Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle
<p>Schematic diagram of the cycle.</p> "> Figure 2
<p>Diagram of the cycle.</p> "> Figure 3
<p>Diagrams of (<b>a</b>) irreversible simple BCY with an IHP and coupled to CTHRs; (<b>b</b>) endoreversible simple BCY with an IHP and coupled to VTHRs; (<b>c</b>) endoreversible simple BCY with an IHP and coupled to CTHRs; (<b>d</b>) simple irreversi-ble BCY coupled to VTHRs; (<b>e</b>) simple irreversible BCY coupled to CTHRs; (<b>f</b>) simple endoreversible BCY coupled to VTHRs; (<b>g</b>) simple endoreversible BCY coupled to CTHRs; (<b>h</b>) endoreversible Carnot cycle coupled to VTHRs; (<b>i</b>) endoreversible Carnot cycle coupled to CTHRs; (<b>j</b>) endoreversible Novikov cycle coupled to CTHRs.</p> "> Figure 3 Cont.
<p>Diagrams of (<b>a</b>) irreversible simple BCY with an IHP and coupled to CTHRs; (<b>b</b>) endoreversible simple BCY with an IHP and coupled to VTHRs; (<b>c</b>) endoreversible simple BCY with an IHP and coupled to CTHRs; (<b>d</b>) simple irreversi-ble BCY coupled to VTHRs; (<b>e</b>) simple irreversible BCY coupled to CTHRs; (<b>f</b>) simple endoreversible BCY coupled to VTHRs; (<b>g</b>) simple endoreversible BCY coupled to CTHRs; (<b>h</b>) endoreversible Carnot cycle coupled to VTHRs; (<b>i</b>) endoreversible Carnot cycle coupled to CTHRs; (<b>j</b>) endoreversible Novikov cycle coupled to CTHRs.</p> "> Figure 4
<p>Relationships of <math display="inline"><semantics> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> </semantics></math> and <math display="inline"><semantics> <mi>η</mi> </semantics></math> versus <math display="inline"><semantics> <mi>π</mi> </semantics></math> with different <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>t</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>Relationships of <math display="inline"><semantics> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> </semantics></math> and <math display="inline"><semantics> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> </semantics></math> versus <math display="inline"><semantics> <mi>π</mi> </semantics></math> with different <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>t</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>Relationships of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mi>t</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>v</mi> <mn>5</mn> </msub> <mo>/</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mi>π</mi> </semantics></math> with different <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>t</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p>Comparison of <math display="inline"><semantics> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> </semantics></math> under the variable and constant <math display="inline"><semantics> <mi>π</mi> </semantics></math>.</p> "> Figure 8
<p>Flowchart of HCD optimization.</p> "> Figure 9
<p>Relationships of <math display="inline"><semantics> <mrow> <msub> <mrow> <mover accent="true"> <mi mathvariant="normal">W</mi> <mo stretchy="true">¯</mo> </mover> </mrow> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mi>π</mi> </semantics></math>.</p> "> Figure 10
<p>Relationships of <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mi>π</mi> </semantics></math>.</p> "> Figure 11
<p>Relationships of <math display="inline"><semantics> <mrow> <msub> <mrow> <mo>(</mo> <msub> <mi>π</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>v</mi> <mn>5</mn> </msub> <mo>/</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mi>π</mi> </semantics></math>.</p> "> Figure 12
<p>Relationships of <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mi>H</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow> <mi>H</mi> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>η</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mi>π</mi> </semantics></math>.</p> "> Figure 13
<p>Relationships of <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mrow> <mi>max</mi> </mrow> </msub> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mrow> <mi>H</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>τ</mi> <mrow> <mi>H</mi> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 14
<p>Relationships of <math display="inline"><semantics> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> </semantics></math> under various optimal performance indexes versus <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>c</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>t</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 15
<p>Relationships of <math display="inline"><semantics> <mi>π</mi> </semantics></math> under various optimal performance indexes versus <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>c</mi> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>η</mi> <mi>t</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 16
<p>Flowchart of NSGA-II algorithm.</p> "> Figure 17
<p>Pareto frontier and optimal schemes corresponding to the four objectives (<math display="inline"><semantics> <mover accent="true"> <mi>W</mi> <mo>¯</mo> </mover> </semantics></math>, <math display="inline"><semantics> <mi>η</mi> </semantics></math>, <math display="inline"><semantics> <mover accent="true"> <mi>P</mi> <mo>¯</mo> </mover> </semantics></math> and <math display="inline"><semantics> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> </semantics></math> ) optimization.</p> "> Figure 18
<p>Distribution of <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mi>H</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </semantics></math> within the value range in the Pareto frontier.</p> "> Figure 19
<p>Distribution of <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow> <mi>H</mi> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </semantics></math> within the value range in the Pareto frontier.</p> "> Figure 20
<p>Distribution of <math display="inline"><semantics> <mrow> <msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mi>L</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </semantics></math> within the value range in the Pareto frontier.</p> "> Figure 21
<p>Distribution of <math display="inline"><semantics> <mrow> <msub> <mi>π</mi> <mrow> <mi>opt</mi> </mrow> </msub> </mrow> </semantics></math> within the value range in the Pareto frontier.</p> ">
Abstract
:1. Introduction
2. Cycle Model and Performance Analytical Indicators
- The process is an irreversible adiabatic compression process in C, and the process is an isentropic process corresponding to the process .
- The process is an isobaric endothermic process in RCC.
- The process is an IHP in CCC. In CCC, the working fluid is isothermally heated, and its flow velocity rises from to (the Mach number increases from to ), and its specific enthalpy rises from to . The parameter is the isothermal pressure drop ratio. The needs to be given in Refs. [97,98], but the of the improved cycle established in this paper will change with the operation state. The degree of the IHP can be represented by , and the greater the , the greater the degree.
- The process is an adiabatic exothermic process in turbine, and the process is the isentropic process corresponding to the process .
- The process is an isobaric exothermic process in a precooler.
- When , Equations (30)–(34) can be simplified into the performance indicators of the irreversible simple BCY with an IHP and coupled to constant-temperature heat reservoirs (CTHRs) whose diagram is shown in Figure 3a:
- When and , Equations (30)–(34) can be simplified into the performance indicators of the endoreversible simple BCY with an IHP and coupled to CTHRs, whose diagram is shown in Figure 3c:
- When , and , the cycle in this paper can become the endoreversible Carnot cycle coupled to VTHRs [14], whose diagram is shown in Figure 3h. However, Equations (30), (33), and (34) need to be de-dimensionalized to simplify to , and of the endoreversible Carnot cycle coupled to VTHRs. The performance indicators of the cycle are:
- When , and , the cycle in this paper can become the endoreversible Carnot cycle coupled to CTHRs [12], whose diagram is shown in Figure 3i. However, Equations (30), (33), and (34) also need to be de-dimensionalized to simplify to , and of the cycle [12,74,82]. The performance indicators of the cycle are:
- When , , , and , the cycle in this paper can become the endoreversible Novikov cycle coupled to CTHRs [11], whose diagram is shown in Figure 3j. However, Equations (30), (33), and (34) also need to be de-dimensionalized to simplify to , and of the cycle [11]. The performance indicators of the cycle are:
- Through comparison with the results in Refs [11,12,13,14,59,76,77,78,79,99], it is found that the results of this paper are consistent with those in Refs [11,12,13,14,59,76,77,78,79,99], which further illustrates the accuracy of the model established in this paper. In particular, when the powers in Equations (58), (62), (66), (70), and (74) take the maximum values, namely , the efficiencies at the maximum power point, Equations (59), (63), (67), (71), and (75) are , which was derived in Refs. [10,11,12] by Moutier [10], Novikov [11], and Curzon and Ahlborn [12]. One can see that the results of this paper include the Novikov–Curzon–Ahlborn efficiency.
- FTT is the further extension of conventional irreversible thermodynamics. The cycle model established by Curzon and Ahlborn [12] was a reciprocating Carnot cycle, and the finite time was its major feature. The methods used for solving the FTT problem are usually variational principle and optimal control theory. Therefore, such problems of extremal of thermodynamic processes were first named as FTT by Andresen et al. [132] and as Optimization Thermodynamics or Optimal Control in Problems of Extremals of Irreversible Thermodynamic Processes by Orlov and Rudenko [133]. When the research object was extended from reciprocating devices characterized by finite-time to the steady state flow devices characterized by finite-size, one realizes that the physical property of the problems is the heat transfer owing to temperature deference. Therefore, Grazzini [14] termed it Finite Temperature Difference Thermodynamics, and Lu [134] termed it Finite Surface Thermodynamics. In fact, the works performed by Moutier [10] and Novikov [11] were also steady state flow device models. Bejan introduced the effect of temperature difference heat transfer on the total entropy generation of the systems, taking the entropy generation minimization as the optimization objective for designing thermodynamic processes and devices, termed “Entropy Generation Minimization” or “Thermodynamic Optimization” [15,135]. For the steady state flow device models, Feidt [136,137,138,139,140,141,142,143,144,145,146] termed it Finite Physical Dimensions Thermodynamics (FPDT). The model established herein is closer to FPDT. For both reciprocating model and steady state flow model, the suitable name may be thermodynamics of finite size devices and finite time processes, as Bejan termed it [15,135]. According to the idiomatic usage, the theory is termed FTT in this paper.
3. Analyses and Optimizations with Each Single Objective
3.1. Analyses of Each Single Objective
3.2. Performance Optimizations for Each Single Objective
- Enter the known data and the initial values of the HCDs.
- The is calculated according to Equation (13).
- Judge whether the and HCDs meet the constraints. If they are satisfied, perform step 4; if they are not satisfied, go back to step 1.
- The performance indicator is solved.
- Determine whether the inverse objective function is minimized by using the “fmincon” in MATLAB. If it is the smallest, perform step 6; if it is not the slightest, go back to step 1.
- Calculate the other thermodynamic parameters, and the maximum of the performance indicator is obtained.
3.2.1. Optimizations of Each Single Objective
3.2.2. Influences of Temperature Ratios on Optimization Results
3.2.3. Influences of the Compressor and the Turbine’s Irreversibilities on Optimization Results
4. Multi-Objective Optimization
4.1. Optimization Algorithm and Decision-Making Methods
4.2. Multi-Objective Optimization Results
5. Conclusions
- For the single-objective analyses and optimizations, performance indicators all rise as and rise. The influences of on four performance indicators are greater than those of . of the models in this paper increase and then decrease as increases in both cases; that is, the qualitative law is the same. However, there is an apparent quantitative difference between the two points. In practice, the difference between and should be controlled and not be too large. and are the trade-offs between and .
- For single- and double-, triple-, and quadruple-objective optimizations, the Pareto frontier includes a series of non-inferior solutions. The appropriate solution could be chosen according to the actual situation. By comparison, it is found that the double-objective ( and ) optimization D obtained by the LINMAP method is the smallest.
- The optimization results gained in this paper could offer theoretical guidelines for the optimal designs of the gas turbine plants. In the next step, the improved closed intercooling regenerated modified BCY model with one IHP will be optimized with real gas as the working fluid, and the internal friction-based pressure drops during heating and cooling processes and other processes, as well as the heat leakage losses between the heat source and the environment, will be taken into account.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
, , | Intermediate variables |
Thermal capacity rate (kW/K) | |
Specific heat at constant pressure (kJ/(kg·K)) | |
Effectiveness of heat exchanger or ecological function (kW) | |
Dimensionless ecological function | |
Specific heat ratio | |
Mach number | |
Number of the heat transfer unit | |
Heat absorbing rate or heat releasing rate (kW) | |
Dimensionless power density | |
Temperature (K) | |
Heat conductance (kW/K) | |
Heat conductance distribution | |
Dimensionless power output | |
Greek symbols | |
Efficiency | |
Pressure ratio | |
Temperature ratio | |
Subscripts | |
Hot-side heat exchanger | |
Cold-side heat exchanger | |
Working fluid | |
State points |
Abbreviations
Brayton cycle | BCY |
CCC | Convergent combustion chamber |
CTHR | Constant-temperature heat reservoir |
FPDT | Finite Physical Dimensions Thermodynamics |
FTT | Finite time thermodynamics |
HCD | Heat conductance distribution |
IHP | Isothermal heating process |
OPO | Optimization objective |
RCC | Regular combustion chamber |
VTHR | Variable-temperature heat reservoir |
References
- Wood, W.A. On the role of the harmonic mean isentropic exponent in the analysis of the closed-cycle gas turbine. Proc. Inst. Mech. Eng. Part. A J. Power Energy 1991, 205, 287–291. [Google Scholar] [CrossRef]
- Cheng, K.L.; Qin, J.; Sun, H.C.; Li, H.; He, S.; Zhang, S.L.; Bao, W. Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles. Energy 2019, 181, 1189–1201. [Google Scholar] [CrossRef]
- Hu, H.M.; Jiang, Y.Y.; Guo, C.H.; Liang, S.Q. Thermodynamic and exergy analysis of a S-CO2 Brayton cycle with various of cooling modes. Energy Convers. Manag. 2020, 220, 113110. [Google Scholar] [CrossRef]
- Liu, H.Q.; Chi, Z.R.; Zang, S.S. Optimization of a closed Brayton cycle for space power systems. Appl. Therm. Eng. 2020, 179, 115611. [Google Scholar] [CrossRef]
- Vecchiarelli, J.; Kawall, J.G.; Wallace, J.S. Analysis of a concept for increasing the efficiency of a Brayton cycle via isothermal heat addition. Int. J. Energy Res. 1997, 21, 113–127. [Google Scholar] [CrossRef]
- Göktun, S.; Yavuz, H. Thermal efficiency of a regenerative Brayton cycle with isothermal heat addition. Energy Convers. Manag. 1999, 40, 1259–1266. [Google Scholar] [CrossRef]
- Erbay, L.B.; Göktun, S.; Yavuz, H. Optimal design of the regenerative gas turbine engine with isothermal heat addition. Appl. Energy 2001, 68, 249–264. [Google Scholar] [CrossRef]
- Jubeh, N.M. Exergy analysis and second law efficiency of a regenerative Brayton cycle with isothermal heat addition. Entropy 2005, 7, 172–187. [Google Scholar] [CrossRef] [Green Version]
- El-Maksound, R.M.A. Binary Brayton cycle with two isothermal processes. Energy Convers. Manag. 2013, 73, 303–308. [Google Scholar] [CrossRef]
- Moutier, J. Éléments de Thermodynamique; Gautier-Villars: Paris, France, 1872. [Google Scholar]
- Novikov, I.I. The efficiency of atomic power stations (A review). J. Nucl. Energy 1957, 7, 125–128. [Google Scholar] [CrossRef]
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Andresen, B. Finite-Time Thermodynamics; Physics Laboratory II; University of Copenhagen: Copenhagen, Denmark, 1983. [Google Scholar]
- Grazzini, G. Work from irreversible heat engines. Energy 1991, 16, 747–755. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Chen, L.G.; Wu, C.; Sun, F.R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 1999, 24, 327–359. [Google Scholar] [CrossRef]
- Andresen, B. Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef] [PubMed]
- Shittu, S.; Li, G.Q.; Zhao, X.D.; Ma, X.L. Review of thermoelectric geometry and structure optimization for performance enhancement. Appl. Energy 2020, 268, 115075. [Google Scholar] [CrossRef]
- Berry, R.S.; Salamon, P.; Andresen, B. How it all began. Entropy 2020, 22, 908. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, K.H.; Burzler, J.; Fischer, A.; Schaller, M.; Schubert, S. Optimal process paths for endoreversible systems. J. Non-Equilib. Thermodyn. 2003, 28, 233–268. [Google Scholar] [CrossRef]
- Zaeva, M.A.; Tsirlin, A.M.; Didina, O.V. Finite time thermodynamics: Realizability domain of heat to work converters. J. Non-Equilib. Thermodyn. 2019, 44, 181–191. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Endoreversible modeling of a hydraulic recuperation system. Entropy 2020, 22, 383. [Google Scholar] [CrossRef] [Green Version]
- Kushner, A.; Lychagin, V.; Roop, M. Optimal thermodynamic processes for gases. Entropy 2020, 22, 448. [Google Scholar] [CrossRef]
- De Vos, A. Endoreversible models for the thermodynamics of computing. Entropy 2020, 22, 660. [Google Scholar] [CrossRef] [PubMed]
- Masser, R.; Khodja, A.; Scheunert, M.; Schwalbe, K.; Fischer, A.; Paul, R.; Hoffmann, K.H. Optimized piston motion for an alpha-type Stirling engine. Entropy 2020, 22, 700. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.G.; Ma, K.; Ge, Y.L.; Feng, H.J. Re-optimization of expansion work of a heated working fluid with generalized radiative heat transfer law. Entropy 2020, 22, 720. [Google Scholar] [CrossRef] [PubMed]
- Tsirlin, A.; Gagarina, L. Finite-time thermodynamics in economics. Entropy 2020, 22, 891. [Google Scholar] [CrossRef] [PubMed]
- Tsirlin, A.; Sukin, I. Averaged optimization and finite-time thermodynamics. Entropy 2020, 22, 912. [Google Scholar] [CrossRef]
- Muschik, W.; Hoffmann, K.H. Modeling, simulation, and reconstruction of 2-reservoir heat-to-power processes in finite-time thermodynamics. Entropy 2020, 22, 997. [Google Scholar] [CrossRef] [PubMed]
- Insinga, A.R. The quantum friction and optimal finite-time performance of the quantum Otto cycle. Entropy 2020, 22, 1060. [Google Scholar] [CrossRef]
- Schön, J.C. Optimal control of hydrogen atom-like systems as thermodynamic engines in finite time. Entropy 2020, 22, 1066. [Google Scholar] [CrossRef]
- Andresen, B.; Essex, C. Thermodynamics at very long time and space scales. Entropy 2020, 22, 1090. [Google Scholar] [CrossRef]
- Chen, L.G.; Ma, K.; Feng, H.J.; Ge, Y.L. Optimal configuration of a gas expansion process in a piston-type cylinder with generalized convective heat transfer law. Energies 2020, 13, 3229. [Google Scholar] [CrossRef]
- Scheunert, M.; Masser, R.; Khodja, A.; Paul, R.; Schwalbe, K.; Fischer, A.; Hoffmann, K.H. Power-optimized sinusoidal piston motion and its performance gain for an Alpha-type Stirling engine with limited regeneration. Energies 2020, 13, 4564. [Google Scholar] [CrossRef]
- Boikov, S.Y.; Andresen, B.; Akhremenkov, A.A.; Tsirlin, A.M. Evaluation of irreversibility and optimal organization of an integrated multi-stream heat exchange system. J. Non-Equilib. Thermodyn. 2020, 45, 155–171. [Google Scholar] [CrossRef]
- Chen, L.G.; Feng, H.J.; Ge, Y.L. Maximum energy output chemical pump configuration with an infinite-low- and a finite-high-chemical potential mass reservoirs. Energy Convers. Manag. 2020, 223, 113261. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Burzler, J.M.; Schubert, S. Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 1997, 22, 311–355. [Google Scholar]
- Wagner, K.; Hoffmann, K.H. Endoreversible modeling of a PEM fuel cell. J. Non-Equilib. Thermodyn. 2015, 40, 283–294. [Google Scholar] [CrossRef]
- Muschik, W. Concepts of phenominological irreversible quantum thermodynamics I: Closed undecomposed Schottky systems in semi-classical description. J. Non-Equilib. Thermodyn. 2019, 44, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ponmurugan, M. Attainability of maximum work and the reversible efficiency of minimally nonlinear irreversible heat engines. J. Non-Equilib. Thermodyn. 2019, 44, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Raman, R.; Kumar, N. Performance analysis of Diesel cycle under efficient power density condition with variable specific heat of working fluid. J. Non-Equilib. Thermodyn. 2019, 44, 405–416. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Stochastic Novikov engine with Fourier heat transport. J. Non-Equilib. Thermodyn. 2019, 44, 417–424. [Google Scholar] [CrossRef]
- Morisaki, T.; Ikegami, Y. Maximum power of a multistage Rankine cycle in low-grade thermal energy conversion. Appl. Thermal Eng. 2014, 69, 78–85. [Google Scholar] [CrossRef]
- Yasunaga, T.; Ikegami, Y. Application of finite time thermodynamics for evaluation method of heat engines. Energy Proc. 2017, 129, 995–1001. [Google Scholar] [CrossRef]
- Yasunaga, T.; Fontaine, K.; Morisaki, T.; Ikegami, Y. Performance evaluation of heat exchangers for application to ocean thermal energy conversion system. Ocean Thermal Energy Convers. 2017, 22, 65–75. [Google Scholar]
- Yasunaga, T.; Koyama, N.; Noguchi, T.; Morisaki, T.; Ikegami, Y. Thermodynamical optimum heat source mean velocity in heat exchangers on OTEC. In Proceedings of the Grand Renewable Energy 2018, Yokohama, Japan, 17–22 June 2018. [Google Scholar]
- Yasunaga, T.; Noguchi, T.; Morisaki, T.; Ikegami, Y. Basic heat exchanger performance evaluation method on OTEC. J. Mar. Sci. Eng. 2018, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, K.; Yasunaga, T.; Ikegami, Y. OTEC maximum net power output using Carnot cycle and application to simplify heat exchanger selection. Entropy 2019, 21, 1143. [Google Scholar] [CrossRef] [Green Version]
- Yasunaga, T.; Ikegami, Y. Finite-time thermodynamic model for evaluating heat engines in ocean thermal energy conversion. Entropy 2020, 22, 211. [Google Scholar] [CrossRef] [Green Version]
- Shittu, S.; Li, G.Q.; Zhao, X.D.; Ma, X.L.; Akhlaghi, Y.G.; Fan, Y. Comprehensive study and optimization of concentrated photovoltaic-thermoelectric considering all contact resistances. Energy Convers. Manag. 2020, 205, 112422. [Google Scholar] [CrossRef]
- Feidt, M. Carnot cycle and heat engine: Fundamentals and applications. Entropy 2020, 22, 348. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M.; Costea, M. Effect of machine entropy production on the optimal performance of a refrigerator. Entropy 2020, 22, 913. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.H. Effect of finite-size heat source’s heat capacity on the efficiency of heat engine. Entropy 2020, 22, 1002. [Google Scholar] [CrossRef] [PubMed]
- Rogolino, P.; Cimmelli, V.A. Thermoelectric efficiency of Silicon–Germanium alloys in finite-time thermodynamics. Entropy 2020, 22, 1116. [Google Scholar] [CrossRef] [PubMed]
- Dann, R.; Kosloff, R.; Salamon, P. Quantum finite time thermodynamics: Insight from a single qubit engine. Entropy 2020, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Chen, L.G.; Ge, Y.L.; Feng, H.J.; Wu, F.; Lorenzini, G. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems. J. Non-Equilib. Thermodyn. 2021, 46, 61–76. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Y.J.; Zhang, X.J.; Zhu, Y.L.; Chen, H.S. Finite-time thermodynamics modeling and analysis on compressed air energy storage systems with thermal storage. Renew. Sustain. Energy Rev. 2021, 138, 110656. [Google Scholar] [CrossRef]
- Smith, Z.; Pal, P.S.; Deffner, S. Endoreversible Otto engines at maximal power. J. Non-Equilib. Thermodyn. 2020, 45, 305–310. [Google Scholar] [CrossRef]
- Chen, L.G.; Shen, J.F.; Ge, Y.L.; Wu, Z.X.; Wang, W.H.; Zhu, F.L.; Feng, H.J. Power and efficiency optimization of open Maisotsenko-Brayton cycle and performance comparison with traditional open regenerated Brayton cycle. Energy Convers. Manag. 2020, 217, 113001. [Google Scholar] [CrossRef]
- Liu, H.T.; Zhai, R.R.; Patchigolla, K.; Turner, P.; Yang, Y.P. Analysis of integration method in multi-heat-source power generation systems based on finite-time thermodynamics. Energy Convers. Manag. 2020, 220, 113069. [Google Scholar] [CrossRef]
- Feng, H.J.; Qin, W.X.; Chen, L.G.; Cai, C.G.; Ge, Y.L.; Xia, S.J. Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 2020, 205, 112424. [Google Scholar] [CrossRef]
- Feng, J.S.; Gao, G.T.; Dabwan, Y.N.; Pei, G.; Dong, H. Thermal performance evaluation of subcritical organic Rankine cycle for waste heat recovery from sinter annular cooler. J. Iron. Steel Res. Int. 2020, 27, 248–258. [Google Scholar] [CrossRef]
- Wu, Z.X.; Feng, H.J.; Chen, L.G.; Tang, W.; Shi, J.C.; Ge, Y.L. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Convers. Manag. 2020, 210, 112727. [Google Scholar] [CrossRef]
- Qiu, S.S.; Ding, Z.M.; Chen, L.G. Performance evaluation and parametric optimum design of irreversible thermionic generators based on van der Waals heterostructures. Energy Convers. Manag. 2020, 225, 113360. [Google Scholar] [CrossRef]
- Miller, H.J.D.; Mehboudi, M. Geometry of work fluctuations versus efficiency in microscopic thermal machines. Phys. Rev. Lett. 2020, 125, 260602. [Google Scholar] [CrossRef]
- Gonzalez-Ayala, J.; Roco, J.M.M.; Medina, A.; Calvo Hernández, A. Optimization, stability, and entropy in endoreversible heat engines. Entropy 2020, 22, 1323. [Google Scholar] [CrossRef]
- Kong, R.; Chen, L.G.; Xia, S.J.; Li, P.L.; Ge, Y.L. Minimizing entropy generation rate in hydrogen iodide decomposition reactor heated by high-temperature helium. Entropy 2021, 23, 82. [Google Scholar] [CrossRef]
- Albatati, F.; Attar, A. Analytical and experimental study of thermoelectric generator (TEG) system for automotive exhaust waste heat recovery. Energies 2021, 14, 204. [Google Scholar] [CrossRef]
- Feng, H.J.; Wu, Z.X.; Chen, L.G.; Ge, Y.L. Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system. Energy Convers. Manag. 2021, 227, 113585. [Google Scholar] [CrossRef]
- Garmejani, H.A.; Hossainpou, S.H. Single and multi-objective optimization of a TEG system for optimum power, cost and second law efficiency using genetic algorithm. Energy Convers. Manag. 2021, 228, 113658. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Feng, H.J. Ecological optimization of an irreversible Diesel cycle. Eur. Phys. J. Plus 2021, 136, 198. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, F.K.; Ge, Y.L.; Feng, H.J.; Xia, S.J. Performance optimization of a class of combined thermoelectric heating devices. Sci. China Technol. Sci. 2020, 63, 2640–2648. [Google Scholar] [CrossRef]
- Sahin, B.; Kodal, A.; Yavuz, H. Efficiency of a Joule-Brayton engine at maximum power density. J. Phys. D Appl. Phys. 1995, 28, 1309–1313. [Google Scholar] [CrossRef]
- Sahin, B.; Kodal, A.; Yavuz, H. Maximum power density analysis of an endoreversible Carnot heat engine. Energy 1996, 21, 1219–1225. [Google Scholar] [CrossRef]
- Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Optimum distribution of heat exchanger inventory for power density optimization of an endoreversible closed Brayton cycle. J. Phys. D Appl. Phys. 2001, 34, 422–427. [Google Scholar] [CrossRef]
- Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Power density optimization for an irreversible closed Brayton cycle. Open Syst. Inf. Dyn. 2001, 8, 241–260. [Google Scholar] [CrossRef]
- Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Performance comparison of an endoreversible closed variable-temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. Energy Convers. Manag. 2002, 43, 33–43. [Google Scholar] [CrossRef]
- Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Performance comparison of an irreversible closed variable-temperature heat reservoir Brayton cycle under maximum power density and maximum power conditions. Proc. Inst. Mech. Eng. Part. A J. Power Energy 2005, 219, 559–566. [Google Scholar] [CrossRef]
- Gonca, G. Thermodynamic analysis and performance maps for the irreversible Dual-Atkinson cycle engine (DACE) with considerations of temperature-dependent specific heats, heat transfer and friction losses. Energy Convers. Manag. 2016, 111, 205–216. [Google Scholar] [CrossRef]
- Gonca, G.; Bahri Sahin, B.; Cakir, M. Performance assessment of a modified power generating cycle based on effective ecological power density and performance coefficient. Int. J. Exergy 2020, 33, 153–164. [Google Scholar] [CrossRef]
- Karakurt, A.S.; Bashan, V.; Ust, Y. Comparative maximum power density analysis of a supercritical CO2 Brayton power cycle. J. Therm. Eng. 2020, 6, 50–57. [Google Scholar] [CrossRef]
- Angulo-Brown, F. An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 1991, 69, 7465–7469. [Google Scholar] [CrossRef]
- Yan, Z.J. Comment on “ecological optimization criterion for finite-time heat engines”. Eur. J. Appl. Physiol. 1993, 73, 3583. [Google Scholar]
- Cheng, C.Y.; Chen, C.K. Ecological optimization of an endoreversible Brayton cycle. Energy Convers. Manag. 1998, 39, 33–44. [Google Scholar] [CrossRef]
- Ma, Z.S.; Chen, Y.; Wu, J.H. Ecological optimization for a combined diesel-organic Rankine cycle. AIP Adv. 2019, 9, 015320. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, M.H.; Pourkiaei, S.M.; Ghazvini, M.; Pourfayaz, F. Thermodynamic assessment and optimization of performance of irreversible Atkinson cycle. Iran. J. Chem. Chem. Eng. 2020, 39, 267–280. [Google Scholar]
- Levario-Medina, S.; Valencia-Ortega, G.; Barranco-Jimenez, M.A. Energetic optimization considering a generalization of the ecological criterion in traditional simple-cycle and combined cycle power plants. J. Non-Equilib. Thermodyn. 2020, 45, 269–290. [Google Scholar] [CrossRef]
- Wu, H.; Ge, Y.L.; Chen, L.G.; Feng, H.J. Power, efficiency, ecological function and ecological coefficient of performance optimizations of an irreversible Diesel cycle based on finite piston speed. Energy 2021, 216, 119235. [Google Scholar] [CrossRef]
- Kaushik, S.C.; Tyagi, S.K.; Singhal, M.K. Parametric study of an irreversible regenerative Brayton cycle with isothermal heat addition. Energy Convers. Manag. 2003, 44, 2013–2025. [Google Scholar] [CrossRef]
- Tyagi, S.K.; Kaushik, S.C.; Tiwari, V. Ecological optimization and parametric study of an irreversible regenerative modified Brayton cycle with isothermal heat addition. Entropy 2003, 5, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, S.K.; Chen, J. Performance evaluation of an irreversible regenerative modified Brayton heat engine based on the thermoeconomic criterion. Int. J. Power Energy Syst. 2006, 26, 66–74. [Google Scholar] [CrossRef]
- Kumar, R.; Kaushik, S.C.; Kumar, R. Power optimization of an irreversible regenerative Brayton cycle with isothermal heat addition. J. Therm. Eng. 2015, 1, 279–286. [Google Scholar] [CrossRef]
- Tyagi, S.K.; Chen, J.; Kaushik, S.C. Optimum criteria based on the ecological function of an irreversible intercooled regenerative modified Brayton cycle. Int. J. Exergy 2005, 2, 90–107. [Google Scholar] [CrossRef]
- Tyagi, S.K.; Wang, S.; Kaushik, S.C. Irreversible modified complex Brayton cycle under maximum economic condition. Indian J. Pure Appl. Phys. 2006, 44, 592–601. [Google Scholar]
- Tyagi, S.K.; Chen, J.; Kaushik, S.C.; Wu, C. Effects of intercooling on the performance of an irreversible regenerative modified Brayton cycle. Int. J. Power Energy Syst. 2007, 27, 256–264. [Google Scholar] [CrossRef]
- Tyagi, S.K.; Wang, S.; Park, S.R. Performance criteria on different pressure ratios of an irreversible modified complex Brayton cycle. Indian J. Pure Appl. Phys. 2008, 46, 565–574. [Google Scholar]
- Wang, J.H.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Power and power density analyzes of an endoreversible modified variable-temperature reservoir Brayton cycle with isothermal heat addition. Int. J. Low-Carbon Technol. 2016, 11, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Chen, L.G.; Ge, Y.L.; Sun, F.R. Ecological performance analysis of an endoreversible modified Brayton cycle. Int. J. Sustain. Energy 2014, 33, 619–634. [Google Scholar] [CrossRef]
- Tang, C.Q.; Feng, H.J.; Chen, L.G.; Wang, W.H. Power density analysis and multi-objective optimization for a modified endoreversible simple closed Brayton cycle with one isothermal heating process. Energy Rep. 2020, 6, 1648–1657. [Google Scholar] [CrossRef]
- Arora, R.; Kaushik, S.C.; Kumar, R.; Arora, R. Soft computing based multi-objective optimization of Brayton cycle power plant with isothermal heat addition using evolutionary algorithm and decision making. Appl. Soft Comput. 2016, 46, 267–283. [Google Scholar] [CrossRef]
- Arora, R.; Arora, R. Thermodynamic optimization of an irreversible regenerated Brayton heat engine using modified ecological criteria. J. Therm. Eng. 2020, 6, 28–42. [Google Scholar] [CrossRef]
- Chen, L.G.; Tang, C.Q.; Feng, H.J.; Ge, Y.L. Power, efficiency, power density and ecological function optimizations for an irreversible modified closed variable-temperature reservoir regenerative Brayton cycle with one isothermal heating process. Energies 2020, 13, 5133. [Google Scholar] [CrossRef]
- Qi, W.; Wang, W.H.; Chen, L.G. Power and efficiency performance analyses for a closed endoreversible binary Brayton cycle with two isothermal processes. Therm. Sci. Eng. Prog. 2018, 7, 131–137. [Google Scholar] [CrossRef]
- Tang, C.Q.; Chen, L.G.; Feng, H.J.; Wang, W.H.; Ge, Y.L. Power optimization of a closed binary Brayton cycle with isothermal heating processes and coupled to variable-temperature reservoirs. Energies 2020, 13, 3212. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Dehghani, S.; Mohammadi, A.H.; Feidt, M.; Barranco-Jimenez, M.A. Optimal design of a solar driven heat engine based on thermal and thermo-economic criteria. Energy Convers. Manag. 2013, 75, 635–642. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mohammadi, A.H.; Dehghani, S.; Barranco-Jimenez, M.A. Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm. Energy Convers. Manag. 2013, 75, 438–445. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Mohammadi, A.H.; Feidt, M.; Pourkiaei, S.M. Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle. Energy Convers. Manag. 2014, 82, 351–360. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A.; Mehrpooya, M.; Hosseinzade, H.; Feidt, M. Thermodynamic and thermo-economic analysis and optimization of performance of irreversible four- temperature-level absorption refrigeration. Energy Convers. Manag. 2014, 88, 1051–1059. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Ahmadi, M.A. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle. Energy Convers. Manag. 2015, 89, 147–155. [Google Scholar] [CrossRef]
- Jokar, M.A.; Ahmadi, M.H.; Sharifpur, M.; Meyer, J.P.; Pourfayaz, F.; Ming, T.Z. Thermodynamic evaluation and multi-objective optimization of molten carbonate fuel cell-supercritical CO2 Brayton cycle hybrid system. Energy Convers. Manag. 2017, 153, 538–556. [Google Scholar] [CrossRef]
- Han, Z.H.; Mei, Z.K.; Li, P. Multi-objective optimization and sensitivity analysis of an organic Rankine cycle coupled with a one-dimensional radial-inflow turbine efficiency prediction model. Energy Convers. Manag. 2018, 166, 37–47. [Google Scholar] [CrossRef]
- Ghasemkhani, A.; Farahat, S.; Naserian, M.M. Multi-objective optimization and decision making of endoreversible combined cycles with consideration of different heat exchangers by finite time thermodynamics. Energy Convers. Manag. 2018, 171, 1052–1062. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Jokar, M.A.; Ming, T.Z.; Feidt, M.; Pourfayaz, F.; Astaraei, F.R. Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach. Energy 2018, 144, 707–722. [Google Scholar] [CrossRef]
- Wang, M.; Jing, R.; Zhang, H.R.; Meng, C.; Li, N.; Zhao, Y.R. An innovative Organic Rankine Cycle (ORC) based Ocean Thermal Energy Conversion (OTEC) system with performance simulation and multi-objective optimization. Appl. Therm. Eng. 2018, 145, 743–754. [Google Scholar] [CrossRef]
- Patela, V.K.; Raja, B.D. A comparative performance evaluation of the reversed Brayton cycle operated heat pump based on thermo-ecological criteria through many and multi-objective approaches. Energy Convers. Manag. 2019, 183, 252–265. [Google Scholar] [CrossRef]
- Hu, S.Z.; Li, J.; Yang, F.B.; Yang, Z.; Duan, Y.Y. Multi-objective optimization of organic Rankine cycle using hydrofluorolefins (HFOs) based on different target preferences. Energy 2020, 203, 117848. [Google Scholar] [CrossRef]
- Hu, S.Z.; Li, J.; Yang, F.B.; Yang, Z.; Duan, Y.Y. How to design organic Rankine cycle system under fluctuating ambient temperature: A multi-objective approach. Energy Convers. Manag. 2020, 224, 113331. [Google Scholar] [CrossRef]
- Sun, M.; Xia, S.J.; Chen, L.G.; Wang, C.; Tang, C.Q. Minimum entropy generation rate and maximum yield optimization of sulfuric acid decomposition process using NSGA-II. Entropy 2020, 22, 1065. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Ghandehariun, S.; Naterer, G.F. Exergoeconomic and multi-objective optimization of a solar thermochemical hydrogen production plant with heat recovery. Energy Convers. Manag. 2020, 225, 113441. [Google Scholar] [CrossRef]
- Wu, Z.X.; Feng, H.J.; Chen, L.G.; Ge, Y.L. Performance optimization of a condenser in ocean thermal energy conversion (OTEC) system based on constructal theory and multi-objective genetic algorithm. Entropy 2020, 22, 641. [Google Scholar] [CrossRef]
- Ghorani, M.M.; Haghighi, M.H.S.; Riasi, A. Entropy generation minimization of a pump running in reverse mode based on surrogate models and NSGA-II. Int. Commun. Heat Mass Transfer 2020, 118, 104898. [Google Scholar] [CrossRef]
- Wang, L.B.; Bu, X.B.; Li, H.S. Multi-objective optimization and off-design evaluation of organic Rankine cycle (ORC) for low-grade waste heat recovery. Energy 2020, 203, 117809. [Google Scholar] [CrossRef]
- Herrera-Orozco, I.; Valencia-Ochoa, G.; Jorge Duarte-Forero, J. Exergo-environmental assessment and multi-objective optimization of waste heat recovery systems based on Organic Rankine cycle configurations. J. Clean. Prod. 2021, 288, 125679. [Google Scholar] [CrossRef]
- Shi, S.S.; Ge, Y.L.; Chen, L.G.; Feng, F.J. Four objective optimization of irreversible Atkinson cycle based on NSGA-II. Entropy 2020, 22, 1150. [Google Scholar] [CrossRef]
- Tang, W.; Feng, H.J.; Chen, L.G.; Xie, Z.J.; Shi, J.C. Constructal design for a boiler economizer. Energy 2021, 223, 120013. [Google Scholar] [CrossRef]
- Chen, L.G.; Zheng, J.L.; Sun, F.R.; Wu, C. Power density optimization for an irreversible regenerated closed Brayton cycle. Phys. Scripta 2001, 64, 184–191. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation through Heat and Fluid Flow; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bejan, A. Theory of heat transfer-irreversible power plant. Int. J. Heat Mass Transfer 1988, 31, 1211–1219. [Google Scholar] [CrossRef]
- Bejan, A. The equivalence of maximum power and minimum entropy generation rate in the optimization of power plants. J. Energy Res. Tech. 1996, 118, 98–101. [Google Scholar] [CrossRef]
- Bejan, A. Models of power plants that generate minimum entropy while operating at maximum power. Am. J. Phys. 1996, 64, 1054–1059. [Google Scholar] [CrossRef]
- Salamon, P.; Hoffmann, K.H.; Schubert, S.; Berry, R.S.; Andresen, B. What conditions make minimum entropy production equivalent to maximum power production? J. Non-Equilib. Thermodyn. 2001, 26, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Andresen, B.; Berry, R.S.; Nitzan, A.; Salamon, P. Thermodynamics in finite time: The step-Carnot cycle. Phys. Rev. A 1977, 15, 2086–2093. [Google Scholar] [CrossRef]
- Orlov, V.N.; Rudenko, A.V. Optimal control in problems of extremal of irreversible thermodynamic processes. Avtomatika Telemekhanika 1985, 46, 549–577. [Google Scholar]
- Lu, P.C. Thermodynamics with finite heat-transfer area or finite surface thermodynamics. Thermodynamics and the Design, Analysis, and Improvement of Energy Systems, ASME Adv. Energy Sys. Div. Pub. AES 1995, 35, 51–60. [Google Scholar]
- Bejan, A. Entropy generation minimization: The new thermodynamics of finite size devices and finite time processes. J. Appl. Phys. 1996, 79, 1191–1218. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M. Thermodynamique et Optimisation Energetique des Systems et Procedes, 2nd ed.; Technique et Documentation, Lavoisier: Paris, France, 1996. (In French) [Google Scholar]
- Dong, Y.; El-Bakkali, A.; Feidt, M.; Descombes, G.; Perilhon, C. Association of finite-dimension thermodynamics and a bond-graph approach for modeling an irreversible heat engine. Entropy 2012, 14, 1234–1258. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M. Thermodynamique Optimale en Dimensions Physiques Finies; Hermès: Paris, France, 2013. [Google Scholar]
- Perescu, S.; Costea, M.; Feidt, M.; Ganea, I.; Boriaru, N. Advanced Thermodynamics of Irreversible Processes with Finite Speed and Finite Dimensions; Editura AGIR: Bucharest, Romania, 2015. [Google Scholar]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 1. Fundamental; ISTE Press and Elsevier: London, UK, 2017. [Google Scholar]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 2. Complex. Systems; ISTE Press and Elsevier: London, UK, 2018. [Google Scholar]
- Blaise, M.; Feidt, M.; Maillet, D. Influence of the working fluid properties on optimized power of an irreversible finite dimensions Carnot engine. Energy Convers. Manag. 2018, 163, 444–456. [Google Scholar] [CrossRef]
- Feidt, M.; Costea, M. From finite time to finite physical dimensions thermodynamics: The Carnot engine and Onsager’s relations revisited. J. Non-Equilib. Thermodyn. 2018, 43, 151–162. [Google Scholar] [CrossRef]
- Dumitrascu, G.; Feidt, M.; Popescu, A.; Grigorean, S. Endoreversible trigeneration cycle design based on finite physical dimensions thermodynamics. Energies 2019, 12, 3165. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M.; Costea, M. Progress in Carnot and Chambadal modeling of thermomechnical engine by considering entropt and heat transfer entropy. Entropy 2019, 21, 1232. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M.; Costea, M.; Feidt, R.; Danel, Q.; Périlhon, C. New criteria to characterize the waste heat recovery. Energies 2020, 13, 789. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values |
---|---|
Nvars | 4 |
ParetoFraction | 0.3 |
PopulationSize | 300 |
Generations | 500 |
CrossoverFraction | 0.8 |
OPOs | Decision Methods | Optimization Variables | Performance Indicators | Isothermal Pressure Drop Ratio | Deviation Indexes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
, , , and | LINMAP | 0.245 | 0.154 | 0.601 | 14.194 | 0.787 | 0.397 | 0.380 | 0.462 | 0.572 | 0.172 |
TOPSIS | 0.245 | 0.154 | 0.601 | 14.194 | 0.787 | 0.397 | 0.380 | 0.462 | 0.572 | 0.172 | |
Shannon Entropy | 0.259 | 0.151 | 0.590 | 11.901 | 0.802 | 0.386 | 0.376 | 0.467 | 0.572 | 0.167 | |
, , and | LINMAP | 0.230 | 0.167 | 0.603 | 14.261 | 0.787 | 0.398 | 0.381 | 0.461 | 0.557 | 0.170 |
TOPSIS | 0.231 | 0.167 | 0.602 | 14.115 | 0.788 | 0.397 | 0.380 | 0.462 | 0.557 | 0.168 | |
Shannon Entropy | 0.246 | 0.167 | 0.587 | 12.008 | 0.803 | 0.386 | 0.377 | 0.466 | 0.559 | 0.165 | |
, , and | LINMAP | 0.231 | 0.163 | 0.606 | 13.947 | 0.790 | 0.397 | 0.380 | 0.462 | 0.557 | 0.160 |
TOPSIS | 0.231 | 0.163 | 0.606 | 13.947 | 0.790 | 0.397 | 0.380 | 0.462 | 0.557 | 0.160 | |
Shannon Entropy | 0.257 | 0.153 | 0.590 | 11.92 | 0.803 | 0.386 | 0.376 | 0.467 | 0.570 | 0.165 | |
, and | LINMAP | 0.252 | 0.177 | 0.571 | 13.339 | 0.793 | 0.393 | 0.380 | 0.463 | 0.566 | 0.162 |
TOPSIS | 0.252 | 0.177 | 0.571 | 13.339 | 0.793 | 0.393 | 0.380 | 0.463 | 0.566 | 0.162 | |
Shannon Entropy | 0.259 | 0.151 | 0.590 | 11.906 | 0.802 | 0.386 | 0.376 | 0.467 | 0.572 | 0.167 | |
, and | LINMAP | 0.241 | 0.170 | 0.589 | 17.016 | 0.761 | 0.406 | 0.380 | 0.444 | 0.575 | 0.319 |
TOPSIS | 0.241 | 0.170 | 0.589 | 17.016 | 0.761 | 0.406 | 0.380 | 0.444 | 0.575 | 0.319 | |
Shannon Entropy | 0.245 | 0.169 | 0.585 | 16.674 | 0.764 | 0.405 | 0.381 | 0.447 | 0.577 | 0.297 | |
and | LINMAP | 0.230 | 0.169 | 0.601 | 14.293 | 0.787 | 0.398 | 0.381 | 0.461 | 0.557 | 0.170 |
TOPSIS | 0.230 | 0.169 | 0.601 | 14.293 | 0.787 | 0.398 | 0.381 | 0.461 | 0.557 | 0.170 | |
Shannon Entropy | 0.248 | 0.168 | 0.585 | 12.061 | 0.802 | 0.387 | 0.377 | 0.466 | 0.560 | 0.162 | |
and | LINMAP | 0.247 | 0.176 | 0.578 | 13.384 | 0.793 | 0.394 | 0.380 | 0.463 | 0.563 | 0.158 |
TOPSIS | 0.247 | 0.176 | 0.577 | 13.560 | 0.792 | 0.394 | 0.381 | 0.463 | 0.564 | 0.161 | |
Shannon Entropy | 0.245 | 0.171 | 0.584 | 11.855 | 0.803 | 0.385 | 0.376 | 0.466 | 0.555 | 0.170 | |
and | LINMAP | 0.258 | 0.154 | 0.589 | 11.765 | 0.803 | 0.385 | 0.376 | 0.467 | 0.570 | 0.169 |
TOPSIS | 0.258 | 0.154 | 0.589 | 11.765 | 0.803 | 0.385 | 0.376 | 0.467 | 0.570 | 0.169 | |
Shannon Entropy | 0.259 | 0.152 | 0.589 | 11.902 | 0.802 | 0.386 | 0.376 | 0.467 | 0.572 | 0.167 | |
and | LINMAP | 0.232 | 0.192 | 0.576 | 16.452 | 0.765 | 0.405 | 0.381 | 0.446 | 0.562 | 0.295 |
TOPSIS | 0.235 | 0.193 | 0.572 | 16.156 | 0.768 | 0.404 | 0.381 | 0.447 | 0.563 | 0.279 | |
Shannon Entropy | 0.241 | 0.196 | 0.563 | 15.603 | 0.772 | 0.402 | 0.381 | 0.450 | 0.564 | 0.255 | |
and | LINMAP | 0.237 | 0.1604 | 0.603 | 14.307 | 0.787 | 0.398 | 0.381 | 0.461 | 0.564 | 0.170 |
TOPSIS | 0.236 | 0.163 | 0.601 | 14.173 | 0.788 | 0.398 | 0.381 | 0.462 | 0.562 | 0.164 | |
Shannon Entropy | 0.258 | 0.152 | 0.590 | 11.909 | 0.802 | 0.386 | 0.376 | 0.467 | 0.571 | 0.167 | |
and | LINMAP | 0.257 | 0.166 | 0.578 | 13.483 | 0.792 | 0.394 | 0.380 | 0.464 | 0.572 | 0.160 |
TOPSIS | 0.257 | 0.165 | 0.578 | 13.386 | 0.793 | 0.393 | 0.380 | 0.464 | 0.572 | 0.161 | |
Shannon Entropy | 0.258 | 0.154 | 0.588 | 12.054 | 0.802 | 0.387 | 0.377 | 0.467 | 0.571 | 0.161 | |
0.249 | 0.162 | 0.589 | 9.678 | 0.810 | 0.369 | 0.365 | 0.459 | 0.550 | 0.242 | ||
0.152 | 0.174 | 0.674 | 24.542 | 0.672 | 0.416 | 0.358 | 0.369 | 0.532 | 0.783 | ||
0.251 | 0.183 | 0.567 | 15.149 | 0.777 | 0.400 | 0.382 | 0.454 | 0.571 | 0.225 | ||
0.259 | 0.151 | 0.590 | 11.903 | 0.802 | 0.386 | 0.376 | 0.467 | 0.572 | 0.167 | ||
Positive ideal point | —— | —— | —— | —— | 0.810 | 0.416 | 0.382 | 0.467 | 0.810 | —— | |
Negative ideal point | —— | —— | —— | —— | 0.677 | 0.369 | 0.360 | 0.373 | 0.677 | —— |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.; Chen, L.; Feng, H.; Ge, Y. Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle. Entropy 2021, 23, 282. https://doi.org/10.3390/e23030282
Tang C, Chen L, Feng H, Ge Y. Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle. Entropy. 2021; 23(3):282. https://doi.org/10.3390/e23030282
Chicago/Turabian StyleTang, Chenqi, Lingen Chen, Huijun Feng, and Yanlin Ge. 2021. "Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle" Entropy 23, no. 3: 282. https://doi.org/10.3390/e23030282
APA StyleTang, C., Chen, L., Feng, H., & Ge, Y. (2021). Four-Objective Optimizations for an Improved Irreversible Closed Modified Simple Brayton Cycle. Entropy, 23(3), 282. https://doi.org/10.3390/e23030282