Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle
<p>Cycle <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>−</mo> <mi>v</mi> </mrow> </semantics></math> diagram.</p> "> Figure 2
<p>Cycle <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>−</mo> <mi>s</mi> </mrow> </semantics></math> diagram.</p> "> Figure 3
<p>Relation between <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>4</mn> </msub> <mo>/</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>τ</mi> </semantics></math>.</p> "> Figure 4
<p>Relation between <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>/</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mi>τ</mi> </semantics></math>.</p> "> Figure 5
<p>Relation between <math display="inline"><semantics> <mi>η</mi> </semantics></math> and <math display="inline"><semantics> <mi>τ</mi> </semantics></math>.</p> "> Figure 6
<p>Relations of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mo>−</mo> <mi>η</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mo>−</mo> <mi>η</mi> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>6.2</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Flow chart of NSGA-II.</p> "> Figure 8
<p>Two-objective optimization on <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mo>−</mo> <mi>η</mi> </mrow> </semantics></math>.</p> "> Figure 9
<p>Two-objective optimization on <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mo>−</mo> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 10
<p>Two-objective optimization on <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mo>−</mo> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 11
<p>Two-objective optimization on <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>−</mo> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 12
<p>Two-objective optimization on <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>−</mo> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 13
<p>Two-objective optimization on <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 14
<p>Three-objective optimization on <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mo>−</mo> <mi>η</mi> <mo>−</mo> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 15
<p>Three-objective optimization on <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mo>−</mo> <mi>η</mi> <mo>−</mo> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 16
<p>Three-objective optimization on <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mo>−</mo> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 17
<p>Three-objective optimization on <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>−</mo> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 18
<p>Pareto frontier corresponding to four-objective optimization.</p> "> Figure 19
<p>Average distance and average spread versus number of generations (four-objective optimization). (<b>a</b>) Average distance versus number of generations (four-objective optimization). (<b>b</b>) Average spread versus number of generations (four-objective optimization).</p> "> Figure 19 Cont.
<p>Average distance and average spread versus number of generations (four-objective optimization). (<b>a</b>) Average distance versus number of generations (four-objective optimization). (<b>b</b>) Average spread versus number of generations (four-objective optimization).</p> "> Figure 20
<p>Average distance and average spread versus number of generations (three-objective optimization on <math display="inline"><semantics> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>). (<b>a</b>) Average distance versus number of generations (three-objective optimization on <math display="inline"><semantics> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>). (<b>b</b>) Average spread versus number of generations (three-objective optimization on <math display="inline"><semantics> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mi>d</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> <mrow> <mi>e</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
2. Model and Performance Indicators of an Irreversible RC
3. Power Density and Effective Power Performance Analyses
3.1. Power Density Performance Analysis
3.2. Efficient Power Performance Analysis
4. Multi-Objective Optimization
- (1)
- A new algorithm for fast non-dominant sorting is added, which greatly reduces the computational complexity.
- (2)
- Elite strategy is introduced, and a new population is formed which is composed of two populations, the parent and the offspring populations, selecting superior individuals in the new population instead of selecting only in the offspring population, which not only expands the range of options but also reduces the selection loss of excellent individuals in the parent population
- (3)
- Canceling the artificial designation of the shared parameters, which has been replaced by the congestion degree and the congestion degree comparison operator.
5. Conclusions
- (1)
- Compared with the maximum POW condition, although part of the TEF is sacrificed when the heat engine works under the maximum PD condition, the heat engine’s size reduces greatly, which has certain guidance for the actual design of the heat engine.
- (2)
- Compared with the maximum POW condition, the TEF is higher when the cycle works under the maximum effective power condition, the TEF can increase with sacrificing part of the POW under the maximum effective power condition, and the effective power reflects the compromise between the POW and TEF.
- (3)
- Comparing the results of four-objective, three-objective, two-objective, and one-objective optimizations, when MOO is performed on dimensionless POW, dimensionless PD, and dimensionless effective power, the deviation index obtained from the TOPSIS decision-making method is the smallest value. At this time, the deviation index is 0.2348, and the optimal compression ratio is 2.1077, which means that the result is the best, and the multi-objective optimization solution is better than the single objective optimal solutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Heat transfer loss coefficient () | |
Specific heat at constant pressure () | |
Specific heat at constant volume () | |
Power output () | |
Pd | Power density () |
Heat transfer rate () | |
Temperature () | |
Efficient power () | |
Greek symbols | |
Compression ratio (-) | |
Thermal efficiency (-) | |
Friction coefficient () | |
Temperature ratio (-) | |
Subscripts | |
Input | |
Heat leak | |
Output | |
Max dimensionless power output condition | |
Max dimensionless power density condition | |
Max dimensionless effective power condition | |
Influence of friction loss | |
Cycle state points | |
Superscripts | |
Dimensionless |
Abbreviations
MOO | Multi-objective optimization |
PD | Power density |
POW | Power output |
RC | Rectangular cycle |
SH | Specific heat |
TEF | Thermal efficiency |
TR | Temperature ratio |
WF | Working fluid |
References
- Andresen, B. Finite-Time Thermodynamics; Physics Laboratory II, University of Copenhagen: Copenhagen, Denmark, 1983. [Google Scholar]
- Andresen, B. Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.H.; Ahmadi, M.A.; Sadatsakkak, S.A. Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renew. Sustain. Energy Rev. 2015, 51, 1055–1070. [Google Scholar] [CrossRef]
- Feidt, M.; Costea, M. Progress in Carnot and Chambadal modeling of thermomechnical engine by considering entropy and heat transfer entropy. Entropy 2019, 21, 1232. [Google Scholar] [CrossRef] [Green Version]
- Diskin, D.; Tartakovsky, L. Efficiency at maximum power of the low-dissipation hybrid electrochemical-Otto cycle. Energies 2020, 13, 3961. [Google Scholar] [CrossRef]
- Berry, R.S.; Salamon, P.; Andresen, B. How it all began. Entropy 2020, 22, 908. [Google Scholar] [CrossRef]
- Dumitrașcu, G.; Feidt, M.; Grigorean, S. Finite physical dimensions thermodynamics analysis and design of closed irreversible cycles. Energies 2021, 14, 3416. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Optimal control for a hydraulic recuperation system using endoreversible thermodynamics. Appl. Sci. 2021, 11, 5001. [Google Scholar] [CrossRef]
- Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo-Hernandez, A. Carnot-like heat engines versus low-dissipation models. Entropy 2017, 19, 182. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ayala, J.; Santillán, M.; Santos, M.J.; Calvo-Hernández, A.; Roco, J.M.M. Optimization and stability of heat engines: The role of entropy evolution. Entropy 2018, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ayala, J.; Guo, J.; Medina, A.; Roco, J.M.M.; Calvo-Hernández, A. Energetic self-optimization induced by stability in low-dissipation heat engines. Phys. Rev. Lett. 2020, 124, 050603. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo-Hernández, A. Optimization, stability, and entropy in endoreversible heat engines. Entropy 2020, 22, 1323. [Google Scholar] [CrossRef] [PubMed]
- Costea, M.; Petrescu, S.; Feidt, M.; Dobre, C.; Borcila, B. Optimization modeling of irreversible Carnot engine from the perspective of combining finite speed and finite time analysis. Entropy 2021, 23, 504. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, P.; Mitra, A.; Paul, G.; Zarikas, V. Bound on efficiency of heat engine from uncertainty relation viewpoint. Entropy 2021, 23, 439. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Hoffmann, K.H. Cyclic control optimization algorithm for Stirling engines. Symmetry 2021, 13, 873. [Google Scholar] [CrossRef]
- Gonzalez-Ayala, J.; Medina, A.; Roco, J.M.M.; Calvo Hernandez, A. Entropy generation and unified optimization of Carnot-like and low-dissipation refrigerators. Phys. Rev. E 2018, 97, 022139. [Google Scholar] [CrossRef] [Green Version]
- González-Ayala, J.; Medina, A.; Roco, J.M.M.; Calvo-Hernández, A. Thermodynamic optimization subsumed in stability phenomena. Sci. Rep. 2020, 10, 14305. [Google Scholar] [CrossRef]
- Guo, J.C.; Yang, H.X.; Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo-Hernández, A. The equivalent low-dissipation combined cycle system and optimal analyses of a class of thermally driven heat pumps. Energy Convers. Manag. 2020, 220, 113100. [Google Scholar] [CrossRef]
- Guo, J.C.; Wang, Y.; Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo Hernández, A. Continuous power output criteria and optimum operation strategies of an upgraded thermally regenerative electrochemical cycles system. Energy Convers. Manag. 2019, 180, 654–664. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, Z.W.; Ge, Y.L.; Wu, F. Performance analysis and optimization for irreversible combined quantum Carnot heat engine working with ideal quantum gases. Entropy 2021, 23, 536. [Google Scholar] [CrossRef]
- Chen, J.F.; Li, Y.; Dong, H. Simulating finite-time isothermal processes with superconducting quantum circuits. Entropy 2021, 23, 353. [Google Scholar] [CrossRef]
- da Silva, M.F.F. Some considerations about thermodynamic cycles. Eur. J. Phys. Plus 2012, 33, 13–42. [Google Scholar]
- Liu, X.; Chen, L.G.; Qin, X.Y.; Ge, Y.L.; Sun, F.R. Finite-time thermodynamic analysis for an endoreversible rectangular cycle. Energy Conserv. 2013, 32, 19–21. (In Chinese) [Google Scholar]
- Liu, C.X.; Chen, L.G.; Ge, Y.L.; Sun, F.R. The power and efficiency characteristics for an irreversible rectangular cycle. Power Energy 2013, 34, 113–117. (In Chinese) [Google Scholar]
- Wang, C.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Performance analysis of an endoreversible rectangular cycle with heat transfer loss and variable specific heats of working fluid. Int. J. Energy Environ. 2015, 6, 73–80. [Google Scholar]
- Wang, C.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Comparisons for air-standard rectangular cycles with different specific heat models. Appl. Therm. Eng. 2016, 109, 507–513. [Google Scholar] [CrossRef]
- Yan, Z.J. η and P of a Carnot engine at maximumηP. Chin. J. Nat. 1984, 7, 475. (In Chinese) [Google Scholar]
- Yilmaz, T. A new performance criterion for heat engines: Efficient power. J. Energy Inst. 2006, 79, 38–41. [Google Scholar] [CrossRef]
- Kumar, R.; Kaushik, S.C.; Kumar, R. Efficient power of Brayton heat engine with friction. Int. J. Eng. Res. Technol. 2013, 6, 643–650. [Google Scholar]
- Arora, R.; Kaushik, S.C.; Kumar, R. Performance analysis of Brayton heat engine at maximum efficient power using temperature dependent specific heat of working fluid. J. Therm. Eng. 2015, 1, 345–354. [Google Scholar]
- Singh, V.; Johal, R.S. Low-dissipation Carnot-like heat engines at maximum efficient power. Phys. Rev. E 2018, 98, 062132. [Google Scholar] [CrossRef] [Green Version]
- Levario-Medina, S.; Valencia-Ortega, G.; Arias-Hernandez, L.A. Thermal optimization of Curzon-Ahlborn heat engines operating under some generalized efficient power regimes. Eur. Phys. J. Plus 2019, 134, 348. [Google Scholar] [CrossRef]
- Valencia-Ortega, G.; Levario-Medina, S.; Barranco-Jimenez, M.A. Local and global stability analysis of a Curzon-Ahlborn model applied to power plants working at maximum k-efficient power. Phys. A 2021, 571, 125863. [Google Scholar] [CrossRef]
- Sahin, B.; Kodal, A.; Yavuz, H. Efficiency of a Joule-Brayton engine at maximum power density. J. Phys. D Appl. Phys. 1995, 28, 1303–1309. [Google Scholar] [CrossRef]
- Chen, L.G.; Lin, J.X.; Sun, F.R.; Wu, C. Efficiency of an Atkinson engine at maximum power density. Energy Convers. Manag. 1998, 39, 337–341. [Google Scholar] [CrossRef]
- Al-Sarkhi, A.; Akash, B.; Jaber, J.O. Efficiency of Miller engine at maximum power density. Int. Comm. Heat Mass Transf. 2002, 29, 1157–1159. [Google Scholar] [CrossRef]
- Karakurt, A.S.; Bashan, V.; Ust, Y. Comparative maximum power density analysis of a supercritical CO2 Brayton power cycle. J. Therm. Eng. 2020, 6, 50–57. [Google Scholar] [CrossRef]
- Shi, S.S.; Ge, Y.L.; Chen, L.G.; Feng, H.J. Four objective optimization of irreversible Atkinson cycle based on NSGA-II. Entropy 2020, 22, 1150. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.R.; Chen, L.G.; Ge, Y.L.; Wang, C. Power density characteristics of endoreversible rectangular cycle. Energy Conserv. 2020, 40, 65–69. (In Chinese) [Google Scholar]
- Arora, R.; Kaushik, S.C.; Arora, R. Multi-objective and multi-parameter optimization of two-stage thermoelectric generator in electrically series and parallel configurations through NSGA-II. Energy 2015, 91, 242–254. [Google Scholar] [CrossRef]
- Ghasemian, E.; Ehyaei, M.A. Evaluation and optimization of organic Rankine cycle (ORC) with algorithms NSGA-II, MOPSO, and MOEA for eight coolant fluids. Int. J. Energy Environ. Eng. 2018, 9, 39–57. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.Z.; Wen, J.; Wang, S.M.; Li, Y.Z. Thermal design and optimization of plate-fin heat exchangers based global sensitivity analysis and NSGA-II. Appl. Therm. Eng. 2018, 136, 444–453. [Google Scholar] [CrossRef]
- Ghorani, M.M.; Haghighi, M.H.S.; Riasi, A. Entropy generation minimization of a pump running in reverse mode based on surrogate models and NSGA-II. Int. Comm. Heat Mass Transf. 2020, 118, 104898. [Google Scholar] [CrossRef]
- Ghazvini, M.; Pourkiaei, S.M.; Pourfayaz, F. Thermo-economic assessment and optimization of actual heat engine performance by implemention of NSGA II. Renew. Energy Res. Appl. 2020, 1, 235–245. [Google Scholar]
- Wang, L.B.; Bu, X.B.; Li, H.S. Multi-objective optimization and off-design evaluation of organic rankine cycle (ORC) for low-grade waste heat recovery. Energy 2020, 203, 117809. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.G.; Xia, S.J.; Ge, Y.L.; Wang, C.; Feng, H.J. Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II. Int. J. Heat Mass Transf. 2020, 148, 119025. [Google Scholar] [CrossRef]
- Lee, U.; Park, S.; Lee, I. Robust design optimization (RDO) of thermoelectric generator system using non-dominated sorting genetic algorithm II (NSGA-II). Energy 2020, 196, 117090. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, S.Q.; Duan, X.B.; Liu, S.J.; Liu, J.P.; Hu, S. Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins. Energy Convers. Manag. 2021, 230, 113788. [Google Scholar] [CrossRef]
- Li, Y.Q.; Liao, S.M.; Liu, G. Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making. Int. J. Electr. Power 2015, 64, 167–175. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Shafaei, A.; Ashouri, M.; Toghyani, S. Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II. Int. J. Low-Carbon Technol. 2016, 11, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Abedinnezhad, S.; Ahmadi, M.H.; Pourkiaei, S.M.; Pourfayaz, F.; Mosavi, A.; Feidt, M.; Shamshirband, S. Thermodynamic assessment and multi-objective optimization of performance of irreversible Dual-Miller cycle. Energies 2019, 12, 4000. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.Q.; Chen, L.G.; Feng, H.J.; Ge, Y.L. Four-objective optimizations for an improved irreversible closed modified simple Brayton cycle. Entropy 2021, 23, 282. [Google Scholar] [CrossRef]
- Yang, J.Y.; Gao, L.; Ye, Z.H.; Hwang, Y.H.; Chen, J.P. Binary-objective optimization of latest low-GWP alternatives to R245fa for organic Rankine cycle application. Energy 2021, 216, 119336. [Google Scholar] [CrossRef]
- Jankowski, M.; Borsukiewicz, A.; Hooman, K. Development of decision-making tool and pareto set analysis for bi-objective optimization of an ORC power plant. Energies 2020, 13, 5280. [Google Scholar] [CrossRef]
- Ping, X.; Yao, B.F.; Zhang, H.G.; Yang, F.B. Thermodynamic, economic, and environmental analysis and multi-objective optimization of a dual loop organic Rankine cycle for CNG engine waste heat recovery. Appl. Therm. Eng. 2021, 193, 116980. [Google Scholar] [CrossRef]
- Fossi Nemogne, R.L.; Ngouateu Wouagfack, P.A.; Medjo Nouadje, B.A.; Tchinda, R. Multi-objective optimization and analysis of performance of a four-temperature-level multi-irreversible absorption heat pump. Energy Convers. Manag. 2021, 234, 113967. [Google Scholar] [CrossRef]
- Shi, S.S.; Chen, L.G.; Ge, Y.L.; Feng, F.J. Performance optimizations with single-, bi-, tri- and quadru-objective for irreversible Diesel cycle. Entropy 2021, 23, 826. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.S.; Chen, L.G.; Ge, Y.L.; Feng, F.J. Performance optimizations with single-, bi-, tri- and quadru-objective for irreversible Atkinson cycle with nonlinear variation of working fluid’s specific heat. Energies 2021, 14, 4175. [Google Scholar] [CrossRef]
- Xiao, W.; Cheng, A.D.; Li, S.; Jiang, X.B.; Ruan, X.H.; He, G.H. A multi-objective optimization strategy of steam power system to achieve standard emission and optimal economic by NSGA-II. Energy 2021, 232, 120953. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Feng, H.J.; Chen, L.G.; Ge, Y.L. Multi-objective constructal design for compound heat dissipation channels in a three-dimensional trapezoidal heat generation body. Int. Commun. Heat Mass Transf. 2021, 127, 105584. [Google Scholar] [CrossRef]
- Feng, H.J.; Tang, W.; Chen, L.G.; Shi, J.C.; Wu, Z.X. Multi-objective constructal optimization for marine condensers. Energies 2021, 14, 5545. [Google Scholar] [CrossRef]
- Xiao, C.; Gockowski, L.K.; Liao, B.L.; Valentine, M.T.; Hawkes, E.W. Thermodynamically- informed air-based soft heat engine design. arXiv 2021, arXiv:2103.14157v1. [Google Scholar]
- Klein, S.A. An explanation for observed compression ratios in internal combustion engines. Trans. ASME J. Eng. Gas Turbines Power 1991, 113, 511–513. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Feng, H.J. Ecological optimization of an irreversible Diesel cycle. Eur. Phys. J. Plus 2021, 136, 198. [Google Scholar] [CrossRef]
- Angulo-Brown, F.; Fernandez-Betanzos, J.; Diaz-Pico, C.A. Compression ratio of an optimized Otto-cycle model. Eur. J. Phys. 1994, 15, 38–42. [Google Scholar] [CrossRef]
Optimization Methods | Solutions | Optimization Variable | Optimization Objectives | Deviation Index | |||
---|---|---|---|---|---|---|---|
Quadruple objective optimization (, , , and ) | LINMAP | 2.0893 | 0.9699 | 0.1260 | 0.9612 | 0.9379 | 0.2355 |
TOPSIS | 2.1115 | 0.9738 | 0.1263 | 0.9672 | 0.9317 | 0.2350 | |
Shannon Entropy | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 | |
Triple objective optimization (,, and ) | LINMAP | 2.0357 | 0.9594 | 0.1252 | 0.9443 | 0.9521 | 0.2543 |
TOPSIS | 2.0357 | 0.9594 | 0.1252 | 0.9443 | 0.9521 | 0.2543 | |
Shannon Entropy | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 | |
Triple objective optimization (, , and ) | LINMAP | 2.3800 | 0.9990 | 0.1273 | 0.9999 | 0.8480 | 0.3519 |
TOPSIS | 2.3800 | 0.9990 | 0.1273 | 0.9999 | 0.8480 | 0.3519 | |
Shannon Entropy | 2.3802 | 0.9990 | 0.1273 | 1 | 0.8479 | 0.3520 | |
Triple objective optimization (, , and ) | LINMAP | 2.0965 | 0.97124 | 0.1261 | 0.9632 | 0.9359 | 0.2349 |
TOPSIS | 2.1077 | 0.9732 | 0.1263 | 0.9662 | 0.9328 | 0.2348 | |
Shannon Entropy | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 | |
Triple objective optimization (, , and ) | LINMAP | 2.0725 | 0.9668 | 0.1258 | 0.9562 | 0.9425 | 0.2385 |
TOPSIS | 2.0963 | 0.9712 | 0.12610 | 0.9631 | 0.9360 | 0.2349 | |
Shannon Entropy | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 | |
Double objective optimization ( and ) | LINMAP | 2.3795 | 0.9990 | 0.1273 | 0.9999 | 0.8481 | 0.3516 |
TOPSIS | 2.3795 | 0.9990 | 0.1273 | 0.9999 | 0.8481 | 0.3516 | |
Shannon Entropy | 2.3074 | 0.9957 | 0.1274 | 0.9978 | 0.8718 | 0.3174 | |
Double objective optimization ( and ) | LINMAP | 2.0107 | 0.9538 | 0.1247 | 0.9352 | 0.9583 | 0.2719 |
TOPSIS | 2.0034 | 0.9521 | 0.1245 | 0.9324 | 0.9600 | 0.2781 | |
Shannon Entropy | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 | |
Double objective optimization ( and ) | LINMAP | 2.4074 | 0.9996 | 0.1272 | 0.9997 | 0.8389 | 0.3657 |
TOPSIS | 2.4061 | 1 | 0.1268 | 0.9975 | 0.8209 | 0.3923 | |
Shannon Entropy | 2.3802 | 0.9990 | 0.1273 | 1 | 0.8479 | 0.3520 | |
Double objective optimization (η and ) | LINMAP | 1.9519 | 0.9388 | 0.1234 | 0.9107 | 0.9717 | 0.3313 |
TOPSIS | 1.9453 | 0.9370 | 0.1232 | 0.9077 | 0.9731 | 0.3391 | |
Shannon Entropy | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 | |
Double objective optimization ( and ) | LINMAP | 2.3529 | 0.9980 | 0.1274 | 0.9997 | 0.8569 | 0.3381 |
TOPSIS | 2.3538 | 0.9981 | 0.1274 | 0.9997 | 0.8566 | 0.3385 | |
Shannon Entropy | 2.3802 | 0.9990 | 0.1273 | 1 | 0.8479 | 0.3520 | |
Double objective optimization ( and ) | LINMAP | 2.0657 | 0.9655 | 0.1257 | 0.9542 | 0.9443 | 0.2405 |
TOPSIS | 2.0825 | 0.9687 | 0.1259 | 0.9592 | 0.9397 | 0.2364 | |
Shannon Entropy | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 | |
Maximum | —— | 2.4061 | 1 | 0.1268 | 0.9975 | 0.8209 | 0.3923 |
Maximum | —— | 2.3529 | 0.9980 | 0.1274 | 0.9997 | 0.8569 | 0.3381 |
Maximum | —— | 2.3802 | 0.9990 | 0.1273 | 1 | 0.8479 | 0.3520 |
Maximum | —— | 1.7170 | 0.8499 | 0.1144 | 0.7645 | 1 | 0.6142 |
Positive ideal point | —— | —— | 1 | 0.1274 | 1 | 1 | —— |
Negative ideal point | —— | —— | 0.8499 | 0.1144 | 0.7645 | 0.8244 | —— |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Q.; Ge, Y.; Chen, L.; Shi, S.; Feng, H. Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle. Entropy 2021, 23, 1203. https://doi.org/10.3390/e23091203
Gong Q, Ge Y, Chen L, Shi S, Feng H. Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle. Entropy. 2021; 23(9):1203. https://doi.org/10.3390/e23091203
Chicago/Turabian StyleGong, Qirui, Yanlin Ge, Lingen Chen, Shuangshaung Shi, and Huijun Feng. 2021. "Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle" Entropy 23, no. 9: 1203. https://doi.org/10.3390/e23091203
APA StyleGong, Q., Ge, Y., Chen, L., Shi, S., & Feng, H. (2021). Performance Analysis and Four-Objective Optimization of an Irreversible Rectangular Cycle. Entropy, 23(9), 1203. https://doi.org/10.3390/e23091203