2013–2016. Values are given for the total area of the basins, including the glaciated areas.</p> "> Figure 4
<p>Snapshot examples of snow cover extent and height measurements at the Khunde site.</p> "> Figure 5
<p>Operating diagram of the snowmelt model for the “all-year” version (<b>A</b>) and for the “two-season” version (<b>B</b>). The indexes “W” and “S” are used, respectively, to identify the parameters for the winter and the summer period for the two-season version.</p> "> Figure 6
<p>Temporal evolution of snow cover area (SCA) in the Phakding basin from the Spot-VGT and MOD10A2 dataset (1998–2017).</p> "> Figure 7
<p>Intra-annual variation of 8-day synthesis of snow cover and cloud coverage in the Phakding basin (mean values 1998–2017). The standard deviation of the snow cover area between the years is also presented.</p> "> Figure 8
<p>Three sources of data for snowpack description at the location of the Khunde snow plate between December 2012 and July 2015: (1) in black lines, the snow depths (in cm) measured at the snow plate by the observers; (2) in blue, the photos taken by the observers around the snow plate classified as “no snow” (light blue), “partially covered,” and “covered by snow” (dark blue). No blue bar means that no photo was taken for these dates. The red bars indicate the MOD10A2 dates for which the pixel that contains the Khunde snow plate was determined to be covered by snow.</p> "> Figure 9
<p>Performances of the simulated SCA. The data used as references were the processed MOD10A2 SCA. The left part of the figure shows all the simulations for the four sub-basins inside the solution area (RMSE and relative bias). The right part shows a closer view of the most performant solutions for each basin. The dots represent the Pareto front and the stars indicate the selected solution.</p> "> Figure 10
<p>Evolution of simulated SCA, with the “one-set” (red line) and the “two-set” (green line) version of the snowmelt model, along with the 8-day SCA provided by MOD10A2 (blue line), on average per basin, for the five basins during the 2013–2016 period. The summer seasons are highlighted in gray.</p> "> Figure A1
<p>Yearly SCA statistics for the Dudh Koshi basin (1998–2017).</p> "> Figure A1 Cont.
<p>Yearly SCA statistics for the Dudh Koshi basin (1998–2017).</p> "> Figure A1 Cont.
<p>Yearly SCA statistics for the Dudh Koshi basin (1998–2017).</p> ">
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Discharge Measurements
2.3. Meteorological Data
2.4. Remote Sensing Dataset
2.5. Ground-Based Measurements of Snow
3. Methods
3.1. Image Processing and Snow Cover Mapping
3.1.1. SPOT-VGT Data Processing
3.1.2. MODIS Data Processing
3.2. Cloud Cover Mapping
3.3. Snowmelt Model Description and Calibration Method
4. Results
4.1. Remote Sensing Output
4.1.1. Temporal Evolution of SCA and Cloud Cover
4.1.2. Comparison of MOD10A2 and Ground Measurements
4.2. Calibration Results of the Snowmelt Module at the Seasonal Timescale
5. Discussion
5.1. Impact of the Seasonal Parameterization on SCA modeling
5.2. Impact of the Seasonal Parameterization on Snowmelt Modeling
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Yearly SCA Statistics for the Dudh Koshi Basin (1998–2017)
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Allen, M.; Babiker, M.; Chen, Y.; de Coninck, H.; Connors, S.; van Diemen, R.; Dube, O.P.; Ebi, K.L.; Engelbrecht, F.; Ferrat, M.; et al. Global warming of 1.5 C, summary for policy makers. Intergov. Panel Clim. Chang. 2018, 6, 32. [Google Scholar]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587. [Google Scholar] [CrossRef]
- Armstrong, R.L.; Rittger, K.; Brodzik, M.J.; Racoviteanu, A.; Barret, A.P.; Khalsa, S.-J.; Raup, B.; Hill, A.; Khan, A.; Wilson, A.; et al. Runoff from glacier ice and seasonal snow in High Asia: Separating melt water sources in river flow. Reg. Environ. Chang. 2019, 19, 1249–1261. [Google Scholar] [CrossRef]
- Quincey, D.; Klaar, M.; Haines, D.; Lovett, J.; Pariyar, B.; Gurung, G.; Brown, L.; Watson, C.; England, M.; Evans, B. The changing water cycle: The need for an integrated assessment of the resilience to changes in water supply in High-Mountain Asia. WIREs Water 2018, 5, e1258. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s glaciers are a regionally important buffer against drought. Nature 2017, 545, 169. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Dhar, O.N.; Rakhecha, P.R. The effect of elevation on monsoon rainfall distribution in the central Himalayas. In Monsoon Dynamics, 1st ed.; Cambridge University Press: Cambridge, UK, 1981; pp. 253–260. [Google Scholar]
- Savéan, M.; Delclaux, F.; Chevallier, P.; Wagnon, P.; Gonga-Sholiariliva, N.; Sharma, R.; Neppel, L.; Arnaud, Y. Water budget on the Duth Koshi river (Nepal): Uncertainties on precipitation. J. Hydrol. 2015, 531, 850–862. [Google Scholar] [CrossRef]
- Bajracharya, A.R.; Bajracharya, S.R.; Shreshta, A.B.; Maharjan, S.B. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Sci. Total Environ. 2018, 625, 837–848. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Andermann, C.; Longuevergne, L.; Bonnet, S.; Crave, A.; Davy, P.; Gloaguen, R. Impact of transient groundwater storage on the discharge of Himalayan rivers. Nat. Geosci. 2012, 5, 127. [Google Scholar] [CrossRef]
- Ragettli, S.; Pellicciotti, F. Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: On the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Nepal, S.; Flügel, W.A.; Shrestha, A.B. Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecol. Process. 2014, 3, 1–19. [Google Scholar] [CrossRef]
- Pokhrel, B.K.; Chevallier, P.; Andréassian, V.; Tahir, A.A.; Arnaud, Y.; Neppel, L.; Bajracharya, O.R.; Budhathoki, K.P. Comparison of two snowmelt modelling approaches in the Dudh Koshi basin (eastern Himalayas, Nepal). Hydrolog. Sci. J. 2013, 59, 1507–1518. [Google Scholar] [CrossRef]
- Bharati, L.; Gurung, P.; Maharjan, L.; Bhattarai, U. Past and future variability in the hydrological regime of the Koshi Basin, Nepal. Hydrolog. Sci. J. 2016, 61, 79–93. [Google Scholar] [CrossRef]
- Martinec, J. Snowmelt—Runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Dey, B.; Sharma, V.K.; Rango, A. A test of snowmelt-runoff model for a major river basin in western Himalayas. Nord. Hydrol. 1989, 20, 167–178. [Google Scholar] [CrossRef]
- Savéan, M. Modélisation Hydrologique Distribuée et Perception de la Variabilité Hydro-Climatique par la Population du Bassin Versant de la Dudh Koshi (Népal). Ph.D. Thesis, Université Montpellier 2, Montpellier, France, 31 October 2014. [Google Scholar]
- Eeckman, J.; Nepal, S.; Chevallier, P.; Camensuli, G.; Delclaux, F.; Boone, A.; De Rouw, A. Comparing the ISBA and J2000 approaches for surface flows modelling at the local scale in the Everest region. J. Hydrol. 2019, 569, 705–719. [Google Scholar] [CrossRef]
- DeWalle, D.R.; Rango, A. Principle of Snow Hydrology; Cambridge University Press: New York, NY, USA, 2008; p. 410. [Google Scholar]
- Parajka, J.; Blösch, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. Discuss. 2006, 10, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ. 2009, 113, 160–181. [Google Scholar] [CrossRef]
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.F.; Szczypta, C.; Marti, R.; Sanchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef] [Green Version]
- Masson, T.; Dumont, M.; Dalla-Mura, M.; Sirguey, P.; Gascoin, S.; Dedieu, J.P.; Chanussot, J. Assessment of existing methodologies to retrieve snow cover fraction from MODIS data. Remote Sens. 2018, 10, 619. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.C.; Franz, T.E.; et al. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3879–3914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozier, J.; Painter, T. Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Planet Sci. 2004, 32, 465–494. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images–potential for snow cover mapping. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsoro, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, Part 1: Algorithm description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef]
- Dedieu, J.P.; Lessard-Fontaine, A.; Ravazzani, G.; Cremonese, E.; Shalpykova, G.; Beniston, M. Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci. Total Environ. 2014, 493, 1267–1279. [Google Scholar] [CrossRef] [Green Version]
- Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P.; Wunderle, S. A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere 2014, 8, 73–90. [Google Scholar] [CrossRef]
- Notarnicola, C.; Mölg, N.; Rastner, P.; Irsara, L.; Zebnisch, M. Monitoring snow cover changes in the Alpine Regions through MODIS and LANDSAT time series. In Proceedings of the International Mountain Conference, Perth, UK, 26–30 September 2010; pp. 786–787. [Google Scholar]
- Racoviteanu, A.E.; Armstrong, R.; Williams, M.W. Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resour. Res. 2013, 49, 5117–5133. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Eeckman, J.; Chevallier, P.; Boone, A.; Neppel, L.; De Rouw, A.; Delclaux, F.; Koirala, D. Providing a non-deterministic representation of spatial variability of precipitation in the Everest region. Hydrol. Earth Syst. Sci. 2017, 21, 4879–4893. [Google Scholar] [CrossRef] [Green Version]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; p. 506. [Google Scholar]
- Valery, A.; Andreassian, V.; Perrin, C. Regionalization of precipitation and air temperature over high-altitude catchments learning from outliers. Hydrol. Sci. J. 2010, 55, 928–940. [Google Scholar] [CrossRef]
- Lafaysse, M.; Hingray, B.; Etchevers, P.; Martin, E.; Obled, C. Influence of spatial discretization, underground water storage and glacier melt on a physically-based hydrological model of the Upper Durance River basin. J. Hydrol. 2011, 403, 116–129. [Google Scholar] [CrossRef]
- Gottardi, F.; Obled, C.; Gailhard, J.; Paquet, E. Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over french mountains. J. Hydrol. 2012, 432, 154–167. [Google Scholar] [CrossRef]
- Burns, J.I. Small-scale topographic effects on precipitation distribution in San Dimas experimental forest. Eos Trans. Am. Geophys. Union 1953, 34, 761–768. [Google Scholar] [CrossRef]
- Alpert, P. Mesoscale indexing of the distribution of orographic precipitation over high mountains. J. Clim. Appl. Meteorol. 1986, 25, 532–545. [Google Scholar] [CrossRef]
- L’Hôte, Y.; Chevallier, P.; Coudrain, A.; Lejeune, Y.; Etchevers, P. Relationship between precipitation phase and air temperature: Comparison between the Bolivian Andes and the Swiss Alps. Hydrol. Sci. J. 2005, 50, 989–997. [Google Scholar]
- Armstrong, R.L.; Brun, E. Snow and Climate: Physical Processes, Surface Energy Exchanges and Modeling; Cambridge University Press: Cambridge, UK, 2010; p. 256. [Google Scholar]
- Wiscombe, W.J.; Warren, S.G. A model for the spectral albedo of snow. I—Pure snow. J. Atmos. Sci. 1980, 37, 2712–2733. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Rees, W.G. Remote Sensing of Snow and Ice; Taylor & Francis: Abingdon, UK; CRC Press Book: Cambridge, UK, 2006; p. 285. [Google Scholar]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Sergent, C.; Coléou, C.; David, P. Mesures Nivo-Météorologiques. Document de Formation des Pisteurs Secouristes 2eme Degré; CNRM, CEN, Météo France: Grenoble, France, 1996. [Google Scholar]
- Gascoin, S.; Dubertret, F.; Drapeau, L.; Gonga-Saholiariliva, N.; Jarlan, L.; Duchemin, B.; Maisongrande, P. SCoTA: An open source toolbox for snow cover mapping from SPOT-VEGETATION daily syntheses. In Proceeding of the International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Lissens, G.; Kempeneers, P.; Fierens, F.; Van Rensbergen, J. Development of cloud, snow, and shadow masking algorithms for VEGETATION imagery. In Proceedings of the IEEE IGARSS Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Berthelot, B. Snow Detection on VEGETATION Data—Improvement of Cloud Screening; No. NOV-3128-NT-2295, v1.1, 54 p., VITO, Be; VITO: Mol, Belgium, 2004. [Google Scholar]
- Irish, R.; Barker, J.; Goward, S.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated Cloud-Cover Assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Riggs, G.A.; Hall, D.K.; Román, M.O. Overview of NASA’s MODIS and VIIRS snow-cover earth system data records. Earth Syst. Sci. 2017, 9, 765–777. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Liang, T. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1497–1513. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K. Modis Snow Products Collection 6 User Guide; National Snow and Ice Data Center: Boulder, CO, USA, 2015; p. 66. [Google Scholar]
- MacKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Fujita, K.; Inoue, H.; Izumi, T.; Yamaguchi, S.; Sadakane, A.; Sunako, S.; Nishimura, K.; Immerzeel, W.; Shea, J.M.; Kayastha, R.B.; et al. Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal. Nat. Hazards Earth Syst. 2017, 17, 749–764. [Google Scholar] [CrossRef] [Green Version]
- Neupane, R.; White, J.; Alexander, S. Projected hydrologic changes in monsoon-dominated Himalaya mountain basins with changing climate and deforestation. J. Hydrol. 2015, 525, 216–230. [Google Scholar] [CrossRef]
- Ménégoz, M.; Gallée, H.; Jacobi, H.W. Precipitation and snow cover in the Himalaya: From reanalysis to regional climate simulations. Hydrol. Earth Syst. Sci. 2013, 17, 3921–3936. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. DiGirolamo, N.E.; Roman, M.O. MODIS cloud-gap filled snow-cover products: Advantages and uncertainties. Hydrol. Earth Syst. Sci. Discuss. 2019. in review. [Google Scholar] [CrossRef]
- Coello, C.A.C. Recent trends in evolutionary multiobjective optimization. In Evolutionary Multiobjective Optimization; Springer: London, UK, 2005; pp. 7–32. [Google Scholar]
- Sevruk, B. International workshop on precipitation measurement I: Preface. Hydrol. Process. 1991, 5, 229–232. [Google Scholar] [CrossRef]
- Rasmussen, R.; Baker, B.; Kochendorfer, J.; Meyers, T.; Landolt, S.; Fischer, A.P.; Black, J.; Theriault, J.; Kucera, P.; Gochis, D.; et al. How well are we measuringsnow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Am. Meteorol. Soc. 2012, 93, 811–829. [Google Scholar] [CrossRef]
- Mimeau, L. Quantification des Contributions Aux Écoulements Dans un Bassin Englacé par Modélisation Glacio-Hydrologique: Application à un Sous-Bassin de la Dudh Koshi (Népal, Himalaya). Ph.D. Thesis, IGE—Institut des Géosciences de l’Environnement, Grenoble, France, 29 August 2018. [Google Scholar]
Basin | Surf. Basin (Surf. Glacier) | Elevation | Median Slope |
---|---|---|---|
(km2) | min./mean/max. (m) | (%) | |
Pheriche | 144 (57) | 4210/5499/8806 | 30.1 |
Dingboche | 146 (66) | 4355/5561/8380 | 33.8 |
Tauche | 4.46 (0.02) | 3992/4929/5988 | 37.3 |
Phakding | 1218 (336) | 2620/5152/8806 | 25.7 |
Basin | Total Precipitation | Solid Precipitation | Air Temperature | Annual Discharge and Availability Period |
---|---|---|---|---|
(mm/year) | (mm/year) | Max./mean/min. (°C) | (m3/s) | |
Pheriche | 690 | 372 | 2.57/−4.56/−15.78 | 4.43 (2013–2016) |
Dingboche * | 763 | 449 | 2.05/−4.74/−15.73 | 4.71 (2013–2015) |
Tauche | 727 | 184 | 5.41/−1.63/−13.08 | 0.065 (2013–2016) |
Phakding | 872 | 335 | 4.09/−2.70/−13.79 | 39.8 (2013–2016) |
Wavelength (µm) | ||||||
---|---|---|---|---|---|---|
Sensor | Resolution | Blue | Green | Red | Near-Infrared | Shortwave |
(m) | Infrared | |||||
SPOT-VGT | 1000 | 0.43–0.47 | none | 0.61–0.68 | 0.78–0.89 | 1.58–1.75 |
MODIS-Terra | 500 | 0.45–0.47 | 0.54–0.56 | 0.62–0.67 | 0.84–0.88 | 1.63–1.65 |
Basin | Number of Simulations | DDF low–up (mm/°C/day) | Tm low–up (°C) | Hmin low–up (mm) |
---|---|---|---|---|
Pheriche | 500 | 1.0–20.0 | −7.00–0.00 | 0.10–7.50 |
Dingboche | 500 | 1.0–20.0 | −7.00–0.00 | 0.10–7.50 |
Tauche | 1000 | 1.0–20.0 | −5.10–1.00 | 0.10–10.00 |
Phakding | 1000 | 1.0–20.0 | −7.00–0.00 | 0.10–7.50 |
Basin | Version | DDF-W | DDF-S | Tm-W | Tm-S | Hmin-W | Hmin-S |
---|---|---|---|---|---|---|---|
(mm/°C/day) | (mm/°C/day) | (°C) | (°C) | (mm) | (mm) | ||
Pheriche | one-set | 14.0 | −2.83 | 6.18 | |||
two-set | 13.7 | 8.6 | −3.48 | −2.92 | 6.97 | 3.99 | |
Dingboche | one-set | 3.3 | −4.14 | 6.98 | |||
two-set | 16.8 | 11.1 | −3.49 | −2.51 | 6.47 | 6.63 | |
Tauche | one-set | 5.3 | −3.31 | 9.01 | |||
two-set | 13.6 | 6.3 | −3.29 | −2.40 | 8.85 | 5.66 | |
Phakding | one-set | 14.0 | −1.70 | 7.30 | |||
two-set | 12.4 | 17.8 | −4.70 | −1.33 | 2.57 | 2.79 |
Basin | Surface | Obs SCA | Version | Sim SCA | RMSE (%) | Bias (%) | Correlation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
km² | Mean/Surf. Basin | Mean/Surf. Basin | Y | W | S | Y | W | S | Y | W | S | ||
Pheriche | 143.9 | 48.3 | one-set | 48.6 | 20.8 | 24.0 | 16.9 | 0.9 | 8.4 | 10.5 | 0.68 | 0.60 | 0.62 |
two-set | 48.3 | 19.2 | 23.2 | 14.4 | 0.3 | 6.4 | −8.9 | 0.69 | 0.61 | 0.65 | |||
Dingboche | 145.8 | 50.8 | one-set | 50.4 | 21.9 | 24.4 | 18.9 | −0.4 | 3.7 | −6.8 | 0.67 | 0.63 | 0.63 |
two-set | 51.1 | 20.4 | 23.6 | 16.5 | 1.0 | 4.6 | −4.7 | 0.68 | 0.62 | 0.63 | |||
Tauche | 4.46 | 17.7 | one-set | 17.6 | 21.7 | 31.6 | 18.6 | −1.4 | 7.7 | 24.7 | 0.62 | 0.59 | 0.56 |
two-set | 17.6 | 20.4 | 28.9 | 18.8 | −1.4 | 10.5 | 32.5 | 0.65 | 0.63 | 0.53 | |||
Phakding | 1218.8 | 44.5 | one-set | 44.3 | 16.9 | 18.9 | 14.1 | 0.1 | −5.2 | −7.8 | 0.76 | 0.73 | 0.73 |
two-set | 44.2 | 15.9 | 16.7 | 15.0 | −0.5 | −6.5 | 9.3 | 0.77 | 0.79 | 0.59 |
Basin | 2013–2014 | 2014–2015 | 2015–2016 | |||
---|---|---|---|---|---|---|
mm—(%) | mm—(%) | mm—(%) | ||||
one-set | two-set | one-set | two-set | one-set | two-set | |
Pheriche | 393—(50) | 388—(49) | 426—(41) | 419—(40) | 386—(46) | 363—(44) |
Dingboche | 507—(65) | 477—(62) | 461—(37) | 466—(37) | 467—(51) | 415—(46) |
Tauche | 275—(64) | 278—(64) | 268—(58) | 296—(61) | 218—(62) | 188—(59) |
Phakding | 392—(49) | 384—(48) | 386—(33) | 407—(35) | 353—(40) | 296—(33) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchard, B.; Eeckman, J.; Dedieu, J.-P.; Delclaux, F.; Chevallier, P.; Gascoin, S.; Arnaud, Y. On the Interest of Optical Remote Sensing for Seasonal Snowmelt Parameterization, Applied to the Everest Region (Nepal). Remote Sens. 2019, 11, 2598. https://doi.org/10.3390/rs11222598
Bouchard B, Eeckman J, Dedieu J-P, Delclaux F, Chevallier P, Gascoin S, Arnaud Y. On the Interest of Optical Remote Sensing for Seasonal Snowmelt Parameterization, Applied to the Everest Region (Nepal). Remote Sensing. 2019; 11(22):2598. https://doi.org/10.3390/rs11222598
Chicago/Turabian StyleBouchard, Benjamin, Judith Eeckman, Jean-Pierre Dedieu, François Delclaux, Pierre Chevallier, Simon Gascoin, and Yves Arnaud. 2019. "On the Interest of Optical Remote Sensing for Seasonal Snowmelt Parameterization, Applied to the Everest Region (Nepal)" Remote Sensing 11, no. 22: 2598. https://doi.org/10.3390/rs11222598
APA StyleBouchard, B., Eeckman, J., Dedieu, J. -P., Delclaux, F., Chevallier, P., Gascoin, S., & Arnaud, Y. (2019). On the Interest of Optical Remote Sensing for Seasonal Snowmelt Parameterization, Applied to the Everest Region (Nepal). Remote Sensing, 11(22), 2598. https://doi.org/10.3390/rs11222598