Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management
<p>Study area: Detailed map of the study area highlighting the spatial distribution of forested areas (green).</p> "> Figure 2
<p>(<b>a</b>) Available satellite data for the early-spring acquisition period, representing the phenological stage of foliage development; (<b>b</b>) Available satellite data for the summer acquisition period, representing the phenological stage of full foliage; (<b>c</b>) Resulting processing units.</p> "> Figure 3
<p>Schematic of the spatially adaptive classification approach to deriving high-resolution forest information layers.</p> "> Figure 4
<p>Flowchart of the spatially adaptive classification approach.</p> "> Figure 5
<p>Map views of JRC forest-type map 2006, Copernicus high-resolution layers (forest type), and the spatially adaptive classification product in comparison with high spatial resolution aerial imagery of a densely forested area in the Hunsrück low-mountain range.</p> "> Figure 6
<p>Map of tree species distribution and development stages throughout Rhineland-Palatinate.</p> "> Figure 7
<p>Subset of resulting state-wide forest information layer on tree species distribution and development stages, superposed by official forest stand boundaries and with high-resolution aerial imagery as background layer.</p> "> Figure 8
<p>Overall classification accuracy at tree species level for each of the 22 processing units.</p> "> Figure 9
<p>Conceptual layout of operational forest information layers derived of the conclusion of this study.</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Information Need for Operational Sustainable Forest Management in the Federal State of Rhineland-Palatinate (Germany)
- -
- Update of existing forest/non-forest mapping products at a minimum mapping unit of 100 m2 accommodating the needs of multiple authorities and users.
- -
- Forest type delineation at a minimum mapping unit of 100 m2.
- -
- Spatial discrimination of five primary forest cover classes in RLP (Sessile and Pedunculate oak, European beech, Norway spruce, Douglas fir, and Scots pine) and three tree species development stages (stand qualification, dimensioning, and maturing).
- -
- Derivation of spatially explicit forest attributes at stand level (e.g., tree height, stand structure, total biomass, timber volume).
- -
- Direct integration of existing forest inventory data as reference information.
- -
- Use of remote sensing-based mapping and inventory techniques compatible with standard field survey methods currently conducted in RLP.
- -
- Product consistency throughout the state of RLP.
- -
- High level of classification accuracy is required.
- -
- Approach must be based on satellite systems that provide reliable data availability.
- -
- Processing chain must be capable of being integrated into operative forest management.
1.3. Objectives
- -
- Design and application of an optimized data processing chain (geometric and radiometric corrections, data fusion techniques, classification algorithms) capable of handling data from multiple sources (multispectral satellite data from different sensor systems, official forest inventory data).
- -
- Integration of additional support data sets (airborne LiDAR, digital aerial orthophotos) for testing the validity of state forest inventory data used as reference information.
- -
- Production of satellite-based forest information layers for the complete federal state of RLP, comprising maps of forest/non-forest distribution, forest types (coniferous vs. deciduous), tree species at stand level, and tree species enhanced by three corresponding developmental stages.
- -
- Integration of the derived products in operational forest management tasks.
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
Processing Unit | Early-Spring Acquisition Period | Summer Acquisition Period | Details | ||||||
---|---|---|---|---|---|---|---|---|---|
ID | Area (km2) | Acquisition date | Sensor | Incidence angle | Acquisition date | Sensor | Incidence angle | Total cloud cover (%) | Forested area (%) |
1 | 1673 | 24/04/2011 | SPOT4 | 8.3 | 31/07/2008 | SPOT5 | 19.8 | 1.9 | 44 |
2 | 315 | 25/04/2011 | SPOT5 | 29.7 | 31/07/2008 | SPOT5 | 19.8 | 0.7 | 31 |
3 | 752 | 05/05/2008 | SPOT5 | 20.6 | 16/08/2009 | SPOT5 | 19.6 | 1 | 54 |
4 | 755 | 10/05/2008 | SPOT5 | 14.2 | 16/08/2009 | SPOT5 | 19.6 | 0.1 | 23 |
5 | 1294 | 25/04/2011 | SPOT5 | 29.7 | 31/07/2008 | SPOT5 | 19.7 | 1 | 40 |
6 | 1510 | 05/05/2008 | SPOT5 | 20.6 | 15/07/2008 | SPOT5 | 22.5 | 12.3 | 35 |
7 | 553 | 05/05/2008 | SPOT5 | 20.6 | 16/08/2009 | SPOT5 | 19.6 | 12.9 | 36 |
8 | 137 | 22/05/2010 | SPOT5 | 25.1 | 16/08/2009 | SPOT5 | 19.6 | 0 | 18 |
9 | 1977 | 05/05/2008 | SPOT5 | 20.6 | 31/08/2009 | SPOT5 | 4.7 | 1 | 41 |
10 | 1108 | 06/04/2010 | RapidEye | 3.8 | 03/07/2006 | SPOT5 | 13.9 | 0 | 42 |
11 | 1132 | 18/04/2010 | SPOT5 | 27.7 | 03/07/2010 | SPOT5 | 21.2 | 6.3 | 51 |
12 | 1288 | 25/05/2009 | SPOT5 | 17.1 | 05/08/2009 | SPOT5 | 3.4 | 0.8 | 5 |
13 | 833 | 06/04/2010 | RapidEye | 3.8 | 07/08/2010 | RapidEye | 7.6 | 0 | 53 |
14 | 287 | 06/04/2010 | RapidEye | 3.8 | 08/07/2010 | SPOT5 | 22.4 | 0 | 46 |
15 | 532 | 06/04/2010 | RapidEye | 3.8 | 08/07/2010 | SPOT5 | 22.4 | 0 | 43 |
16 | 423 | 06/04/2010 | RapidEye | 3.8 | 07/08/2010 | RapidEye | 7.6 | 32.2 | 37 |
17 | 1593 | 20/04/2009 | SPOT4 | 17.2 | 31/08/2005 | SPOT5 | 1.3 | 0.2 | 20 |
18 | 611 | 20/04/2009 | SPOT4 | 17.2 | 31/08/2005 | SPOT5 | 1.3 | 0.9 | 74 |
19 | 869 | 10/05/2008 | SPOT5 | 10.8 | 31/07/2008 | SPOT5 | 19.8 | 1 | 36 |
20 | 459 | 20/04/2009 | SPOT4 | 17.2 | 05/09/2005 | SPOT5 | 2.6 | 3 | 74 |
21 | 575 | 07/04/2010 | SPOT5 | 12.3 | 05/09/2005 | SPOT5 | 2.6 | 1.3 | 80 |
22 | 519 | 07/04/2010 | SPOT5 | 12.3 | 14/07/2010 | SPOT5 | 10.8 | 6.4 | 32 |
2.2.2. Forest Inventory Data
2.2.3. Supplementary Data
3. Data Preparation
3.1. Preprocessing of Satellite Data
3.1.1. Resolution Enhancement
3.1.2. Geometric Registration
3.1.3. Atmospheric Correction
3.2. Forest Inventory Data Processing
3.2.1. Screening of Suitable Training Sites
3.2.2. Determination of Training Data
3.2.3. Verification of Training Data
4. Methods
4.1. Derivation of High-Resolution Forest Information Layers
4.1.1. Forest/Non-Forest Stratification
4.1.2. Forest Type Map
4.1.3. Map of Tree Species Distribution and Tree Species Development Stages
- (1)
- Identification of the local reference unit within the unknown forest-pixel to be classified;
- (2)
- Verification of whether sufficient reference data per thematic class are available within this unit;
- (3)
- If so, these data are used directly to parameterize the maximum likelihood classifier;
- (4)
- Otherwise (reference data are insufficient for one or more thematic classes within the starting reference unit), the considered search area for the respective thematic class is expanded by considering neighboring reference units;
- (5)
- In case a thematic class is still not represented by sufficient data, the training procedure falls back on a basic reference set derived from the entire reference database;
- (6)
- Derivation of final maps uses a maximum likelihood classification based on locally optimized training data.
4.2. Validation
5. Results and Discussion
5.1. Forest/Non-Forest Stratification
5.2. Forest Type Stratification
Validation of Forest Type Information Layers
Forest Type | Forest Survey RLP | JRCs Forest-Type Map 2006 | Copernicus High-Resolution Layers | Spatially Adaptive Classification |
---|---|---|---|---|
Deciduous Forest | 60% | 59.6% | 67.9% | 53.8% |
Coniferous Forest | 40% | 40.4% | 32.1% | 46.2% |
JRCs Forest-Type Mapping Product | Copernicus High-Resolution Layers | Spatially Adaptive Classification | ||||
---|---|---|---|---|---|---|
Error of | Error of | Error of | ||||
Omission | Commission | Omission | Commission | Omission | Commission | |
Deciduous Forest | 27.75 | 14.20 | 25.45 | 7.66 | 10.21 | 9.07 |
Coniferous Forest | 14.16 | 27.67 | 9.09 | 29.14 | 8.42 | 9.49 |
Overall Accuracy | 78.48% | 81.18% | 90.71% | |||
Area covered | 100% | 91% | 96% |
5.3. Tree Species and Tree Development Stages
5.3.1. Validation of Tree Species and Tree Development Stage Classification
Species Level | Species and Development Stage Level | Number of Validation Points | ||||
---|---|---|---|---|---|---|
Error of | Error of | |||||
Omission | Commission | Omission | Commission | |||
Oak | 19.0 | 16.0 | Oak—stand qualification | 43.1 | 34.7 | 580 |
Oak—dimensioning | 49.4 | 48.0 | 852 | |||
Oak—maturing | 61.1 | 63.2 | 614 | |||
European beech | 15.5 | 20.5 | Beech—stand qualification | 48.2 | 38.7 | 520 |
Beech—dimensioning | 44.7 | 51.1 | 636 | |||
Beech—maturing | 33.7 | 45.0 | 827 | |||
Norway spruce | 23.5 | 8.4 | Norway spruce—stand qualification | 33.8 | 30.6 | 500 |
Norway spruce—dimensioning | 50.0 | 36.0 | 580 | |||
Norway spruce—maturing | 41.1 | 26.5 | 566 | |||
Douglas fir | 13.3 | 23.4 | Douglas fir—stand qualification | 19.0 | 62.6 | 500 |
Douglas fir—dimensioning | 62.3 | 39.4 | 500 | |||
Douglas fir—maturing | 41.2 | 65.8 | 500 | |||
Scots pine | 8.2 | 14.1 | Scots pine—stand qualification | 29.5 | 15.2 | 500 |
Scots pine—dimensioning | 53.4 | 50.4 | 500 | |||
Scots pine—maturing | 39.7 | 60.3 | 710 | |||
Overall accuracy = 83.51% | Overall accuracy = 54.95% | |||||
Kappa statistic = 0.79 | Kappa statistic = 0.52 |
5.3.2. Acceptance of FIL
5.3.3. Problem Analysis
Processing Unit | Early-Spring Acquisition Period | Summer Acquisition Period | Details | Phenology | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | Area (km2) | Acquisition date | Sensor | Incidence angle | Acquisition date | Sensor | Incidence angle | Total cloud cover (%) | Forested area (%) | Reported foliage formation (beech) | Delay in days | Acquisition delay in days | OA (%) |
17 | 1593 | 20/04/2009 | S4 | 17.2 | 31/08/2005 | S5 | 1.3 | 0.2 | 20 | 13/04/2009 | 7 | 1328 | 87.1 |
1 | 1673 | 24/04/2011 | S4 | 8.3 | 31/07/2005 | S5 | 19.8 | 1.9 | 44 | 12/04/2011 | 12 | 997 | 86.3 |
2 | 315 | 25/04/2011 | S5 | 29.7 | 31/07/2005 | S5 | 19.8 | 0.7 | 31 | 12/04/2011 | 13 | 998 | 85.5 |
6 | 1510 | 05/05/2008 | S5 | 20.6 | 15/07/2008 | S5 | 22.5 | 12.3 | 35 | 30/04/2008 | 5 | –71 | 82.0 |
8 | 137 | 22/05/2010 | S5 | 25.1 | 16/08/2009 | S5 | 19.6 | 0 | 18 | 22/04/2010 | 30 | 279 | 81.5 |
7 | 553 | 05/05/2008 | S5 | 20.6 | 16/08/2009 | S5 | 19.6 | 12.9 | 36 | 30/04/2008 | 5 | –468 | 81.4 |
11 | 1132 | 18/04/2010 | S5 | 27.7 | 03/07/2010 | S5 | 21.2 | 6.3 | 51 | 24/04/2010 | –6 | –76 | 80.5 |
3 | 752 | 05/05/2008 | S5 | 20.6 | 16/08/2009 | S5 | 19.6 | 1 | 54 | 30/04/2008 | 5 | –468 | 79.8 |
4 | 755 | 10/05/2008 | S5 | 14.2 | 16/08/2009 | S5 | 19.6 | 0.1 | 23 | 21/04/2008 | 19 | –463 | 79.5 |
9 | 1977 | 05/05/2008 | S5 | 20.6 | 31/08/2009 | S5 | 4.7 | 1 | 41 | 28/04/2008 | 7 | –483 | 79.3 |
22 | 519 | 07/04/2010 | S5 | 12.3 | 14/07/2010 | S5 | 10.8 | 6.4 | 32 | 23/04/2010 | –6 | –98 | 79.1 |
21 | 575 | 07/04/2010 | S5 | 12.3 | 05/09/2009 | S5 | 2.6 | 1.3 | 80 | 19/04/2010 | –12 | 1675 | 76.9 |
19 | 869 | 10/05/2008 | S5 | 10.8 | 31/07/2008 | S5 | 19.8 | 1 | 36 | 25/04/2008 | 15 | –82 | 76.6 |
10 | 1108 | 06/04/2010 | RE | 3.8 | 03/07/2006 | S5 | 13.9 | 0 | 42 | 26/04/2010 | –20 | 1373 | 76.4 |
13 | 833 | 06/04/2010 | RE | 3.8 | 07/08/2010 | RE | 7.6 | 0 | 53 | 22/04/2010 | –16 | –123 | 75.9 |
15 | 532 | 06/04/2010 | RE | 3.8 | 07/08/2010 | S5 | 22.4 | 0 | 43 | 24/04/2010 | –18 | –93 | 74.5 |
18 | 611 | 20/04/2009 | S4 | 17.2 | 31/08/2005 | S5 | 1.3 | 0.9 | 74 | 13/04/2009 | 7 | 1328 | 73.1 |
14 | 287 | 06/04/2010 | RE | 3.8 | 07/08/2010 | S5 | 22.4 | 0 | 46 | 24/04/2010 | –18 | –93 | 71.9 |
5 | 1294 | 25/04/2011 | S5 | 29.7 | 31/07/2008 | S5 | 19.7 | 1 | 40 | 16/04/2011 | 9 | 998 | 70.7 |
20 | 459 | 20/04/2009 | S4 | 17.2 | 05/09/2009 | S5 | 2.6 | 3 | 74 | 09/04/2009 | 11 | 1323 | 69.1 |
12 | 1288 | 25/05/2009 | S5 | 17.1 | 05/08/2009 | S5 | 3.4 | 0.8 | 5 | 09/04/2009 | 46 | –72 | 64.1 |
16 | 423 | 06/04/2010 | RE | 3.8 | 07/08/2010 | RE | 7.6 | 33 | 37 | 25/04/2010 | –19 | –123 | 63.3 |
- (1)
- Phenology: Spectral separability of deciduous tree species can be substantially increased if the combined satellite observations capture the important phenological stages of foliage formation and fully developed foliage [18,26,29,82,83]. To ensure high mapping quality of forest information layers, the required satellite observations should be acquired within the optimum phenological time-windows.
- (2)
- Spatial extent of processing unit: To compensate climatic- and management-dependent gradients in forest site conditions, the use of a spatially adaptive classification approach seems to be a feasible strategy. However, the spatial extent of the processing unit should be large enough to ensure sufficient reference data for the classification process and thereby the best possible spatial adaptation to the forest characteristics.
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Food and Agricultural Organization of the United Nations. Global Forest Land-use Change 1990–2005; Food and Agricultural Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- McRoberts, R.E.; McWilliams, W.H.; Reams, G.A.; Schmidt, T.L.; Jenkins, J.C.; O’Neill, K.P.; Miles, P.D.; Brand, G.J. Assessing sustainability using data from the forest inventory and analysis program of the United States forest service. J. Sustain. Forest. 2004, 18, 23–46. [Google Scholar] [CrossRef]
- UNFCCC (United Nations Framework Convention on Climate Change). The Kyoto Protocol to the Convention on Climate Change; Climate Change Secretariat: Bonn, Germany, 1998. [Google Scholar]
- Glowka, L.; Burhenne-Guilmin, F.; Synge, H.; McNeely, J.A.; Gündling, L. A Guide to the Convention on Biological Diversity; IUCN Environmental Law Center & IUCN Biodiversity Programme: Gland, Switzerland, 1994. [Google Scholar]
- Forest Europe. Oslo Ministerial Decision: European Forest 2020; Forest Europe: Oslo, Norway, 2011. [Google Scholar]
- McDonald, G.T.; Lane, M.B. Converging global indicators for sustainable forest management. For. Policy Econ. 2004, 6, 63–70. [Google Scholar] [CrossRef]
- Bolte, A.; Eisenhauer, D.-R.; Ehrhart, H.-P.; Groß, J.; Hanewinkel, M.; Kölling, C.; Profft, I.; Rohde, M.; Röhe, P.; Amereller, K. Klimawandel und Forstwirtschaft—Übereinstimmungen und Unterschiede bei der Einschätzung der Anpassungsnotwendigkeiten und Anpassungsstrategien der Bundesländer. Landbauforschung 2009, 59, 269–278. [Google Scholar]
- Franklin, S.E. Remote Sensing for Sustainable Forest Management; Lewis Publishers: Boca Raton, FL, USA; London, UK; New York, NY, USA; Washington, DC, USA, 2001. [Google Scholar]
- Andersson, F.O.; Feger, K.-H.; Hüttl, R.F.; Kräuchi, N.; Mattsson, L.; Sallnäs, O.; Sjöberg, K. Forest ecosystem research—Priorities for Europe. For. Ecol. Manag. 2000, 132, 111–119. [Google Scholar] [CrossRef]
- Linke, J.; Betts, M.; Lavigne, B.; Franklin, S.E. Introduction: Structure, function, and change of forest landscapes. In Understanding Forest Disturbance and Spatial Pattern. Remote Sensing and GIS Approaches; Wulder, M.A., Franklin, S.E., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 1–22. [Google Scholar]
- Boyd, D.S.; Danson, F.M. Satellite remote sensing of forest resources: Three decades of research development. Prog. Phys. Geogr. 2005, 29, 1–26. [Google Scholar] [CrossRef]
- Holmgren, P.; Thuresson, T. Satellite remote sensing for forestry planning a review. Scand. J. For. Res. 1998, 13, 90–110. [Google Scholar] [CrossRef]
- Kempeneers, P.; Sedano, F.; Seebach, L.; Strobl, P.; San-Miguel-Ayanz, J. Data fusion of different spatial resolution remote sensing images applied to forest-type mapping. IEEE T. Geosci. Remote 2011, 49, 4977–4986. [Google Scholar] [CrossRef]
- Pekkarinen, A.; Reithmaier, L.; Strobl, P. Pan-European forest/non-forest mapping with Landsat ETM+ and Corine land cover 2000 data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 171–183. [Google Scholar] [CrossRef]
- Holopainen, M.; Vastaranta, M.; Liang, X.; Hyyppä, J.; Jaakkola, A.; Kankare, V. Estimation of forest stock and yield using lidar data. In Remote Sensing of Natural Resources; Wang, G., Weng, Q., Eds.; CRC Press Taylor & Francis Group: Boca Ratom, FL, USA, 2014; pp. 259–290. [Google Scholar]
- Stoffels, J.; Mader, S.; Hill, J.; Werner, W.; Ontrup, G. Satellite-based stand-wise forest cover type mapping using a spatially adaptive classification approach. Eur. J. For. Res. 2012, 131, 1071–1089. [Google Scholar] [CrossRef]
- LWaldG. Landeswaldgesetz Rheinland-Pfalz (Forest Act Rhineland-Palatinate); LwaldG: Rhineland-Palatinate, Germany, 2000. [Google Scholar]
- Peerenboom, H.G.; Ontrup, G.; Böhmer, O. Weiterentwicklung der Forsteinrichtung in Rheinland-Pfalz. Forst Holz 2003, 58, 728–731. [Google Scholar]
- Diemer, C.; Lucaschewski, I.; Spelsberg, G.; Tomppo, E.; Pekkarien, A. Integration of Terrestrial Forest Sample Plot Data, Map Information and Satellite Data: An Operational Multisource-Inventory Concept., Fusion of Earth Data: Merging Point Measurements, Raster Maps and Remotely Sensed Images., Sophia Antipolis, France; Ranchin, T., Wald, L., Eds.; SEE/URISCA, Nice: Sophia Antipolis, France, 2000; pp. 485–497. [Google Scholar]
- Vohland, M.; Stoffels, J.; Hau, C.; Schüler, G. Remote sensing techniques for forest parameter assessment: Multispectral classification and linear spectral mixture analysis. Silva Fenn. 2007, 41, 441–456. [Google Scholar] [CrossRef]
- Gauer, J. Waldökologische Naturräume Deutschlands. In Forstliche Wuchsgebiete und Wuchsbezirke. Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung; Gauer, J., Aldinger, E., Eds.; Henkeldruck: Stuttgart, Germany, 2005; Volume 43, pp. 13–17. [Google Scholar]
- PEFC-Arbeitsgruppe Rheinland-Pfalz. 3. Regionaler Waldbericht Rheinland-Pfalz; Programme for the Endorsement of Forest Certification Schemes: Trippstadt, Germany, 2010. [Google Scholar]
- Wolff, B.; Erhard, M.; Holzhausen, M.; Kuhlow, T. Das Klima in den Forstlichen Wuchsgebieten und Wuchsbezirken Deutschlands; Kommissionsverlag Buchhandlung Max Widebusch: Hamburg, Germany, 2003. [Google Scholar]
- Dymond, C.C.; Mladenoff, D.J.; Radeloff, V.C. Phenological differences in tasseled cap indices improve deciduous forest classification. Remote Sens. Environ. 2002, 80, 460–472. [Google Scholar] [CrossRef]
- Wolter, P.T.; Townsend, P.A.; Sturtevant, B.R. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data. Remote Sens. Environ. 2009, 113, 2019–2036. [Google Scholar] [CrossRef]
- Wolter, P.T.; Mladenoff, D.J.; Host, G.E.; Crow, T.R. Improved forest classification in northern lake states using multi-temporal Landsat imagery. Photogramm. Eng. Remote Sens. 1995, 61, 1129–1143. [Google Scholar]
- Schriever, J.R.; Congalton, R.G. Evaluating seasonal variability as an aid to cover-type mapping from Landsat thematic mapper data in the northeast. Photogramm. Eng. Remote Sens. 1995, 61, 321. [Google Scholar]
- Kuemmerle, T.; Radeloff, V.C.; Perzanowski, K.; Hostert, P. Cross-border comparison of land cover and landscape pattern in Eastern Europe using a hybrid classification technique. Remote Sens. Environ. 2006, 103, 449–464. [Google Scholar] [CrossRef]
- Polgar, C.A.; Primack, R.B. Leaf-out phenology of temperate woody plants: From trees to ecosystems. New Phytol. 2011, 191, 926–941. [Google Scholar] [CrossRef] [PubMed]
- Rötzer, T.; Chmielewski, F.-M. Phenological maps of Europe. Clim. Res. 2001, 18, 249–257. [Google Scholar] [CrossRef]
- Rötzer, T.; Grote, R.; Pretzsch, H. The timing of bud burst and its effect on tree growth. Int. J. Biometeorol. 2004, 48, 109–118. [Google Scholar] [CrossRef] [PubMed]
- DWD Climate Data Center (CDC). Eintrittsdaten Phänologischer Phasen, Sofortmelder Wildwachsende Pflanzen. 2015. Available online: http:///ftp-cdc.dwd.de/pub/CDC/observations_germany/phenology/annual_reporters/wild/ (accessed on 29 May 2015).
- Wesołowski, T.; Rowiński, P. Timing of bud burst and tree-leaf development in a multispecies temperate forest. For. Ecol. Manag. 2006, 237, 387–393. [Google Scholar] [CrossRef]
- Spotimage—Astrum-Geo. Spot Image, Resolutions and Spectral Modes. Available online: http://www2.astrium-geo.com/files/pmedia/public/r451_9_resolutionspectralmodes_uk_sept2010.pdf (accessed on 1 October 2014).
- Blackbridge. Satellite Imagery Product Specifications. Available online: http://blackbridge.com/rapideye/upload/RE_Product_Specifications_ENG.pdf (accessed on 1 October 2014).
- Bundesministerium für Verbraucherschutz Ernährung und Landwirtschaft. Die Zweite Bundeswaldinventur—Das Wichtigste in Kürze; Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft, Referat Öffentlichkeitsarbeit: Bonn, Germany, 2004. [Google Scholar]
- Landesforsten Rheinland-Pfalz. Naturnahe Waldbewirtschaftung—Qualifizieren—Dimensionieren. Available online: http://www.wald-rlp.de (accessed on 8 August 2008).
- St-Onge, B.; Treitz, P.; Wulder, M.A. Tree and canopy height estimation with scanning lidar. In Remote Sensing of Forest Environments; Wulder, M.A., Franklin, S.E., Eds.; Springer: New York, NY, USA, 2003; pp. 489–509. [Google Scholar]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band Worldview-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef]
- Wulder, M.A. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr. 1998, 22, 449–476. [Google Scholar] [CrossRef]
- Hill, J.; Diemer, C.; Udelhoven, T. A Local Correlation approach for the fusion of image bands with different spatial resolutions. Bull. Soc. Fr. Photogramm. Télédétect. 2003, 169, 26–34. [Google Scholar]
- De Boissezon, H.; Laporterie-Déjean, F. Evaluations thématiques et statistiques de cinq algorithmes de fusion p/xs sur des simulations d’images pleiades-hr. Bull. Soc. Fr. Photogramm. Télédétect. 2003, 169, 83–99. [Google Scholar]
- Verbyla, D.L.; Hammond, T.O. Conservative bias in classification accuracy assessment due to pixel-by-pixel comparison of classified images with reference grids. Int. J. Remote Sens. 1995, 16, 581–587. [Google Scholar] [CrossRef]
- Townshend, R.G.; Justice, C.O.; Gurney, C.; McManus, J. The impact of misregistration on change detection. IEEE T. Geosci. Remote 1992, 30, 1054–1060. [Google Scholar] [CrossRef]
- Hill, J.; Mehl, W. Geo- und radiometrische Aufbereitung multi- und hyperspektraler Daten zur Erzeugung langjähriger kalibrierter Zeitreihen. Photogramm. Fernerkund. Geoinf. 2003, 2003, 7–14. [Google Scholar]
- Radeloff, V.; Hill, J.; Mehl, W. Forest Mapping from Space—Enhanced Satellite Data Processing by Spectral Mixture Analysis and Topographic Corrections; European Commission ECSC-EC-EAEC: Brüssel, Luxemburg, 1997; p. 90. [Google Scholar]
- Ekstrand, S. Landsat TM-based forest damage assessment: Correction for topographic effects. Photogramm. Eng. Remote Sens. 1996, 62, 151–162. [Google Scholar]
- Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For. Ecol. Manag. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Hale, S.R.; Rock, B.N. Impact of topographic normalization on land-cover classification accuracy. Photogramm. Eng. Remote Sens. 2003, 69, 785–791. [Google Scholar] [CrossRef]
- Itten, K.; Meyer, P.; Kellenberger, T.; Leu, R.; Sandmeier, S.; Bittner, P.; Seidel, K. Correction of the Impact of Topography and Atmosphere on Landsat-TM Forest Mapping of Alpine Regions; Remote Sensing Series, Volume 18; RSL, University of Zürich: Zürich, Switzerland, 1992. [Google Scholar]
- Hill, J.; Mehl, W.; Radeloff, V.C. Improved Forest Mapping by Combining Corrections of Atmospheric and Topographic Effects in Landsat TM Imagery. Göteborg, Sweden, 6–8 June 1995; Askne, J., Ed.; pp. 143–151.
- Conese, C.; Gilabert, M.A.; Maselli, F.; Bottai, L. Topographic normalization of tm scenes through the use of an atmospheric correction method and digital terrain models. Photogramm. Eng. Remote Sens. 1993, 59, 1745–1753. [Google Scholar]
- Hill, J.; Sturm, B. Radiometric correction of multi-temporal thematic mapper data for the use in agricultural land-cover classification and vegetation monitoring. Int. J. Remote Sens. 1991, 12, 1471–1491. [Google Scholar] [CrossRef]
- Tanré, D.; Deroo, C.; Duhaut, P.; Hermann, M.; Mocrette, J.J.; Perbos, J.; Deschamps, P.Y. Description of a computer code to simulate the satellite signal in the solar spectrum—The 5 s code. Int. J. Remote Sens. 1990, 11, 659–668. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Pax-Lenney, M.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. Remote Sens. 1993, 48, 17–28. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Schlerf, M.; Hill, J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. Int. J. Remote Sens. 2005, 26, 5453–5465. [Google Scholar] [CrossRef]
- Bauer, M.E.; Burk, T.E.; Ek, A.R.; Coppin, P.R.; Lime, S.D.; Walsh, T.A.; Walters, D.K.; Befort, W.; Heinzen, D.F. Satellite inventory of Minnesota forest resources. Photogramm. Eng. Remote Sens. 1994, 60, 287–298. [Google Scholar]
- Reese, H.M.; Lillesand, T.M.; Nagel, D.E.; Stewart, J.S.; Goldmann, R.A.; Simmons, T.E.; Chipman, J.W.; Tessar, P.A. Statewide land cover derived from multiseasonal Landsat TM data. A retrospective of the WISCLAND project. Remote Sens. Environ. 2002, 82, 224–237. [Google Scholar] [CrossRef]
- Campbell, J.B. Spatial correlation effects upon accuracy of supervised classification of land cover. Photogramm. Eng. Remote Sens. 1981, 47, 355–363. [Google Scholar]
- Gong, P.; Howarth, P.J. An assessment of some factors, influencing multispectral land-cover classification. Photogramm. Eng. Remote Sens. 1990, 56, 597–603. [Google Scholar]
- Ball, G.H.; Hall, D.J. ISODATA, a Novel Method of Data Analysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA, USA, 1965. [Google Scholar]
- Kuntz, S.; Schmeer, E.; Jochum, M.; Smith, G. Towards an European land cover monitoring service and high-resolution layers. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 18, pp. 43–52. [Google Scholar]
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical mapping of tree species over Europe. Eur. J. For. Res. 2012, 131, 145–157. [Google Scholar] [CrossRef]
- Schuck, A.; Päivinen, R.; Häme, T.; van Brusselen, J.; Kennedy, P.; Folving, S. Compilation of a European forest map from Portugal to the Ural Mountains based on Earth observation data and forest statistics. For. Policy Econ. 2003, 5, 187–202. [Google Scholar] [CrossRef]
- Mathys, L.; Guisan, A.; Kellenberger, T.W.; Zimmermann, N.E. Evaluating effects of spectral training data distribution on continuous field mapping performance. ISPRS J. Photogramm. Remote Sens. 2009, 64, 665–673. [Google Scholar] [CrossRef]
- Swain, P.H.; Davis, S.M. Fundamentals of Pattern Recognition in Remote Sensing; McGraw Hill Book Company: New York, NY, USA, 1978; pp. 136–185. [Google Scholar]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Hudson, W.D.; Ramm, C.W. Correct formulation of the kappa coefficient of agreement. Photogramm. Eng. Remote Sens. 1987, 53, 421–422. [Google Scholar]
- European Environment Agency. Gio Land (GMES/Copernicus Initial Operations Land) High-resolution Layers (HRLs)—Summary of Product Specifications; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- Probeck, M.; Ramminger, G.; Herrmann, D.; Gomez, S.; Häusler, T. European forest monitoring approaches. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 18, pp. 89–114. [Google Scholar]
- Thünen-Institut. Dritte Bundeswaldinventur—Ergebnisdatenbank. Available online: https://bwi.info (accessed on 18 December 2014).
- Bundesministerium für Ernährung und Landwirtschaft. Bundeswaldinventur. Available online: https://www.bundeswaldinventur.de/ (accessed on 18 December 2014).
- Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematic map accuracy assessment—An application of satellite imagery. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: New York, NY, USA, 1999. [Google Scholar]
- Hill, R.A.; Wilson, A.K.; George, M.; Hinsley, S.A. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Mickelson, J.G. Delineating forest canopy species in the northeastern United States using multi-temporal tm imagery. Photogramm. Eng. Remote Sens. 1998, 64, 891. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoffels, J.; Hill, J.; Sachtleber, T.; Mader, S.; Buddenbaum, H.; Stern, O.; Langshausen, J.; Dietz, J.; Ontrup, G. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests 2015, 6, 1982-2013. https://doi.org/10.3390/f6061982
Stoffels J, Hill J, Sachtleber T, Mader S, Buddenbaum H, Stern O, Langshausen J, Dietz J, Ontrup G. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests. 2015; 6(6):1982-2013. https://doi.org/10.3390/f6061982
Chicago/Turabian StyleStoffels, Johannes, Joachim Hill, Thomas Sachtleber, Sebastian Mader, Henning Buddenbaum, Oksana Stern, Joachim Langshausen, Jürgen Dietz, and Godehard Ontrup. 2015. "Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management" Forests 6, no. 6: 1982-2013. https://doi.org/10.3390/f6061982
APA StyleStoffels, J., Hill, J., Sachtleber, T., Mader, S., Buddenbaum, H., Stern, O., Langshausen, J., Dietz, J., & Ontrup, G. (2015). Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management. Forests, 6(6), 1982-2013. https://doi.org/10.3390/f6061982